Supporting Information

Palladium(I)-Iodide Catalyzed Deoxygenative Heck Reaction of Vinyl Triflates: A Formate-Mediated Cross-Electrophile Reductive Coupling with *cine*-Substitution

Yu-Hsiang Chang, Weijia Shen,[§] Jonathan Z. Shezaf,[§] Eliezer Ortiz, and Michael J. Krische* Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States EMAIL: mkrische@cm.utexas.edu*

Table of Contents

I. General Information	S002
II. Spectroscopy, Spectrometry and Data Collection	S002
III. Known Aryl Iodides 1a-1j	S003
IV. Known Vinyl Triflates 2a-2f, deuterio- 2b	S004
V. Products 3a-3q	S005
VI. Structure Determination: Desilylation of Product 3a	S057
VII. ³¹ P NMR Experiments	S060
VIII. Deuterium Labeling Study for <i>deuterio-3g</i>	S064
IX. Single Crystal Diffraction Data for $[Pd_2I_6][NBu_4]_2$	S067
X. Single Crystal Diffraction Data for 3j	S070
XI. Single Crystal Diffraction Data for 3k	S073
XII. References	S076

I. General Information

All reactions were run under an atmosphere of argon, unless otherwise indicated. Resealable pressure tubes (13x100 mm) were purchased from Fischer Scientific (catalog number 14–959–35C) and were flame dried followed by cooling in a desiccator or under a stream of argon prior to use. All commercial reagents, which includes Pd(OAc)₂, Bu₄NI, NaO₂CH, Na₂CO₃, aryl iodides **1a-1j**, and anhydrous solvents were used as received from vendors without further purification. The palladium complex [Pd₂I₆][NBu₄]₂ was prepared in accord with the literature procedure.¹ Purification of reaction products was carried out by flash column chromatography using 40-63 µm silica gel. Analytical thin-layer chromatography (TLC) was carried out using 0.25 mm commercial silica gel plates (Dynamic Absorbents F254).

II. Spectroscopy, Spectrometry, and Data Collection

Infrared spectra were recorded on a Perkin-Elmer 1600 spectrometer. High-resolution mass spectra (HRMS) were isolated on a Karatos MS9 and are reported as m/z (relative intensity). Electron spray ionization (ESI) was used unless otherwise indicated. Accurate masses are reported for the molecular ion (M+, M+H, M+Na), or a suitable fragment ion. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded with a Varian INOVA (400, 500 MHz) spectrometer equipped with a Bruker AVANCE III cryoprobe. Data reported as multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet). Integration and coupling constants were reported in Hertz (Hz). Carbon-13 nuclear magnetic resonance (¹³C NMR) spectra were recorded with a Varian INOVA (100, 125 MHz) spectrometer and were routinely run with broadband decoupling. Decoupled Proton Phosphorus-31 nuclear magnetic resonance (³¹P{1H} NMR) spectra were recorded with a Varian INOVA (202 MHz) spectrometer. Deuterium nuclear magnetic resonance (²H NMR) spectra were recorded in CHCl₃ solution with a Varian Gemini 500 (92 MHz) spectrometer (relaxation delay 2.00s).

III. Known Aryl Iodides (1a-1j)

IV. Known Vinyl Triflates (2a-2f, deuterio-2b)

V. Products 3a-3q

General Procedure: An oven-dried pressure tube equipped with a magnetic stir bar was charged with aryl iodide **1a-1j** (0.32 mmol, 160 mol%), vinyl triflate **2a-2f** (0.2 mmol, 100 mol%), Pd(OAc)₂ (0.01 mmol, 5 mol%), Bu₄NI (0.04 mmol, 20 mol%), NaO₂CH (0.40 mmol, 200 mol%), and Na₂CO₃ (0.20 mmol, 100 mol%), under an argon atmosphere. The pressure tube was evacuated and backfilled with argon, followed by the addition of water (25 μ L, 1.4 mmol, 700 mol%) and anhydrous THF (1.0 mL, 0.2 M). The tube was sealed with a PTFE lined cap and the reaction vessel was placed in a 100 °C oil bath and stirred for 24 hours. After reaching ambient temperature, the solvent was removed *in vacuo* and the residue was subjected to flash column chromatography (SiO₂) under the noted conditions to furnish products **3a-3q**. Regioisomeric ratios were determined by ¹H NMR of a purified mixture of regioisomers.

tert-butyl((4'-methoxy-2,3,4,5-tetrahydro-[1,1'-biphenyl]-3-yl)oxy)dimethylsilane (3a)

Following the general procedure, aryl iodide **1a** (74.9 mg, 0.32 mmol) and vinyl triflate **2a** (72.0 mg, 0.2 mmol) were subjected to standard reaction conditions (100 °C, 24 h). Upon flash column chromatography (SiO₂: 1:99 EtOAc:hexanes) the title compound **3a** was isolated as a clear oil in 88% yield (56.0 mg, 0.18 mmol, 14:1 rr).

TLC (SiO₂): $R_f = 0.6$ (1:5 EtOAc:hexanes).

¹**H NMR** (400 MHz, $CDCl_3$): δ 7.31 (d, J = 9.0 Hz, 2H), 6.85 (d, J = 9.0 Hz, 2H), 5.96 (t, J = 2.4 Hz, 1H), 4.02 (dddd, J = 10.1, 8.4, 5.2, 3.3 Hz, 1H), 3.81 (s, 3H), 2.64 – 2.54 (m, 1H), 2.44 – 2.29 (m, 2H), 2.29 – 2.15 (m, 1H), 1.91 – 1.80 (m, 1H), 1.69 – 1.56 (m, 1H), 0.91 (s, 9H), 0.09 (d, J = 1.2 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃): δ 158.7, 134.7, 134.2, 126.2, 122.3, 113.7, 68.7, 55.4, 37.6, 31.5, 26.1, 24.8, 18.4, -4.4, -4.4.

HRMS (ESI) m/z: [M+Na⁺] calcd. for C₁₉H₃₀O₂Si: 341.1907; found = 341.1916.

FTIR (neat): 2952, 2929, 2856, 1609, 1512, 1249, 1092, 830, 774 cm⁻¹.

tert-butyl((2'-methoxy-2,3,4,5-tetrahydro-[1,1'-biphenyl]-3-yl)oxy)dimethylsilane (3b)

Following the general procedure, aryl iodide **1b** (74.9 mg, 0.32 mmol) and vinyl triflate **2a** (72.0 mg, 0.2 mmol) were subjected to modified reaction conditions (10 mol% Pd(OAc)₂, 100 °C, 24 h). Upon flash column chromatography (SiO₂: 10:90 CH₂Cl₂:hexanes) the title compound **3b** was isolated as a clear oil in 61% yield (38.9 mg, 0.12 mmol, >20:1 rr).

TLC (SiO₂): $R_f = 0.6$ (1:5 EtOAc:hexanes).

¹**H NMR** (400 MHz, CDCl₃): δ 7.22 (td, J = 7.7, 1.8 Hz, 1H), 7.12 (dd, J = 7.5, 1.8 Hz, 1H), 6.90 (td, J = 7.4, 1.1 Hz, 1H), 6.86 (d, J = 8.2 Hz, 1H), 5.69 (dd, J = 4.7, 2.4 Hz, 1H), 4.02 (dddd, J = 10.1, 8.3, 5.1, 3.3 Hz, 1H), 3.81 (s, 3H), 2.58 (dd, J = 16.7, 5.0 Hz, 1H), 2.44 - 2.19 (m, 3H), 1.92 - 1.83 (m, 1H), 1.66 (dtd, J = 12.4, 10.0, 6.3 Hz, 1H), 0.91 (s, 9H), 0.08 (d, J = 5.2 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃): δ 156.8, 135.5, 133.1, 129.7, 128.1, 125.5, 120.7, 110.9, 68.6, 55.5, 38.7, 31.5, 26.1, 24.9, 18.4, -4.5.

HRMS (ESI) m/z: [M+Na⁺] calcd. for C₁₉H₃₀O₂Si: 341.1907; found = 341.1911.

FTIR (neat): 2927, 2855, 1487, 1462, 1247, 1091, 833, 773, 749 cm⁻¹.

3'-((tert-butyldimethylsilyl)oxy)-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-4-ol (3c)

Following the general procedure, aryl iodide **1c** (70.4 mg, 0.32 mmol) and vinyl triflate **2a** (72.0 mg, 0.2 mmol) were subjected to modified reaction conditions (10 mol% Pd(OAc)₂, 100 °C, 24 h). Upon flash column chromatography (SiO₂: 10:90 EtOAc:hexanes) the title compound **3c** was isolated as a clear wax in 59% yield (35.8 mg, 0.12 mmol, 20:1 rr).

TLC (SiO₂): $R_f = 0.3$ (1:4 EtOAc:hexanes).

¹**H NMR** (400 MHz, CDCl₃): δ 7.26 (d, J = 8.7 Hz, 2H), 6.78 (d, J = 8.7 Hz, 2H), 5.98 – 5.91 (m, 1H), 4.73 (s, 1H), 4.05 – 3.97 (m, 1H), 2.61 – 2.53 (m, 1H), 2.43 – 2.27 (m, 2H), 2.27 – 2.19 (m, 1H), 1.91 – 1.80 (m, 1H), 1.66 – 1.59 (m, 1H), 0.91 (s, 9H), 0.09 (d, J = 1.4 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃): δ 154.6, 134.9, 134.1, 126.4, 122.4, 115.2, 68.7, 37.6, 31.5, 26.1, 24.8, 18.4, -4.4.

HRMS (ESI) m/z: [M-H⁻] calcd. for C₁₈H₂₈O₂Si: 303.1786; found = 303.1786.

FTIR (neat): 3346, 2928, 2856, 1513, 1462, 1252, 1092, 834, 775 cm⁻¹.

3'-((*tert*-butyldimethylsilyl)oxy)-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-2-ol (3d)

Following the general procedure, aryl iodide **1d** (70.4 mg, 0.32 mmol) and vinyl triflate **2a** (72.0 mg, 0.2 mmol) were subjected to modified reaction conditions (105 °C, 24 h). Upon flash column chromatography (SiO₂: 1:99 EtOAc:hexanes) the title compound **3d** was isolated as a clear oil in 58% yield (35.3 mg, 0.12 mmol, >20:1 rr).

TLC (SiO₂): $R_f = 0.5$ (1:4 EtOAc:hexanes).

¹**H NMR** (400 MHz, CDCl₃): δ 7.14 (ddd, J = 8.9, 7.7, 1.7 Hz, 1H), 7.05 (d, J = 7.5 Hz, 1H), 6.91 (d, J = 8.1 Hz, 1H), 6.91 – 6.82 (m, 1H), 5.82 (dt, J = 3.8, 1.8 Hz, 1H), 5.64 (s, 1H), 4.15 (tq, J = 8.8, 2.9 Hz, 1H), 2.52 – 2.34 (m, 2H), 2.32 – 2.15 (m, 2H), 1.83 (tdd, J = 9.5, 6.4, 2.9 Hz, 1H), 1.72 (dq, J = 12.9, 7.2 Hz, 1H), 0.91 (s, 9H), 0.09 (d, J = 3.9 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃): δ 152.5, 132.1, 129.7, 128.4, 128.1, 128.0, 120.2, 115.4, 67.2, 39.2, 30.1, 26.0, 23.4, 18.3, -4.5, -4.6.

HRMS (ESI) m/z: [M+Na⁺] calcd. for C₁₈H₂₈O₂Si: 327.1751; found = 327.1756.

FTIR (neat): 3504, 2927, 2855, 1486, 1360, 1252, 1090, 833, 750 cm⁻¹.

S0017

((3-(benzo[d][1,3]dioxol-5-yl)cyclohex-3-en-1-yl)oxy)(tert-butyl)dimethylsilane (3e)

Following the general procedure, aryl iodide **1e** (79.3 mg, 0.32 mmol) and vinyl triflate **2a** (72.0 mg, 0.2 mmol) were subjected to standard reaction conditions (100 °C, 24 h). Upon flash column chromatography (SiO₂: 10:90 CH₂Cl₂:hexanes) the title compound **3e** was isolated as a clear oil in 67% yield (44.3 mg, 0.13 mmol, 8:1 rr).

TLC (SiO₂): $R_f = 0.6$ (1:5 EtOAc:hexanes).

¹**H NMR** (400 MHz, CDCl₃): δ 6.88 (d, J = 1.8 Hz, 1H), 6.83 (dd, J = 8.1, 1.9 Hz, 1H), 6.75 (d, J = 8.1 Hz, 1H), 5.96 – 5.90 (m, 3H), 4.07 – 3.95 (m, 1H), 2.61 – 2.50 (m, 1H), 2.41 – 2.28 (m, 2H), 2.26 – 2.15 (m, 1H), 1.89 – 1.80 (m, 1H), 1.66 – 1.55 (m, 1H), 0.91 (s, 9H), 0.09 (d, J = 1.4 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃): δ 147.8, 146.5, 136.7, 134.4, 123.0, 118.5, 108.1, 105.9, 101.0, 68.5, 37.8, 31.4, 26.1, 24.7, 18.4, -4.4.

HRMS (ESI) m/z: $[M+H^+]$ calcd. for $C_{19}H_{28}O_3Si$: 333.1880; found = 333.1890.

FTIR (neat): 2927, 2855, 1504, 1486, 1246, 1087, 1040, 834, 773 cm⁻¹.

3'-((*tert*-butyldimethylsilyl)oxy)-5,6-dimethoxy-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-3-carbaldehyde (3f)

Following the general procedure, aryl iodide **1f** (116.8 mg, 0.4 mmol) and vinyl triflate **2a** (72.0 mg, 0.2 mmol) were subjected to modified reaction conditions (105 °C, 24 h). Upon flash column chromatography (SiO₂: 15:85 EtOAc:hexanes) the title compound **3f** was isolated as a red oil in 67% yield (50.4 mg, 0.13 mmol, >20:1 rr).

TLC (SiO₂): $R_f = 0.4$ (1:2 EtOAc:hexanes).

¹**H NMR** (400 MHz, CDCl₃): δ 9.87 (s, 1H), 7.35 (s, 1H), 7.28 (s, 1H), 5.79 (s, 1H), 4.09 – 4.00 (m, 1H), 3.92 (s, 3H), 3.85 (s, 3H), 2.55 (dd, J = 17.0, 4.7 Hz, 1H), 2.48 – 2.32 (m, 2H), 2.30 – 2.17 (m, 1H), 1.92 – 1.80 (m, 1H), 1.74 – 1.62 (m, 1H), 0.90 (s, 9H), 0.08 (d, J = 6.6 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃): δ 191.5, 153.5, 152.2, 138.3, 133.7, 132.3, 127.1, 126.7, 109.2, 68.0, 61.0, 56.2, 38.6, 31.0, 26.0, 24.4, 18.4, -4.5.

HRMS (ESI) m/z: [M+Na⁺] calcd. for C₂₁H₃₂O₄Si: 399.1962; found = 399.1680.

FTIR (neat): 2928, 2855, 1694, 1578, 1462, 1249, 1088, 836, 775 cm⁻¹.

7-(4-methoxyphenyl)-1,4-dioxaspiro[4.5]dec-7-ene (3g)

Following the general procedure, aryl iodide **1a** (74.9 mg, 0.32 mmol) and vinyl triflate **2b** (57.6 mg, 0.2 mmol) were subjected to standard reaction conditions (100 °C, 24 h). Upon flash column chromatography (SiO₂: 2:98 EtOAc:hexanes) the title compound **3g** was isolated as a white solid in 69% yield (34.0 mg, 0.14 mmol, >20:1 rr).

TLC (SiO₂): $R_f = 0.3$ (1:4 EtOAc:hexanes).

¹**H NMR** (500 MHz, CDCl₃): δ 7.31 (d, J = 8.9 Hz, 2H), 6.84 (d, J = 9.0 Hz, 2H), 6.05 (p, J = 2.1 Hz, 1H), 4.03 (q, J = 1.7 Hz, 4H), 3.80 (s, 3H), 2.63 (d, J = 2.0 Hz, 2H), 2.42 (dtt, J = 6.4, 4.1, 2.1 Hz, 2H), 1.81 (t, J = 6.5 Hz, 2H).

¹³**C NMR** (126 MHz, CDCl₃): δ 158.8, 134.1, 134.0, 126.2, 121.8, 113.7, 108.7, 64.7, 55.4, 38.0, 30.8, 24.9.

HRMS (ESI) m/z: $[M+H^+]$ calcd. for C₁₅H₁₈O₃: 247.1329; found = 247.1330.

FTIR (neat): 2956, 2885, 1513, 1363, 1235, 1115, 1022, 824, 806 cm⁻¹.

Melting Point: 92-94 °C

7-(3-bromo-4-methoxyphenyl)-1,4-dioxaspiro[4.5]dec-7-ene (3h)

Following the general procedure, aryl iodide **1g** (125.0 mg, 0.4 mmol) and vinyl triflate **2b** (57.6 mg, 0.2 mmol) were subjected to modified reaction conditions (10 mol% Pd(OAc)₂, 105 °C, 24 h). Upon flash column chromatography (SiO₂: 2:98 EtOAc:hexanes) the title compound **3h** was isolated as a clear wax in 59% yield (38.4 mg, 0.12 mmol, >20:1 rr).

TLC (SiO₂): $R_f = 0.4$ (1:2 EtOAc:hexanes).

¹**H NMR** (400 MHz, C_6D_6): δ 7.67 (d, J = 2.4 Hz, 1H), 7.08 (dd, J = 8.5, 2.3 Hz, 1H), 6.34 (d, J = 8.5 Hz, 1H), 5.82 (dt, J = 4.1, 2.1 Hz, 1H), 3.55 (s, 4H), 3.23 (s, 3H), 2.60 (s, 2H), 2.29 (dtd, J = 6.6, 4.2, 1.9 Hz, 2H), 1.73 (t, J = 6.5 Hz, 2H).

¹³**C NMR** (101 MHz, C₆D₆): δ 155.4, 136.0, 133.3, 130.7, 125.2, 123.3, 112.4, 111.8, 108.5, 64.5, 55.6, 38.3, 31.2, 25.1.

HRMS (ESI) m/z: [M+H⁺] calcd. for C₁₅H₁₇BrO₃: 325.0434; found = 325.0437.

FTIR (neat): 2928, 2837, 1498, 1284, 1254, 1142, 1054, 1026, 806 cm⁻¹.

Methyl 2-hydroxy-5-(1,4-dioxaspiro[4.5]dec-7-en-7-yl)benzoate (3i)

Following the general procedure, aryl iodide **1h** (111.2 mg, 0.4 mmol) and vinyl triflate **2b** (58.2 mg, 0.2 mmol) were subjected to standard reaction conditions (100 °C, 24 h). Upon flash column chromatography (SiO₂: 3:97 EtOAc:hexanes) the title compound **3i** was isolated as a clear oil in 62% yield (36.0 mg, 0.12 mmol, 16:1 rr).

TLC (SiO₂): $R_f = 0.6$ (1:2 EtOAc:hexanes).

¹**H NMR** (400 MHz, CDCl₃): δ 10.67 (s, 1H), 7.81 (s, 1H), 7.52 (dd, J = 8.7, 2.5 Hz, 1H), 6.92 (d, J = 8.8 Hz, 1H), 6.08 (td, J = 4.0, 2.0 Hz, 1H), 4.03 (s, 4H), 3.94 (s, 3H), 2.70 – 2.57 (m, 2H), 2.43 (ddt, J = 6.6, 4.6, 2.0 Hz, 2H), 1.81 (t, J = 6.5 Hz, 2H).

¹³**C NMR** (101 MHz, CDCl₃): δ 170.7, 160.8, 133.3, 132.7, 132.7, 126.1, 122.6, 117.6, 112.0, 108.5, 64.7, 52.4, 38.0, 30.6, 24.8.

HRMS (ESI) m/z: [M+H⁺] calcd. for C₁₆H₁₈O₅: 291.1227; found = 291.1237.

FTIR (neat): 3345, 2929, 2845, 1650, 1499, 1364, 1285, 1113, 808 cm⁻¹.

(8S,9S,13S,14S)-16-(4-methoxyphenyl)-13-methyl-7,8,9,11,12,13,14,15-octahydro-6H-cyclopenta[a]phenanthren-3-yl acetate (3j)

Following the general procedure, aryl iodide **1a** (74.9 mg, 0.32 mmol) and vinyl triflate **2c** (88.9 mg, 0.2 mmol) were subjected to standard reaction conditions (100 °C, 24 h). Upon flash column chromatography (SiO₂: 1:99 EtOAc:hexanes) the title compound **3j** was isolated as a white solid in 60% yield (48.3 mg, 0.12 mmol, >20:1 rr).

TLC (SiO₂): $R_f = 0.3$ (1:4 EtOAc:hexanes).

¹**H NMR** (500 MHz, C_6D_6): δ 7.37 (d, J = 8.7 Hz, 2H), 7.19 – 7.17 (m, 1H), 7.01 (dd, J = 8.4, 2.6 Hz, 1H), 6.92 (d, J = 2.6 Hz, 1H), 6.85 (d, J = 8.7 Hz, 2H), 6.14 (d, J = 2.3 Hz, 1H), 3.35 (s, 3H), 2.78 – 2.62 (m, 2H), 2.44 (dd, J = 14.2, 6.7 Hz, 1H), 2.22 (ddd, J = 14.0, 11.6, 2.3 Hz, 1H), 2.18 – 2.09 (m, 2H), 1.85 – 1.80 (m, 4H), 1.74 (ddd, J = 12.7, 6.4, 2.7 Hz, 1H), 1.64 – 1.44 (m, 4H), 1.26 (tt, J = 11.9, 6.0 Hz, 1H), 0.85 (s, 3H).

¹³**C NMR** (126 MHz, C₆D₆): δ 168.8, 159.5, 149.4, 141.6, 138.3, 138.2, 136.0, 130.5, 127.0, 126.3, 122.1, 119.1, 114.1, 55.3, 54.8, 46.7, 45.0, 37.3, 36.5, 33.1, 29.7, 28.1, 26.7, 20.7, 17.4.

HRMS (ESI) m/z: [M+H⁺] calcd. for C₂₇H₃₀O₃: 403.2268; found = 403.2263.

FTIR (neat): 2927, 2846, 1762, 1599, 1510, 1364, 1202, 1037, 809 cm⁻¹.

 $[\alpha] \frac{D}{24} = 80.0 \text{ (c} = 0.001, \text{ CHCl}_3).$

Melting Point: 164-166 °C

(8R,9S,10S,13R,14S,17R)-2-(4-methoxyphenyl)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-4,5,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[α]phenanthrene (3k)

Following the general procedure, aryl iodide **1a** (74.9 mg, 0.32 mmol) and vinyl triflate **2d** (103.7 mg, 0.2 mmol) were subjected to modified reaction conditions (10 mol% Pd(OAc)₂, 105 °C, 48 h). Upon flash column chromatography (SiO₂: 2:98 EtOAc:hexanes) the title compound **3k** was isolated as a white solid in 60% yield (57.0 mg, 0.12 mmol, 20:1rr).

TLC (SiO₂): $R_f = 0.7$ (1:9 EtOAc:hexanes).

¹**H** NMR (500 MHz, C₆D₆): δ 7.38 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 6.01 (dd, J = 5.2, 2.5 Hz, 1H), 3.36 (s, 3H), 2.43 (d, J = 16.5 Hz, 1H), 2.15 – 2.09 (m, 1H), 2.09 – 2.06 (m, 1H), 2.06 – 2.02 (m, 1H), 1.94 – 1.85 (m, 2H), 1.71 (dd, J = 12.9, 3.4 Hz, 1H), 1.65 – 1.60 (m, 1H), 1.57 (dd, J = 13.0, 6.0 Hz, 2H), 1.49 – 1.48 (m, 1H), 1.47 – 1.46 (m, 1H), 1.45 – 1.44 (m, 1H), 1.36 (dt, J = 7.7, 4.0 Hz, 3H), 1.32 (d, J = 3.7 Hz, 1H), 1.30 (d, J = 3.7 Hz, 1H), 1.27 (d, J = 3.3 Hz, 1H), 1.26 – 1.24 (m, 1H), 1.23 – 1.22 (m, 1H), 1.21 – 1.19 (m, 1H), 1.18 (d, J = 3.3 Hz, 1H), 1.16 (d, J = 2.5 Hz, 1H), 1.14 (d, J = 2.2 Hz, 1H), 1.13 – 1.11 (m, 1H), 1.11 – 1.08 (m, 1H), 1.05 (d, J = 6.5 Hz, 3H), 0.94 (dd, J = 6.6, 1.4 Hz, 6H), 0.86 (s, 3H), 0.72 (s, 3H), 0.41 (s, 2H).

¹³**C NMR** (126 MHz, C₆D₆): δ 159.3, 136.2, 135.6, 126.7, 121.8, 114.0, 56.8, 54.9, 54.5, 42.9, 42.8, 41.5, 40.5, 40.0, 36.7, 36.3, 36.0, 35.3, 32.2, 31.4, 30.2, 28.9, 28.7, 28.4, 24.6, 24.4, 23.1, 22.8, 21.4, 19.1, 12.3, 12.0.

HRMS (ESI) m/z: [M+H⁺] calcd. for C₃₄H₅₂O: 477.4091; found = 477.4086.

FTIR (neat): 2930, 2864, 1511, 1465, 1381, 1247, 1186, 1034, 802 cm⁻¹.

 $[\alpha] \frac{D}{24} = 62.1 \text{ (c} = 0.1, \text{ CHCl}_3\text{)}.$

Melting Point: 116-118 °C

(±)-*tert*-butyl (3aR,6aR)-6-(4-methoxyphenyl)-3,3a,4,6a-tetrahydrocyclopenta[c]pyrrole-2(1H)-carboxylate (3l)

Following the general procedure, aryl iodide **1a** (74.9 mg, 0.32 mmol) and vinyl triflate **2e** (71.4 mg, 0.2 mmol) were subjected to standard reaction conditions (100 °C, 24 h). Upon flash column chromatography (SiO₂: 5:95 EtOAc:hexanes) the title compound **3I** was isolated as a clear oil in 69% yield (43.5 mg, 0.14 mmol, >20:1 rr).

TLC (SiO₂): $R_f = 0.5$ (1:3 EtOAc:hexanes).

¹**H NMR** (400 MHz, $(CD_3)_2CO$): δ 7.36 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 8.9 Hz, 2H), 5.96 (q, J = 2.4 Hz, 1H), 3.80 (s, 3H), 3.77 (m, 1H), 3.65 (t, J = 9.9 Hz, 2H), 3.27 (d, J = 10.9 Hz, 1H), 3.07 (m, 2H), 2.77 – 2.68 (m, 1H), 2.31 (dq, J = 17.3, 2.6 Hz, 1H), 1.38 (s, 9H).

¹³**C NMR** (101 MHz, (CD₃)₂CO): δ 160.2, 154.7, 144.9, 129.3, 128.3, 124.1, 114.9, 79.1, 55.7, 50.9, 39.0, 30.6, 30.4, 30.2, 30.0, 28.8.

HRMS (ESI) m/z: [M+Na⁺] calcd. for C₁₉H₂₅NO₃: 338.1727; found = 338.1735.

FTIR (neat): 2975, 2934, 1685, 1512, 1405, 1249, 1166, 909, 729 cm⁻¹.

(±)-*tert*-butyl (3aR,6aR)-6-(1-(1-(tert-butoxycarbonyl)piperidin-4-yl)-1H-pyrazol-4-yl)-3,3a,4,6a-tetrahydrocyclopenta[c]pyrrole-2(1H)-carboxylate (3m)

Following the general procedure, aryl iodide **1i** (150.9 mg, 0.4 mmol) and vinyl triflate **2e** (71.4 mg, 0.2 mmol) were subjected to modified reaction conditions (105 °C, 24 h). Upon flash column chromatography (SiO₂: 20:80 EtOAc:hexanes) the title compound **3m** was isolated as a yellow wax in 75% yield (68.7 mg, 0.15 mmol, 14:1 rr).

TLC (SiO₂): $R_f = 0.3$ (1:1 EtOAc:hexanes).

¹**H NMR** (400 MHz, CDCl₃): δ 7.50 (s, 1H), 7.32 (s, 1H), 5.70 (s, 1H), 4.36 – 4.13 (m, 3H), 3.69 (m, 2H), 3.50 (m, 1H), 3.37 (m, 1H), 3.04 – 2.92 (m, 2H), 2.86 (t, J = 12.7 Hz, 2H), 2.67 (ddt, J = 17.1, 7.9, 2.2 Hz, 1H), 2.27 (d, J = 17.2 Hz, 1H), 2.09 (d, J = 12.8 Hz, 2H), 1.88 (td, J = 13.8, 7.1 Hz, 2H), 1.45 (s, 9H), 1.40 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃): δ 154.7, 154.5, 137.1, 135.6, 123.7, 122.5, 118.2, 80.1, 79.3, 77.5, 60.5, 59.5, 52.7, 49.7, 42.9, 38.2, 32.5, 29.9, 28.6.

HRMS (ESI) m/z: [M+Na⁺] calcd. for C₂₅H₃₈N₄O₄: 481.2785; found = 481.2796.

FTIR (neat): 2975, 2930, 1684, 1405, 1365, 1235, 1162, 1120, 729 cm⁻¹.

(±)-*tert*-butyl (3aR,6aR)-6-(1H-indol-5-yl)-3,3a,4,6a-tetrahydrocyclopenta[c]pyrrole-2(1H)carboxylate (3n)

Following the general procedure, aryl iodide **1j** (77.8 mg, 0.32 mmol) and vinyl triflate **2f** (71.4 mg, 0.2 mmol) were subjected to modified reaction conditions (10 mol% Pd(OAc)₂, 105 °C, 48 h). Upon flash column chromatography (SiO₂: 30:70 Et₂O:pentane) the title compound **3n** was isolated as a yellow waxy solid in 56% yield (36.3 mg, 0.11 mmol, >20:1 rr).

TLC (SiO₂): R_f = 0.4 (2:1 Et₂O:pentane).

¹**H NMR** (500 MHz, (CD₃)₂CO): δ 10.26 (s, 1H), 7.57 (s, 1H), 7.39 (d, J = 8.4 Hz, 1H), 7.34 – 7.29 (m, 1H), 7.29 (dd, J = 8.5, 1.8 Hz, 1H), 6.47 (dd, J = 3.1, 1.0 Hz, 1H), 5.97 (q, J = 2.6 Hz, 1H), 3.88 (s, 1H), 3.69 (ddd, J = 15.9, 11.4, 8.7 Hz, 2H), 3.35 (s, 1H), 3.13 – 3.02 (m, 2H), 2.80 – 2.71 (m, 1H), 2.34 (dd, J = 17.2, 2.5 Hz, 1H), 1.35 (s, 9H).

¹³**C NMR** (126 MHz, (CD₃)₂CO): δ 154.6, 146.5, 136.5, 129.2, 128.0, 126.0, 122.9, 121.1, 118.8, 112.2, 102.7, 78.9, 53.4, 51.0, 42.0, 41.1, 38.8, 28.6.

HRMS (ESI) m/z: [M+Na⁺] calcd. for C₂₀H₂₄N₂O₂: 347.1730; found = 347.1739.

FTIR (neat): 3294, 2974, 2930, 1670, 1401, 1164, 1114, 877, 800 cm⁻¹.

Melting Point: 42-44 °C

tert-butyl 2-(4-methoxyphenyl)-8-azabicyclo[3.2.1]oct-2-ene-8-carboxylate (30)

Following the general procedure, aryl iodide **1a** (74.9mg, 0.32 mmol) and vinyl triflate **2f** (71.4 mg, 0.2 mmol) were subjected to modified reaction conditions (105 °C, 24 h). Upon flash column chromatography (SiO₂: 2:98 EtOAc:hexanes) the title compound **3o** was isolated as a pale yellow oil in 60% yield (37.8 mg, 0.12 mmol, >20:1 rr).

TLC (SiO₂) $R_f = 0.5$ (1:9 EtOAc:hexanes).

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 (d, J = 8.3 Hz, 2H), 6.87 (d, J = 8.3 Hz, 2H), 5.64 (t, J = 3.7 Hz, 1H), 4.73 (s, 1H), 4.34 (s, 1H), 3.81 (s, 3H), 2.89 (d, J = 15.8 Hz, 1H), 2.30 – 2.14 (m, 1H), 2.09 (tt, J = 11.7, 6.2 Hz, 1H), 1.99 – 1.83 (m, 2H), 1.70 (ddd, J = 12.1, 9.0, 6.0 Hz, 1H), 1.46 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 159.1, 154.5, 143.9, 132.1, 126.8, 118.4, 114.0, 79.5, 56.1, 55.5, 52.4, 34.7, 34.1, 30.3, 28.6.

HRMS (ESI) m/z: [M+Na⁺] calcd. for C₁₉H₂₅NO₃: 338.1727; found = 338.1735.

FTIR (neat): 2973, 2835, 1693, 1512, 1390, 1247, 1169, 1102, 1035 cm⁻¹.

tert-butyl 2-(1-(1-(*tert*-butoxycarbonyl)piperidin-4-yl)-1H-pyrazol-4-yl)-8-azabicyclo[3.2.1]oct-2-ene-8-carboxylate (3p)

Following the general procedure, aryl iodide **1i** (150.9 mg, 0.4 mmol) and vinyl triflate **2f** (71.4 mg, 0.2 mmol) were subjected to modified reaction conditions (105 °C, 24 h). Upon flash column chromatography (SiO₂: 20:80 EtOAc:hexanes) the title compound **3p** was isolated as a clear oil in 67% yield (61.4 mg, 0.13 mmol, >20:1 rr).

TLC (SiO₂): $R_f = 0.5$ (1:3 EtOAc:hexanes).

¹**H NMR** (400 MHz, CDCl₃): δ 7.53 (s, 1H), 7.39 (s, 1H), 5.61 (s, 1H), 4.53 (d, J = 37.3 Hz, 1H), 4.24 (s, 4H), 2.87 (s, 3H), 2.14 – 2.04 (m, 4H), 1.95 – 1.83 (m, 5H), 1.47 (s, 9H), 1.44 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃): δ 154.7, 135.9, 135.7, 122.8, 121.3, 116.5, 115.6, 80.0, 79.5, 77.4, 59.5, 56.5, 55.6, 52.6, 43.0, 32.5, 30.6, 29.8, 28.6.

HRMS (ESI) m/z: [M+Na⁺] calcd. for C₂₅H₃₈N₄O₄: 481.2785; found = 481.2806.

FTIR (neat): 2975, 2931, 1685, 1420, 1366, 1163, 977, 910, 728 cm⁻¹.

tert-butyl 2-(1H-indol-5-yl)-8-azabicyclo[3.2.1]oct-2-ene-8-carboxylate (3q)

Following the general procedure, aryl iodide **1j** (77.8mg, 0.32 mmol) and vinyl triflate **2f** (71.4 mg, 0.2 mmol) were subjected to modified reaction condition (10 mol% Pd(OAc)₂, 105 °C, 24 h). Upon flash column chromatography (SiO₂: 6:94 EtOAc:hexanes) the title compound **3q** was isolated as a waxy solid in 50% yield (32.4 mg, 0.10 mmol, >20:1 rr).

TLC (SiO₂) $R_f = 0.4$ (1:4 EtOAc:hexanes).

¹**H NMR** (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.64 (s, 1H), 7.34 (d, J = 8.6 Hz, 1H), 7.26 – 7.17 (m,2H), 6.53 (t, J = 2.7 Hz, 1H), 5.69 (s, 1H), 4.86 (s, 1H), 4.37 (s, 1H), 2.94 (s, 1H), 2.33 – 2.16 (m, 1H), 2.17 – 2.04 (m, 1H), 2.05 – 1.89 (m, 2H), 1.83 – 1.64 (m, 1H), 1.48 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 154.5, 145.3, 135.3, 131.6, 127.9, 124.7, 120.6, 118.33, 117.7, 110.9, 102.9, 79.4, 56.8, 52.2, 34.8, 33.8, 30.0, 28.5.

HRMS (ESI) m/z: [M+Na⁺] calcd. for C₂₀H₂₄N₂O₂: 347.1730; found = 347.1736.

FTIR (neat): 3307, 2974, 1677, 1406, 1324, 1167, 1100, 984, 764 cm⁻¹.

S0056

VI. Structure Determination: Desilylation of Product 3a

To a solution of **3a** (90 mg; 0.28 mmol; 100 mol%) in THF (0.5 M, 0.6 mL) was added TBAF (1M solution in THF, 0.6 mL, 0.6 mmol, 200 mol%) dropwise at room temperature and stirred for 2 hours. To this solution was added a saturated solution of NaHCO₃ (5 mL). The mixture was diluted with Et₂O (20 mL) and the organic layer was extracted. The organic layer was washed with brine (10 mL), dried over Na₂SO₄ and concentrated under reduced pressure. The resulting residue was subjected to flash column chromatography (SiO₂: 5:95 EtOAc:hexanes) to afford the deprotected product in 85% yield (48.6 mg; 0.24 mmol) as a colorless solid.

TLC (SiO₂): $R_f = 0.5$ (1:4 EtOAc:hexanes).

¹**H NMR** (400 MHz, CDCl₃): δ 7.31 (d, J = 8.9 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 6.01 (q, J = 2.6 Hz, 1H), 4.17 – 4.06 (m, 1H), 3.81 (s, 3H), 2.74 (dd, J = 16.9, 4.9 Hz, 1H), 2.45 – 2.33 (m, 2H), 2.28 (ddq, J = 12.2, 5.8, 3.1 Hz, 1H), 1.98 – 1.87 (m, 1H), 1.68 (dtd, J = 12.3, 8.9, 6.1 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 158.8, 134.4, 133.5, 126.2, 122.3, 113.8, 67.7, 55.4, 36.8, 30.6, 24.0.

HRMS (ESI) m/z: $[M+H^+]$ calcd. for C₁₃H₁₆O₂: 205.1223; found = 205.1223.

FTIR (neat): 3359, 2921, 2839, 1511, 1280, 1237, 1181, 1025, 814 cm⁻¹.

Melting Point: 89-91 °C

<< Spectral data for desilyl-3a was identical to that reported in the literature.8 >>

VII. ³¹P NMR Experiments

To a dried pressure tube equipped with a magnetic stir bar under an argon atmosphere charged with $[Pd_2I_6][NBu_4]_2$ (36.5 mg, 0.025 mmol), ^tBu₃P·HBF₄ (14.5 mg, 0.05 mmol), NaO₂CH (3.4 mg, 0.05 mmol), and Na₂CO₃ (5.3 mg, 0.05 mmol) was added water (25 µL) and anhydrous THF (1.0 mL, 0.025 M). The tube was sealed with a PTFE lined cap and the reaction vessel was placed in a 100 °C oil bath and stirred for 3 hours. After reaching ambient temperature, the solvent was removed and ³¹P NMR was taken in C₆D₆.

To a dried pressure tube equipped with a magnetic stir bar under an argon atmosphere charged with $Pd(OAc)_2$ (5.6 mg, 0.025 mmol), ^tBu₃P·HBF₄ (7.3 mg, 0.025 mmol), Bu₄NI (36.9 mg, 0.1 mmol), NaO₂CH (3.4 mg, 0.05 mmol), and Na₂CO₃ (2.6 mg, 0.025 mmol) was added water (25 µL) and anhydrous THF (1.0 mL, 0.025 M). The tube was sealed with a PTFE lined cap and the reaction vessel was placed in a 100 °C oil bath and stirred for 3 hours. After reaching ambient temperature, the solvent was removed and ³¹P NMR was taken in C₆D₆.

S0063

VIII. Deuterium Labeling Study for deuterio-3g

Following the general procedure, aryl iodide **1a** (74.9 mg, 0.32 mmol) and vinyl triflate *deuterio*-**2b** (58.2 mg, 0.2 mmol) were subjected to standard reaction conditions (100 °C, 24 h). Upon flash column chromatography (SiO₂: 1:99 EtOAc:hexanes) the title compound *deuterio*-**3g** was isolated as a clear oil in 65% yield (32.3 mg, 0.13 mmol, >20:1 rr).

TLC (SiO₂): $R_f = 0.6$ (1:4 EtOAc:hexanes).

¹**H NMR** (400 MHz, CDCl₃): δ 7.30 (d, J = 8.8 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 6.04 (s, 0.18H), 4.03 (s, 4H), 3.81 (s, 3H), 2.63 (s, 2H), 1.80 (s, 2H).

²H NMR (92 MHz, CHCl₃): δ 6.07 (s, 0.82H), 2.39 (s, 2H).

HRMS (ESI) m/z: $[M+H^+]$ calcd. for $C_{15}H_{16}D_2O_3$: 249.1454; found = 249.1448. (ESI) m/z: $[M+H^+]$ calcd. for $C_{15}H_{15}D_3O_3$: 250.1517; found = 250.1519.

IX. Single Crystal Diffraction Data for [Pd2I6][NBu4]2

Experimental: To a dried pressure tube equipped with a magnetic stir bar under an argon atmosphere charged with aryl iodide **1a** (23.4 mg, 0.1 mmol), $Pd(OAc)_2$ (22.4 mg, 0.1 mmol), Bu_4NI (147.7 mg, 0.4 mmol), NaO_2CH (13.6 mg, 0.2 mmol), and Na_2CO_3 (10.6 mg, 0.1 mmol) was added water (50 µL) and anhydrous THF (2.0 mL, 0.05 M). The tube was sealed with a PTFE lined cap and the reaction vessel was placed in a 100 °C oil bath and stirred for 2 hours. After reaching ambient temperature, the reaction mixture was filtered through Celite with the aid of THF.

Crystals grew as clusters of nicely formed orange plate-shaped crystals by slow diffusion of hexane into the liquor. A suitable crystal with dimensions $0.23 \times 0.10 \times 0.03$ mm³ was selected and mounted on a XtaLAB Synergy, Single source at home/near, HyPix diffractometer. The crystal was kept at a steady *T* = 119.99(10) K during data collection. The structure was solved with the ShelXT^{9a} solution program using dual methods and by using Olex2 1.5-ac5-024^{9b} as the graphical interface. The model was refined with ShelXL 2016/6^{9c} using full matrix least squares minimization on *F*².

Crystal Data: $C_{32}H_{72}I_6N_2Pd_2$, $M_r = 1459.11$, monoclinic, $P2_1/c$ (No. 14), a = 14.51810(10) Å, b = 13.83070(10) Å, c = 23.8319(2) Å, $\beta = 101.7390(10)^\circ$, $\alpha = \gamma = 90^\circ$, V = 4685.25(6) Å³, T = 119.99(10) K, Z = 4, Z' = 1, μ (Cu K $_{\alpha}$) = 37.383, 43270 reflections measured, 9550 unique (R_{int} = 0.0807) which were used in all calculations. The final wR_2 was 0.1945 (all data) and R_1 was 0.0638 (I≥2 σ (I)).

Compound	yh-45_cu_autored
Formula	C32H72I6N2Pd2
$D_{calc.}$ / g cm ⁻³	2.069
μ/mm^{-1}	37.383
Formula Weight	1459.11
Colour	orange
Shape	plate-shaped
Size/mm ³	0.23×0.10×0.03
T/K	119.99(10)
Crystal System	monoclinic
Space Group	P21/c
a/Å	14.51810(10)
b/Å	13.83070(10)
c/Å	23.8319(2)
$\alpha/^{\circ}$	90
β/°	101.7390(10)
γ/°	90
V/Å ³	4685.25(6)
Z	4
Ζ'	1
Wavelength/Å	1.54184
Radiation type	Cu Kα
$\Theta_{min}/^{\circ}$	3.109
$\Theta_{max}/^{\circ}$	76.639
Measured Refl's.	43270
Indep't Refl's	9550
Refl's I $\geq 2 \sigma(I)$	7849
Rint	0.0807
Parameters	387
Restraints	0
Largest Peak	2.585
Deepest Hole	-1.966
GooF	1.039
wR2 (all data)	0.1945
wR ₂	0.1719
R_1 (all data)	0.0740
R_1	0.0638

Structure Quality Indicators:

Reflections:	d min (CuKα) 2Θ=153.3°	0.79	^{ι/σ(I)} .cif	20.3	Rint m=4.67	8.07%	Full 135 97% to 1	.4° 153.3°	99.8
Refinement:	Shift	0.001	Max Peak	2.6	Min Peak	-2.0	GooF	.cif	1.039

An orange plate-shaped-shaped crystal crystalized from THF/hexane solution with dimensions $0.23 \times 0.10 \times 0.03 \text{ mm}^3$ was mounted. Data were collected using a XtaLAB Synergy, Single source at home/near, HyPix diffractometer operating at T = 119.99(10) K.

Data were measured using ω scans with Cu K_{α} radiation. The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program CrysAlisPro 1.171.42.94a (Rigaku Oxford Diffraction, 2023). The maximum resolution that was achieved was Θ = 76.639[°] (0.83 Å).

The unit cell was refined using CrysAlisPro 1.171.42.94a (Rigaku OD, 2023) on 24968 reflections, 58% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using CrysAlisPro 1.171.42.94a (Rigaku Oxford Diffraction, 2023). The final completeness is 99.80 % out to 76.639° in Θ . A gaussian absorption correction was performed using CrysAlisPro 1.171.42.94a (Rigaku Oxford Diffraction, 2023) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Spherical absorption correction using equivalent radius and absorption coefficient. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. The absorption coefficient μ of this material is 37.383 mm⁻¹ at this wavelength (λ = 1.54184Å) and the minimum and maximum transmissions are 0.013 and 0.373.

The structure was solved and the space group $P2_1/c$ (# 14) determined by the ShelXT^{9a} structure solution program using dual methods and refined by full matrix least squares minimisation on F^2 using version 2016/6 of ShelXL 2016/6^{9c}. All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using the riding model.

__exptl_absorpt_process_details: CrysAlisPro 1.171.42.94a (Rigaku Oxford Diffraction, 2023) Numerical absorption correction based on gaussian integration overall multifaceted crystal model Spherical absorption correction using equivalent radius and absorption coefficient. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

There is a single formula unit in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z' is 1. The moiety formula is I6 Pd2, 2(C16 H36 N).

X. Single Crystal Diffraction Data for 3j

Experimental: Crystals grew as colorless needle-shaped crystals by slow evaporation from THF. A suitable crystal with dimensions $0.35 \times 0.07 \times 0.04 \text{ mm}^3$ was selected and mounted on a MITIGEN holder oil on a XtaLAB Synergy, Single source at home/near, HyPix diffractometer. The crystal was kept at a steady T = 100 K during data collection. The structure was solved with the ShelXT^{9a} solution program using dual methods and by using Olex2 1.5^{9b} as the graphical interface. The model was refined with ShelXL 2019/3^{9c} using full matrix least squares minimization on F^2 .

Crystal Data. $C_{27}H_{30}O_3$, $M_r = 402.51$, orthorhombic, $P2_12_12_1$ (No. 19), a = 6.03249(3) Å, b = 13.54875(6) Å, c = 26.16190(11) Å, $\alpha = \beta = \gamma = 90$, V = 2138.282(16) Å³, T = 100 K, Z = 4, Z' = 1, μ (Cu K $_{\alpha}$) = 0.628, 75150 reflections measured, 4402 unique (R_{int} = 0.0399) which were used in all calculations. The final wR_2 was 0.0688 (all data) and R_1 was 0.0259 (I $\geq 2 \sigma$ (I)).

Compound	YHC-08- 71_new_auto
Formula	C27H30O3
$D_{calc.}$ / g cm ⁻³	1.250
μ/mm^{-1}	0.628
Formula Weight	402.51
Colour	colourless
Shape	needle-shaped
Size/mm ³	0.35×0.07×0.04
T/K	100
Crystal System	orthorhombic
Flack Parameter	-0.07(4)
Hooft Parameter	-0.06(3)
Space Group	$P2_{1}2_{1}2_{1}$
a/Å	6.03249(3)
b/Å	13.54875(6)
c/Å	26.16190(11)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	90
γ/°	90
V/Å ³	2138.282(16)
Ζ	4
Ζ'	1
Wavelength/Å	1.54184
Radiation type	$Cu K_{\alpha}$
$\Theta_{min}/^{\circ}$	3.379
$\Theta_{max}/^{\circ}$	76.450
Measured Refl's.	75150
Indep't Refl's	4402
Refl's I≥2 <i>σ</i> (I)	4328
$R_{ m int}$	0.0399
Parameters	275
Restraints	0
Largest Peak	0.202
Deepest Hole	-0.142
GooF	1.030
wR2 (all data)	0.0688
wR_2	0.0684
R₁ (all data)	0.0263
R_1	0.0259

Structure Quality Indicators

Reflections:	d min (CuKo 2⊖=152.6°	^{α)} 0.79 ^{Ι/σ(Ι)}		88.4	Rint m=17.14	3.99%	Full 135.4° 99% to 152.6°	100
Refinement:	Shift	0.001 Max Peak	0.2	Min Peak	-0.1	^{GooF} 1.	.030 ^{Hooft}	06(3)

A colourless needle-shaped-shaped crystal with dimensions $0.35 \times 0.07 \times 0.04$ mm³ was mounted on a MITIGEN holder oil. Data were collected using a XtaLAB Synergy, Single source at home/near, HyPix diffractometer operating at *T* = 100 K.

Data were measured using ω scans with Cu K_{α} radiation. The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program CrysAlisPro 1.171.42.94a (Rigaku Oxford Diffraction, 2023). The maximum resolution that was achieved was Θ = 76.450° (0.79 Å).

The unit cell was refined using CrysAlisPro 1.171.42.94a (Rigaku Oxford Diffraction, 2023) on 61204 reflections, 81% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using CrysAlisPro 1.171.42.94a (Rigaku Oxford Diffraction, 2023). The final completeness is 100.00 % out to 76.450° in Θ . A multi-scan absorption correction was performed using CrysAlisPro 1.171.42.94a (Rigaku Oxford Diffraction, 2023) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. The absorption coefficient μ of this material is 0.628 mm⁻¹ at this wavelength (λ = 1.54184Å) and the minimum and maximum transmissions are 0.352 and 1.000.

The structure was solved and the space group $P2_12_12_1$ (# 19) determined by the ShelXT^{9a} structure solution program using dual methods and refined by full matrix least squares minimisation on F^2 using version 2019/3 of ShelXL 2019/3^{9c}. All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.

__exptl_absorpt_process_details: CrysAlisPro 1.171.42.94a (Rigaku Oxford Diffraction, 2023) using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

There is a single formula unit in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z' is 1. The moiety formula is C27 H30 O3.

The Flack parameter was refined to -0.07(4). Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in -0.06(3). The chiral atoms in this structure are: C5(S), C6(S), C18(R), C20(S). Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be near 0, a value of 1 means that the stereochemistry is wrong, and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.
XI. Single Crystal Diffraction Data for 3k

Experimental: Crystals grew as colorless plate-shaped crystals by slow evaporation from hexanes and ether. A suitable crystal with dimensions $0.26 \times 0.12 \times 0.02 \text{ mm}^3$ was selected and mounted on a XtaLAB Synergy, Single source at home/near, HyPix diffractometer. The crystal was kept at a steady T = 150.00(13) K during data collection. The structure was solved with the ShelXT 2014/5^{9a} solution program using dual methods and by using Olex2 1.5-ac5-024^{9b} as the graphical interface. The model was refined with ShelXL 2016/6^{9c} using full matrix least squares minimization on F².

Crystal Data: $C_{34}H_{52}O$, $M_r = 476.75$, monoclinic, $P2_1$ (No. 4), a = 6.06020(10) Å, b = 7.86450(10) Å, c = 30.3004(4) Å, $\beta = 92.3520(10)^\circ$, $\alpha = \gamma = 90^\circ$, V = 1442.91(4) Å³, T = 150.00(13) K, Z = 2, Z' = 1, μ (Cu K_{α}) = 0.471, 18173 reflections measured, 5660 unique (R_{int} = 0.0297) which were used in all calculations. The final wR_2 was 0.1332 (all data) and R_1 was 0.0458 (I≥2 σ (I)).

Compound	exp_1119_auto
Formula	C ₃₄ H ₅₂ O
$D_{calc.}$ / g cm ⁻³	1.097
μ/mm^{-1}	0.471
Formula Weight	476.75
Colour	colourless
Shape	plate-shaped
Size/mm ³	0.26×0.12×0.02
T/K	150.00(13)
Crystal System	monoclinic
Flack Parameter	0.02(13)
Space Group	P21
a/Å	6.06020(10)
b/Å	7.86450(10)
c/Å	30.3004(4)
$\alpha/^{\circ}$	90
β/°	92.3520(10)
γ/°	90
V/Å ³	1442.91(4)
Ζ	2
Ζ'	1
Wavelength/Å	1.54184
Radiation type	Cu K $_{\alpha}$
$\Theta_{min}/^{\circ}$	2.919
$\Theta_{max}/^{\circ}$	75.988
Measured Refl's.	18173
Indep't Refl's	5660
Refl's I≥2 σ(I)	5455
Rint	0.0297
Parameters	322
Restraints	1
Largest Peak	0.321
Deepest Hole	-0.174
GooF	1.074
wR2 (all data)	0.1332
wR ₂	0.1326
R₁ (all data)	0.0468
R_1	0.0458

Structure Quality Indicators:

A colourless plate-shaped-shaped crystal with dimensions $0.26 \times 0.12 \times 0.02 \text{ mm}^3$ was mounted. Data were collected using a XtaLAB Synergy, Single source at home/near, HyPix diffractometer operating at T = 150.00(13) K.

Data were measured using ω scans with Cu K_{α} radiation. The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program CrysAlisPro 1.171.42.94a (Rigaku Oxford Diffraction, 2023). The maximum resolution that was achieved was Θ = 75.988° (0.83 Å). The unit cell was refined using CrysAlisPro 1.171.42.94a (Rigaku Oxford Diffraction, 2023) on 12001 reflections, 66% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using CrysAlisPro 1.171.42.94a (Rigaku Oxford Diffraction, 2023). The final completeness is 99.90 % out to 75.988[°] in Θ . A multi-scan absorption correction was performed using CrysAlisPro 1.171.42.94a (Rigaku Oxford Diffraction, 2023) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. The absorption coefficient μ of this material is 0.471 mm⁻¹ at this wavelength (λ = 1.54184Å) and the minimum and maximum transmissions are 0.632 and 1.000.

The structure was solved and the space group $P2_1$ (# 4) determined by the ShelXT 2014/5^{9a} structure solution program using using dual methods and refined by full matrix least squares minimisation on F^2 using version 2016/6 of ShelXL 2016/6^{9c}. All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using the riding model.

__exptl_absorpt_process_details: CrysAlisPro 1.171.42.94a (Rigaku Oxford Diffraction, 2023) using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

There is a single formula unit in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 2 and Z' is 1. The moiety formula is C34 H52 O.

The Flack parameter was refined to 0.02(13). Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in None. The chiral atoms in this structure are: C1(R), C4(S), C5(R), C9(S), C10(S), C13(S), C14(S), C28(R). Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be near 0, a value of 1 means that the stereochemistry is wrong and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.

XII. References

- Cuscusa, M.; Rigoldi, A.; Artizzu, F.; Cammi, R.; Fornasiero, P.; Deplano, P.; Marchiò, L.; Serpe, A. Ionic Couple-Driven Palladium Leaching by Organic Triiodide Solutions. *ACS Sustainable Chem. Eng.* **2017**, *5*, 4359–4370.
- Carreño, M. C.; Urbano, A.; Di Vitta, C. Enantioselective Diels-Alder Cycloadditions with (SS)-2-(p-Tolylsulfinyl)-1,4-naphthoquinone: Efficient Kinetic Resolution of Chiral Racemic Vinylcyclohexenes. J. Org. Chem. 1998, 63, 8320–8330.
- 3) Mitschke, N.; Christoffers, J.; Wilkes, H. A Straightforward Synthesis of Trideuterated α-Terpinene for Mechanistic Studies. *Eur. J. Org. Chem.* **2020**, *31*, 4893–4899.
- 4) Clark, J. R.; Feng, K.; Sookezian, A.; White, M. C. Manganese-Catalysed Benzylic C(sp³)–H Amination for Late-Stage Functionalization. *Nat. Chem.* **2018**, *10*, 583-591.
- 5) Hioki, Y.; Okano, K.; Mori, A. Generation of Cycloalkynes through Deprotonation of Cyclic Enol Triflates with Magnesium Bisamides. *Chem. Commun.* **2017**, *53*, 2614-2617.
- 6) Cioffi, C. L.; Racz, B.; Freeman, E. E.; Conlon, M. P.; Chen, P.; Stafford, D. G.; Schwarz, D. M. C.; Zhu, L.; Kitchen, D. B.; Barnes, K. D.; Dobri, N.; Michelotti, E.; Cywin, C. L.; Martin, W. H.; Pearson, P. G.; Johnson, G.; Petrukhin, K. Bicyclic [3.3.0]-Octahydrocyclopenta[c]pyrrolo Antagonists of Retinol Binding Protein 4: Potential Treatment of Atrophic Age-Related Macular Degeneration and Stargardt Disease. *J. Med. Chem.* **2015**, *58*, 5863–5888.
- 7) Johnson, J. K.; Skoda, E. M.; Zhou, J.; Parrinello, E.; Wang, D.; O'Malley, K.; Eyer, B. R.; Kazancioglu, M.; Eisermann, K.; Johnston, P. A.; Nelson, J. B.; Wang, Z.; Wipf, P. Small Molecule Antagonists of the Nuclear Androgen Receptor for the Treatment of Castration-Resistant Prostate Cancer. ACS Med. Chem. Lett. 2016, 7, 785–790.
- 8) Tsukamoto, H.; Matsumoto, T.; Kondo, Y. Microwave-Assisted Palladium(0)-Catalyzed Alkylative Cyclization of Allenyl Aldehydes Leading to 3-Substituted 3-Cycloalken-1-ols. *J. Am. Chem. Soc.* **2008**, *130*, 388–389.
- 9) (a) Sheldrick, G.M. ShelXT-Integrated Space-Group and Crystal-Structure Determination. *Acta Cryst.* 2015, *A71*, 3-8. (b) Dolomanov, O.V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. Olex2: A Complete Structure Solution, Refinement and Analysis Program. *J. Appl. Cryst.* 2009, *42*, 339-341. (c) Sheldrick, G.M. Crystal Structure Refinement with ShelXL. *Acta Cryst.* 2015, *C71*, 3-8.