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Supplementary Note 1: Pairwise Retention Time Alignment
One of the advantages of Data Independent Acquisition (DIA) is that it records signals from all

the ionized molecules in an experiment. The data, thus, can be mined again with software as they

evolve. We are presenting a state-of-the-art cross-run alignment tool, DIAlignR, which provides a more

complete data-matrix compared to its predecessors.

A proteomic data-matrix produced in LC-MS/MS experiments has peptides in rows and samples

in columns (Figure S1). An ideal data matrix would have quantification for each ionized peptide in all

runs. In DIA, the multiplexed spectra result in noisy MS2 chromatograms, which makes it difficult to

identify the correct peaks. Generally, DIA analysis software uses automated algorithms to identify

regions of interest in a chromatogram [2]. They then use machine learning tools e.g. LDA, XGBoost,

neural network ensemble etc to separate signal from noise and use statistical procedures to control the

FDR [14,15]. Current software do not incorporate local context of peak in scoring, thus, prone to make

mistakes when multiple good candidates are presented in a chromatogram. With FDR control, the error

is controlled at the expense of a data-matrix with many missing values.

Figure S1. Output of LC-MS/MS experiments: A quantitative data matrix.

The problem of an incomplete data-matrix exacerbates in large-scale studies, especially when

data is acquired at multiple sites. Since the retention time of peptides shifts unevenly across all

peptides, machine learning tools struggle to factor peptide-specific variations into the scoring

mechanism, resulting in a more sparse matrix. In consequence, these software promise accuracy at the

expense of quantification events.

We argue that with signal alignment, we can add consistency in the peak-picking, hence,

improving the accuracy further than what is promised by peak-scoring algorithms. Recently methods

have been published that align retention time of peaks across DIA runs. LWBMatch and Group-DIA use

MS1 chromatogram for coarse retention time alignment [10,11]. LWBMatch also uses MS2 features to
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establish a bipartite matching, thus, avoiding monotonous fit imposed by MS1 alignment using dynamic

programming. Nonetheless, MS1 signal is known to be more noisy than MS2 for SWATH-MS, that is

why MS2 is preferred for quantitation as well [9]. With bipartite graphs, it is still reliant on OpenSWATH

peak-picking and can not overcome the issues related to missing peaks.

Other tools have focused on MS2 peaks and use them to construct a linear or non-linear

monotonous fit to map retention time of a peak from one run to another [5,12,13]. These methods work

reasonably well and have been used in large-scale (100+ runs) experiments [5, 21]. However, they

break-down when runs are acquired across multiple setups or different LC columns [1, 7].

Recently, we published a proof-of-concept hybrid chromatogram alignment method that uses

raw MS2 chromatograms instead of MS2 peak-group features [1], termed as signal alignment here.

Briefly, for each peptide a similarity matrix is calculated from MS2 chromatograms of two runs. The

matrix is penalized using non-linear global fit, obtained from high-scoring common peaks, to constrain

the alignment path. Then, with dynamic programming an alignment path is calculated that provides a

retention time mapping for chromatograms. Since each peptide is aligned separately, this approach

does not have monotonicity constraints and can align peptides that have switched elution order across

runs [1]. In this paper, we are extending the pairwise signal alignment across multiple runs for peak

selection, thus, improving the number of quantitation events at a certain FDR threshold.

Supplementary Note 2: Overview of Multirun Alignment using DIAlignR

Alignment of more than two runs involves guide-tree construction, seed run selection, pairwise

alignment between two runs, peak selection etc depending on the strategy. We are explaining these

steps below:

1. Tree construction for MST and Progressive alignment

Guide tree and hierarchical tree are needed for MST and progressive alignment, respectively.

DIAlignR has an option to provide your own tree, e.g. based on acquisition order of run. However, an

automated way for tree construction is preferred. The first step to build a tree is to calculate a pairwise

distance matrix. We have implemented the following methods for a global distance matrix:

a) NC distance = 1 −  2
𝑁

𝑐𝑜𝑚𝑚𝑜𝑛

𝑁
1
 + 𝑁

2

N1,N2 : Number of precursors having peaks with mscore below analyteFDR in run1 and run2.

Ncommon : Number of precursors that are identified in both runs below analyteFDR.

b) RSE distance = Residual Standard Error (RSE) of non-linear RT fit.

c) R2 distance = 1 - R2 of linear fit.
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DIAlignR uses an implementation of Kruskal’s algorithm to get the MST from the distance matrix

(Figure S2). For the hierarchical tree, UPGMA clustering is done on the distance matrix. MST is an

undirected acyclic graph where each node represents an LC-MS/MS run. A hierarchical tree has

LC-MS/MS runs as leaf nodes. Non-leaf nodes represent master runs which consist of a set of

chromatograms and features for peptides. Each non-leaf node, including root, must have exactly two

parent nodes. Root node is called master1 by-default. DIAlignR has an option to provide your own tree,

e.g., based on acquisition order of run, however, automated tree construction is preferred.

Figure S2: Example trees for MST alignment (left) and Progressive alignment (right).

2. Star Alignment

In Star alignment, first a reference run is selected for a peptide based on qvalue (Figure S3a)

and the alignment rank is set to 1 for its peak with minimum mscore. The other runs are, successively,

aligned to the reference run (Figure S3b) and alignment rank is set for the aligned peak (Figure S3c).

The process is repeated for the rest of the peptides.
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Figure S3: Star alignment. a) run1 is selected as a reference for a peptide and the alignment rank is

set to 1 for its best-scoring peak. b) Other runs are aligned directly to the reference run1. c) Using

retention time mapping from pairwise alignment, other runs also have peaks with alignment rank = 1.

3. MST traversal

Once a guide tree is built, a seed run is selected for each peptide like the Star method (Figure

S4a). However, during the traversal only adjacent runs are aligned to the reference. Aligned peaks

have their alignment rank set to 1 (Figure S4b). Subsequently, peaks with alignment rank become

reference and adjacent nodes are aligned to them, till all nodes are visited. The steps are repeated for

remaining peptides (Figure S4c,d).

Figure S4: MST alignment. a) run1 is selected as a reference for a peptide and alignment rank is set

to 1 for its best peak. b) Next, adjacent run3 and run4 are aligned to the run1. c) Alignment rank is set

for run3 and run4, following that run2 and run5 are aligned to run3. d) In the end, all runs have peaks

with alignment rank = 1, indicated by red circles.

4. Hierarchical tree traversal

In progressive alignment, as the hierarchical tree is traversed from the leaves to root, the master

runs are generated and RT mapping are also saved (*_av.rds files). At the root there is master1 run, in
which for each peptide the peak with lowest mscore is set to have alignment rank = 1 (Figure S5c). The

tree is, then, traversed from root to leaves. At this step, RT mapping is used to set alignment rank for

leaf and non-leaf nodes.
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Figure S5: Progressive alignment. a) Tree is traversed from leaves to the root. b) Master

runs are generated. c) At the root alignment rank is set for all peptides and d) peaks are then

mapped to the LC-MS/MS runs.

5. Pairwise alignment

DIAlignR has three implementations [1] of pairwise alignment- 1) global, 2) local and 3) hybrid.

Global alignment uses MS2 features below a certain mscore threshold to calculate either a linear or

lowess fit. Local alignment uses extracted-ion-chromatograms (XICs) for each peptide, calculate a

similarity matrix and find the alignment path using dynamic programming. Hybrid approach constrains

the similarity matrix with global fit before performing dynamic programming, thus combining best of both

local and global approaches.

6. Peak selection and signal integration

After pairwise alignment, peaks from the reference run are mapped to its counterpart (Figure

S6a). If reference peak-boundary mapping overlaps a peak with mscore below a quality threshold, the

peak’s alignment rank is set. In case of multiple peaks with same score, the peak

with the highest RT overlap is selected. If no good quality peak is found, the boundary is expanded by

adaptiveRT. The peak with mscore below the quality threshold, if multiple then the lowest mscore, is

selected and its alignment rank is set. If no peak is found within the expanded boundary, the signal

within the aligned boundary is integrated; this is termed as signal integration (Figure 1b). The

quantitation is done by OpenMS scripts to keep parity with the upstream analysis [ZZ]. Usually, a peak
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picker fails when the signal is very close to noise, hence misses such low intensity features. Thus, a

new feature is added with alignment rank = 1 and mscore = NA. To control the incorporation of

signal-integrated peaks, I use qvalue control which is explained in Suppl Note 5.5.

Signal integration is carried out not only between runs, but also within a run. For peptides

with multiple charge states, the precursor having lowest mscore peak is selected for the

alignment. The peak boundaries from this precursor are mapped to other charge-states to pick

peaks for related precursors; this is termed as signal integration across charges.
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Figure S6. a) Pictorial representation of Star and MST alignment. run4 and run3 are aligned to reference

run1. RT mapping from hybrid alignment is depicted as gray lines. b) Merging the chromatograms from three

runs provides a master chromatogram. c) The data-matrix completeness with the DIAlignR workflow. Different
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ways to filter an alignment matrix are evaluated. For DIAlignR+signal Integration across runs, bothmscore and

qvalue (Suppl Note 5.5) control is used. The full-range figure is plotted in Figure S14a. d) DIAlignR workflow

complements XGBoost in controlling error-rate. e) Scores of left and right peaks from Figure 1e.

Supplementary Note 3: Creating Master Runs for Progressive

Alignment

In progresive alignment, two runs are merged to create a master run. The merging involves

merging of chromatograms (sqMass or mzML files), merging of features and score calculation for them

which happens in-memory.

Figure S7: Merging of two chromatograms. Reference chromatogram chromA and Experiment

chromatogram chromB are merged to output chromM. wA and wB are weights for intensity merging.

1. Chromatogram merging

Chromatograms have two components: time and intensity. With pairwise RT mapping the

aligned region of chromatograms is weighted-averaged. The weight for each chromatogram is

calculated as -log10 * pvalueexperiment-wide. Flanking regions from the ends of XICs are not mapped due to

overlap alignment.

For the mapped regions of both reference, chromA, and experiment chromatograms, chromB,

first retention time is linearly interpolated to fill gaps, and intensity is spline-interpolated (Figure S7). A

merged chromatogram, chromM, is created with time being an average of time vectors, and intensity as

weighted average of intensity vectors. In the merged chromatogram only those time points are kept for

which there is no gap in the reference chromatogram. Next, flanking regions are added to the merged

chromatogram. The intensity is appended unaltered, however, the retention time of the flanking region

is modified based on the end-timepoints and sampling time of the merged chromatogram.

2. Feature picking and scoring

Features belonging to chromA and chromB are mapped in the chromM, and their mscore is

assigned to new peaks as is. To avoid having duplicate/overlapping features, top five non-overlapping

peaks with lowest mscore are selected. In case of the same mscore, the peak with higher intensity is
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picked. The experiment-wide qvalue and pvalue of a peptide is set as the minimum of these from both

runs.

Supplementary Note 4: Parameter optimization for MST and
progressive alignment

We use manually annotated 437 peptides across 16 runs to get optimum parameters. The
dataset is explained in the next section Suppl Note 5. The raw data and annotations are available in
PeptideAtlas repository PASS01508.

1. Distance Metric for MST
The first parameter to optimize is the distance metric for guitde tree construction. We found that

NC distance performs better than other measures as it constructs a tree where similar runs are
clustered together (Figure S8-10). Overall the NC based MST provides lower error-rate compared to
other measures. Out of 405 peptides compared, NC distance metric results in fewer peptides with
incorrect peak-identification (Figure S9).

a) 1-R2 distance b) NC distance

Figure S8: Minimum spanning tree by (1-R2) distance metric (a) and NC distance metric (b). Yellow and

purple colors represent 0% and 10% plasma in S. Pyogenes growth media. Light colored samples were

acquired on Day 1, dark colored samples were acquired on Day 2.
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a) False Discovery Rate b) Incorrect identified peptides

Figure S9. a) FDR for peaks identified at 1% qvalue by XGBoost when compared with manual
annotation. b) Percentage of peptides, out of 405 annotated, having at least one incorrect peak.

Figure S10. Guide tree for S. Pyogenes data with NC distance. RSE distance between runs is
indicated for each edge.
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2. Progressive alignment parameters

The aforementioned annotation data is used to get optimum parameters for progressive

alignment. Following parameters are considered (optimal values are in boldface):

- Pairwise distance metric: R2, RSE, NC distance.
- Agglomeration strategy: Complete, Average, Single linkage.
- Align runs to master1 : direct align leaves to root, Traverse tree and propagate alignment.
- Aggregate p-values: Weighted average, Minimum p-value.
- Include flanking region in merged chromatograms: False, True.

After evaluating different pairwise distance metrics and agglomeration strategies for hierarchical

clustering, we found that a tree constructed with NC distance measure and single linkage provides the

lowest FDR (Figure S11). It is not surprising as a minimum-spanning-tree is equivalent to solving a

single-linkage hierarchical clustering [16].

a) Selecting distance metric b) Aligning runs to master1

Figure S11. Effect of distance metric, agglomeration strategy and strategies of alignment of runs to
master1. a) Three distance measures were compared for hybrid alignment. Two methods of setting

alignment rank are evaluated after alignment rank is set in master1. b) Comparing three agglomeration

strategies for hierarchical clustering.

Heatmap of the distance matrix with corresponding hierarchical clustering is presented in Figure

S12. As with the MST clustering, similar runs are clustered together as can be seen on the colored strip

on the left. run10 is an outlier as it does not cluster with any run; this is because the lowest number of

common identifications at 1% mscore.
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Figure S12. Hierarchical clustering with heatmap obtained with NC distance. Hierarchical tree is on the

left with a scale indicating the agglomerative distance between clusters. The middle slice has color

coding based on run ID. The heatmap on the right represents a pairwise distance matrix.

We next investigated pvalue aggregation method. pvalue are used for weighting intensities while

merging chromatograms. The minimum of two p-values would be a conservative estimate, which also

provides minimum FDR. We found that including the flanking chromatograms does help in alignment as

there is more signal available for the subsequent alignment. Also, it would add more merged features

which help in obtaining a better global fit (Figure S13).

Figure S13. Effect of including flanking chromatograms while creating merged chromatograms.
Compared its effect on both global and hybrid pairwise alignment. For hybrid alignment, both direct

alignment to root and propagation via the tree is explored.
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Supplementary Note 5: Gold Standard Manual Annotation Data

The details of library generation for the analysis of S. Pyogenes cell lysate data and data

acquisition are available in Supplementary Note 6 of [4] and in [5]. Briefly, S. Pyogenes strain of M1

serotype was grown in 0% and 10% human plasma to investigate its growth in blood. There were a

total of 16 DIA runs acquired with two biological replicates for each condition. In the previous iteration,

452 S. Pyogenes peptides were randomly selected and peaks were manually picked using Skyline

(Supplementary Note 4 of [5]). Since, DIAlignR uses OpenSWATH extracted chromatograms, the peaks

were re-annotated in these chromatograms using a Plotly script.

Supplementary Table 1: Run acquisition information for S. Pyogenes data

Run ID Date Plasma(%) Biological Rep Technical Rep
run0 2012-9-8 0 1 1
run1 2012-9-8 0 1 2
run2 2012-9-8 0 1 3
run3 2012-9-8 0 2 1
run4 2012-9-8 0 2 2
run5 2012-9-8 0 2 3
run6 2012-9-8 10 1 1
run7 2012-9-8 10 1 2
run8 2012-9-8 10 1 3
run9 2012-9-8 10 2 1
run10 2012-9-8 10 2 2
run11 2012-9-8 10 2 3
run12 2012-9-9 0 1 4
run13 2012-9-9 0 2 4
run14 2012-9-9 10 1 4
run15 2012-9-9 10 2 4

1. MSConvert + OpenSWATH + PyProphet

Wiff files were processed as described in [2]. Briefly, wiff files were converted to mzML with 64

-bit precision, numpress linear compression and vendor peakPicking using MSConvert version

3.0.21224. In OpenSWATH ms1 scoring, mutual information score and background_subtraction were

set as true. In addition, a swath window file was used to specify isolation windows [4]. Lossy

compression was set to False for converting chrom.mzML to chrom.sqMass files. For PyProphet score

XGBoost classifier was used with ms1ms2 level, initial FDR set to 0.05 and iteration FDR set to 0.01.

PyProphet combines OpenSWATH scores to an aggregate discriminant score which is then used to

estimate p-value and q-value for each peak and peptide in run-specific, experiment-wide and global

context [14]. q-values for peak groups and peptides are termed as mscore and qvalue, respectively.
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2. DIAlignR

XGBoost scored features (osw) and OpenSWATH output chromatograms (sqMass) files are fed

to DIAlignR to align all 16 runs. A range of 0.0001 to 1.0 mscore is used to investigate the effect of

alignment in conjunction with XGBoost scores. Signal integrated peaks do not have corresponding

mscore associated with them, hence, their inclusion is controlled with respective peptides’

experiment-wide qvalue (explained in Note 5.5). With hybrid-progressive alignment, the number of

incorrectly quantified peaks drops from 56 to 19 (Figure 1d), more than 60% reduction at 1% FDR.

a) b)

Figure S14. a) Effect of signal alignment on FDR v/s Recall. The FDR-Recall plot compares an

unaligned data matrix and various filtering of an aligned data matrix. The None alignment considers

only mscore control. DIAlignR represents mscore control on aligned matrix, and signal integration

includes peaks with missing mscore. FDR is calculated through manual annotations as described

above. b) Newly created peaks that overlap with PyProphet m-score. Dashed-line indicates 1% FDR

line.

3. Precision-Recall

As the mscore cutoff is increased from 0.0001 to 1.0, the number of correct peaks and total

peaks increases. The Recall at a certain FDR level is depicted in figure above. The data matrix is

obtained through pairwise hybrid alignment and star-based multirun alignment. Aligned matrix has

better recall than unaligned at a given FDR. DIAlignR increases recall from 0.71 to 0.75 at 1% FDR.

Being reliant on OpenSWATH peak-picking, it is unlikely to give 100% recall as peak-picker may fail to

identify peaks in noisy chromatograms (Figure S14).

Signal integration across charge states fills some gap and increases recall from 0.83 to 0.9 at

maximum FDR. For runs, where no peak is identified for a peptide, aligned peak-boundaries increase
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the recall to 0.98. In remaining cases, aligned boundaries map out of the extracted-ion-chromatograms,

hence, the signal cannot be quantified.

4. Retention time (RT) error

a) Without alignment b) With alignment

Figure S15. RT error vs mscore. a) XGBoost score only. b) XGBoost + DIAlignR.

a) Without alignment b) With alignment

Figure S16. RT error across annotated peaks. X-axis shows retention times of manually annotated

peaks. a) XGBoost score only. b) XGBoost + hybrid-star alignment.

Figure S15 depicts RT error of annotated peaks with and without alignment across the qvalue
and mscore range of (0, 0.05]. Unsurprisingly, the spread is higher for peaks with high mscore due to
lower confidence. In contrast, few high-confidence peaks also have high RT error. Nonetheless, signal
alignment (Figure S15b) is able to correct the misaligned peaks. Figure S16 shows the retention time
error across the RT range. Consistent with previous study [1], signal alignment reduces the RT error.

5. qvalue control with signal integration across runs
Peak creation (signal integration across runs) by mapping retention time from one run to

another run is a contested topic [20] for the reason that there is no extensive scoring done while
generating such features compared to peaks scored with PyProphet against decoys and hold a p-value.
Hence, there is a need to control the error-rate arising from these new signal alignment based peaks.
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We explored the peptide level qvalue to control the inclusion of such peaks in the quantitation matrix.

a) ΔRT with OpenSWATH peaks b) ΔRT with annotated peaks

Figure S17. ΔRT of the peptide peak and qvalue. a) ΔRT of aligned peaks with best scoring

OpenSWATH peaks. PyProphet uses the best scoring peak to calculate qvalue for a peptide. b) ΔRT of

aligned peaks with annotated peaks.

Generally, the aligned new peaks are farther from the best scoring peak picked by peak-picker,
however, overall the peaks become more distant as qvalue increases (Figure S16a). Although the
OpenSWATH peak is not correct, its mscore does reflect the retention time deviation (ΔiRT), which
propagates to qvalue. On comparing manual annotation, we also observe that the new peaks are closer
to ground truth for peptides with lower qvalues (Figure S17b).

Supplementary Note 6: Multisite 229 HEK293 cell lysate runs

This is a technical dataset which has 229 SWATH runs acquired using 11 LC-MS/MS setups.

The sample had almost no biological variations.

1. Data summary

Digested peptides of HEK293 cell lysate, mixed with retention time calibration peptides from

iRT-Kit (Biognosys) and 30 heavy labeled synthetic (AQUA) peptides were prepared for SWATH-MS

acquisition. The AQUA peptides were divided into five groups (A-E) and each group had a

concentration range to create the five different samples to be analyzed. Finally, samples were sent on

dry ice to 11 sites. Each site acquired data for three days, seven samples per day on SCIEX TripleTOF

5600/5600+ systems, resulting in 21 samples per site. Total 229 data files were received for the
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analysis. The detailed method for sample preparation, synthetic peptide concentration in each sample

and data-acquisition is available in the original paper [6].

2. MSConvert + OpenSWATH + PyProphet

The analysis parameters were kept the same as done in the original paper [6]. Briefly, 229 wiff

files were converted to mzML using MSConvert without peak-picking. For OpenSWATH following

values are used: min_upper_edge_dist = 1, MS2 extraction window = 75 ppm, MS1 extraction window

= 35 ppm, DIA extraction window = 75 ppm, RT extraction window = 900s, extra RT window = 100s,

mutual information and MS1 scoring were added. Lossy compression was set to False for converting

chrom.mzML to chrom.sqMass files. For PyProphet score, LDA classifier was used with ms1ms2 level

and 0.4 value set for pi0_lambda.

3. Comparison to published results

The software OpenSWATH and PyProphet has evolved since the previous publication [6]. In

addition to the modified library, there is a randomness involved in PyProphet scoring: a subset of

features are selected for scaling up and ML classifier training. Nonetheless, the summary results are

closely matching to published results (Supp Table 2, Figure S18).

Supplementary Table 2: Comparison of reanalysis to published results

Reported [6] Re-analysis Common

Precursors 40304 52529

Peptides 35013 41834 33537

Proteins 4984 4703 4566

Proteins detected in > 80% 4077 4262 3979

Median proteins per file 4548 4474

Median precursors per file 31866 34357

Proteins with >1 peptide 3985 4275

Peptide per protein 8.1 9.69

Inter-site CV unnormalized 57.6 57.2

Intra-day CV normalized 8.3 ± 16.2 9.25 ± 14.5

Inter-day CV normalized 11.9 ± 17.2 9.16 ± 13.1
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Inter-site CV normalized 22.0 ± 17.4 21.8 ± 14.4

Figure S18. Recreation of published figures. a) The number of proteins detected in each of the
229 SWATH-MS analyses is shown ordered by site of data collection and then chronologically by time
of acquisition. After filtering the data set in a global fashion at 1% FDR at the peptide query and protein
levels, a protein was considered detected in a given sample when a peak group for that protein was
detected at 1% FDR with experiment-wide context. b) A protein abundance matrix on the log2 scale is
shown for 229 SWATH-MS analyses from all sites corresponding to the set of proteins shown in a.
White indicates a missing protein abundance value where a given protein was not confidently detected
in a given sample. The proteins are ordered from top to bottom first by row completeness and then by
protein abundance. c) The CV of protein abundances for the 4262 proteins that were detected in >80%
all samples were computed at the intra-day level within the site, inter-day with site, and inter-site (i.e.,
all 229 samples in the study). d) The inter-site CVs were binned based on log2 protein abundance to
visualize the dependence of CV on protein abundance. e) The dendrogram for the 229 samples from all
sites resulting from hierarchical clustering based on the log2 protein abundances generated from the
SWATH-MS data is shown. The sites are color coded as per the legend. The “D” and “S” notation refers
to the day and sample number respectively.
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4. DIAlignR

To parallelize the alignment, peptides were divided into 10 fractions. Default parameters were

obtained using paramsDIAlignR(). Parameters transitionIntensity and hardConstrain were set to True,

globalAlignmentFdr set to 1e-04, polyOrd set to 4, and RSEdistFactor set to 4. We explored mscore

cutoff [1e-04 1.0] by setting maxFdrQuery, alignedFDR1, and alignedFDR2 to the cut-off value.

Figure S19. Comparison of signal alignment by DIAlignR to TRIC. Analytes quantified in at least

50% of runs are considered. a,b) Precursor level analysis. For visual clarity only qvalue ≥ 0.001 are

considered. a) Effect of precursor matrix completeness on CV. b) Effect of PyProphet qvalue on matrix

completeness is depicted without and with alignment. c) A zoomed-in version of Figure 3c. Black curve

is the library MS1 signal. d) CV of proteins is depicted with respect to their mass-spec intensity. Protein

intensity is calculated by summing top3 peptides and top5 fragment-ions for a peptide intensity.

5. Across Sites alignment

For peptides, top six fragment-ions are used, selected without alignment. Protein quantification

is done using top 3 peptides and their top 5 fragment-ions. The effect of alignment is visible for high

intense peptides as wrong intensity would adversely affect the CV. The signal alignment has two modes

of action: 1) Select from available scored peaks 2) Create a new peak if no scored peak is found. We
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found that action varies with peptide intensity (Figure S20). For high intensity peptides, mostly there is a

scored-peak available that is picked by the alignment. On the contrary, for the low intensity peptides,

scored-peaks are unavailable within the aligned retention time window, hence, it creates a new peak.

Figure S20. Peak selection after signal alignment. Red box indicates runs for which an already present
scored-peak (peak_group_rank ≠ 1) was selected. Blue boxes indicate that scored-peak was not found,

hence, a new peak was created. Aligned peaks with peak_group_rank = 1 are excluded from the figure.

6. Comparison of multi-run alignment methods

For multi-run comparison, RSEdistFactor was set to 3 and maxFdrQuery, alignedFDR1, and

alignedFDR2 were set to 0.05. The results were filtered with 1% mscore cutoff. For site-specific CV

calculation, within-site alignment is performed for each site.

In progressive approach, the master node has more features than the parent runs as mscore is

set to the minimum of the parent's score. This leads to accumulation of small retention time deviations

(Figure S21a) as the tree is traversed to the root. The increment in the RSEs shifts hybrid alignment

towards the local alignment, diminishing the benefit of global constraining. Across site, the RSE

increases to 100 sec which leads to an adaptive retention time window of 300 sec for hybrid alignment.

Given the extracted-ion chromatogram itself is 900 sec, the alignment is likely to behave as local

alignment for most of the chromatogram. Nonetheless, the advantage of progressive method for

site-specific alignment is that it generates a template chromatogram for a peptide which could be used

to curate a chromatogram library [13]. Across sites, since master runs are more distant, the signal

around the peak may not be consistent and merging chromatograms may result in copies of the peak in

the template. Given the above comparison of Star, MST and Progressive alignment approaches, we are

providing a recommendation table (Supplementary Table 5) for running DIAlignR in an experiment.
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Supplementary Table 3: CV of precursors at 1% FDR and quantified in all runs.

Multirun method Number of
precursors

CV (median ± sd) %

Cross-site
(229 runs)

Site-specific
(11 sites)

None 7093 18.5 ± 10.2 8.34 ± 11.1

DIAlignR 6057 17.7 ± 6.73 8.04 ± 7.3

DIAlignR + signal
integration across charges

8509 19.8 ± 14.3 9.37 ± 10.0

Supplementary Table 4: Number of global alignments calculated

# Global alignments Site-specific Cross-site

Progressive* 430 26

Star 4540 47672

MST 434 22

* Two runs were clustered outside of the site.

Supplementary Table 5: Comparison of multirun alignment methods

Multirun Alignment Star-tree Minimum Spanning tree Progressive

Reference-free No No Yes

Tree building - # IDs in each run # IDs in each run

Order of Global alignment O(N2) O(N) O(N)

Execution time Low Lower High(merged run)

Single-column alignment Lesser preferred Preferred Preferred

Multi-column alignment Lesser preferred Preferred Not preferred

Disk space requirement Low Low High(merged run)

RAM requirement High(global align) Low Low

Consensus chromatogram No No Yes
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Figure S21. a) Average RSE of children runs for each merged run from progressive alignment.
Average RSE of corresponding leaf runs. b) Merged chromatograms of top 3 peptides of hasB protein
from 11 runs of S. Pyogenes cell lysate. Left part depicts merged-chromatograms from 0% plasma
samples, whereas, right one has chromatograms from 10% plasma samples.
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Supplementary Note 7: S. Pyogenes growth in plasma - differential
proteomics analysis

The advantage of alignment is to increase the quantitation events while tightly controlling the

error-rate. We present here how increasing quantitation events affect the number of peptides and

proteins that are differentially expressed.

1. MSConvert + OpenSWATH + PyProphet

The 16 wiff files were converted to mzML using MSConvert without peak-picking. For

OpenSWATH following values are used: min_upper_edge_dist = 1, MS2 extraction window = 75 ppm,

MS1 extraction window = 35 ppm, DIA extraction window = 75 ppm, extra RT window = 100s,

Quadratic regression for ppm mass correction, background subtraction with vertical_division_min,

mutual information and MS1 scoring were added. Lossy compression was set to False for converting

chrom.mzML to chrom.sqMass files. For PyProphet score XGBoost classifier was used with ms1ms2

level and 0.1 value set for initial FDR.

2. DIAlignR

Run hroest_K120808_Strep10%PlasmaBiolRepl2_R02 was excluded from the signal alignment.

Remaining 15 runs were aligned with progressive alignment. Default parameters were obtained using

paramsDIAlignR(). Parameters transitionIntensity and hardConstrain were set to True,

globalAlignmentFdr set to 1e-04, and RSEdistFactor set to 4. The alignment cut-offs maxFdrQuery,

alignedFDR1, and alignedFDR2 were set to 5%. Dynamic programming related factors were set as

goFactor=1 and geFactor=100 and gapQuantile=0.8. The final matrix was filtered with mscore ≤ 0.025

after signal integration across runs with qvalue control. The intensities were median-normalized and

log2 transformed, and technical replicates labeled as R01 were discarded from downstream analysis.

For the remaining 11 samples, alignment increased the matrix completeness from 58% to 65% (Figure

S22). DIAlignR also picks the correct peaks as visible for the most intense ions in the figure.

The data is available at PeptideAtlas repository PASS01508.
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a) Before alignment b) After alignment

Figure S22: A quantification matrix from the SWATH-MS data. The ions are ordered as per their mean

intensity. Missingness increases as the intensity reduces. a) Quantification matrix with XGBoost scoring

only, b) Matrix with XGBoost scoring followed by progressive alignment.

3. Differential expression

There were 67 proteins found significantly associated with bacterial growth in plasma, that is

10% higher than without signal alignment. The increasing number of significant proteins is not due to

the higher mscore cutoff (Supp Table 6). The proteins that are not called significant after alignment are

mostly due to reduced fold-change. However the new proteins (highlighted in yellow) that are called

significant are due to lower p-value of differential analysis as matrix completeness increased, resulting

in more quantification events backing the fold-change. Next, we were wondering if unwittingly alignment

action was biased towards significant genes. No such bias from alignment-action was observed that

favored only significant genes (Figure S24).

A volcano plot depicting significant genes is presented in Figure S23. With alignment, we are

able to call additional virulence factors hasB, which together with hasA is responsible for the production

of hyaluronic acid. This is consistent with the fact that both genes are present on the same operon in

the genome of S. pyogenes (Figure S26).

Supplementary Table 6: Results of differential proteomics analysis

Alignment mscore
cutoff

Significant proteins

Identified Intersect (1% unaligned o/p)
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None 0.01 60 60

None 0.025 59 54

Progressive + signal
Integration across charges

0.025 67 51

Progressive + signal
Integration across runs

0.025 68 51

Supplementary Table 7: Fold change and p-value of proteins called significant in either before or after
alignment. Newly called proteins are highlighted in yellow.

Protein
Without alignment With alignment

Descriptionlog2(FC) p-value log2(FC) p-value
1 SPy_1155 1.1 8.3e-05 0.98 0.0003 VOC domain-containing protein
2 SPy_1892 1.1 0.009 0.94 0.013 Hydrolase_4 domain-containing protein
3 SPy_1434 -1.3 0.0003 -0.93 4.7e-05 Putative heavy metal-transporting ATPase
4 SPy_1798 1.0 0.0008 0.87 0.002 NA
5 SPy_0913 -1.0 0.003 -0.69 0.001 Putative ribosomal protein S1-like

DNA-binding protein
6 asnA -1.1 0.0016 -0.58 0.07 Aspartate--ammonia ligase
7 SPy_0721 1.0 0.009 0.45 0.02 Flavodoxin
8 msmK -1.0 0.003 -0.43 0.03 Multiple sugar-binding ABC transport system

(ATP-binding protein)
9 SPy_0722 -1.1 0.001 -0.35 0.13 Chorismate mutase domain-containing protein
10 mutM 2.13 0.01 2.45 0.0039 Formamidopyrimidine-DNA glycosylase
11 arsC 0.93 0.1 2.39 0.0024 Putative arsenate reductase
12 SPy_1581 0.08 0.80 1.98 0.0098 Cupin_2 domain-containing protein
13 SPy_0604 1.56 0.012 1.93 0.0036 DUF4430 domain-containing protein
14 SPy_0339 -3.68 0.11 -1.91 0.011 DnaB_2 domain-containing protein
15 SPy_1134 1.3 0.015 1.85 0.0017 Putative ABC transporter (Binding protein)
16 pcrA -0.43 0.42 1.77 0.0003 ATP-dependent DNA helicase
17 recU 1.46 0.012 1.46 0.0118 Holliday junction resolvase RecU
18 rpsI 0.67 0.20 1.26 0.0024 30S ribosomal protein S9
19 rpsT 0.45 0.092 1.198 0.007 30S ribosomal protein S20
20 SPy_1565 0.96 0.0008 1.22 2.4e-05 NA
21 SPy_1691 0.92 0.0015 1.194 0.00015 NA
22 ligA 0.89 0.041 1.149 0.008 DNA ligase
23 SPy_0560 -0.99 0.016 -1.147 0.0081 ATP-grasp domain-containing protein
24 trmD -0.39 0.152 -1.133 0.0008 tRNA (guanine-N(1)-)-methyltransferase
25 hasB 0.93 0.0006 1.032 0.0001 UDP-glucose 6-dehydrogenase
26 SPy_1344 0.97 0.005 1.011 0.0015 (3R)-hydroxymyristoyl-[acyl-carrier-protein]

dehydratase
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a) Before alignment b) After alignment

Figure S23: Volcano plot depicting significant proteins (red dots). Analysis on a quantitation matrix a)
without alignment, and b) after the alignment. Significant genes associated with fatty acid metabolism,

pyrimidine biosynthesis and few virulence factors are labelled.

Figure S24: Actions by DIAlignR with respect to significant and non-significant proteins in S.

Pyogenes cell lysate differential proteome analysis.
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Figure S25: The connected protein networks are fetched from STRING 11.5 [19]. The edges represent

protein-protein associations. The edge color indicates the source of interaction available on the

STRING db website. a) Fatty Acid Biosynthesis from Local Network Clustering. b) Interactions among

the pyrD, pyE, and pyrE proteins found significant. c) Interactions among the virulence factors hasA

(Hyaluronan synthase), hasB (UDP-glucose dehydrogenase) found significant.

Figure S26: The Genomic locus of S. Pyogenes depicting a) FAB proteins and b) virulence factors.

The other important pathways are fatty acid biosynthesis (FAB) and pyrimidine biosynthesis that

are found significant in both before and after the alignment (Figure S23). The fold change using all

quantified peptides is depicted in Figure S27 for both pathways, and virulence factors.
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Figure S27: Fold change using all quantified peptides for (top) fatty acid metabolism proteins,

(bottom-left) pyrimidine biosynthesis pathway proteins, and (bottom-right) virulence factors.

4. Chromatogram visualization

One advantage of merging chromatograms in progressive alignment is to have a single

chromatogram from all runs. This single snap-shot can be used for visually confirming the peak. While

merging, each chromatogram is weighed by its p-value, hence, the merged chromatogram is a

weighted-average of all underlying chromatograms. However, in some cases, it may easily display the

differential abundances, as shown for hasB protein in Figure S21b.

Supplementary Note 8: Prediabetic study - 949 human plasma runs

We have reanalyzed the data from the integrative personalized omics profiling (iPOP) study.In

this study, samples were collected quarterly for 8 years (median 2.8 years). The analysis included

plasma proteome as one of the emerging tests for clinics. The cohort comprised 55 women, 52 men

with mean age of 53.4 ± 9.2. Based on the steady state plasma glucose (SSPG) level from the insulin

suppression test, 35 individuals were classified as insulin resistant (SSPG ≥ 150 mg/dl), 31 individuals

as insulin sensitive (SSPG < 150 mg/dl). The status of other 41 individuals was not known as insulin

suppression tests were not performed on them. Samples were generally taken every three months
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when participants were self-reported as healthy. In total, 576 healthy baselines were profiled, with each

participant having 1–34 healthy visits during the study. Additional visits during periods of environmental

or medical stress included events of respiratory viral infection (RVI; 54 episodes in 32 participants with

a total of 149 visits) with dense sampling in the early phase (two time points during days 1–6), a later

phase (day 7–14) and the recovery phase (at weeks 3 and 5). Samples were also taken when other

stresses occurred, such as weight gain, antibiotic treatment, colonoscopy, travel and other self-reported

acute severe stresses, but these were less frequent.

1. MSConvert + OpenSWATH + PyProphet

The data is already in the mzML format. For OpenSWATH following values are used:

min_upper_edge_dist = 1 Da, MS2 extraction window = 67 ppm, MS1 extraction window = 35 ppm, DIA

extraction window = 67 ppm, extra RT window = 50s, Quadratic regression for ppm mass correction,

background subtraction with vertical_division_min, mutual information and MS1 scoring were added.

Lossy compression was set to False for converting chrom.mzML to chrom.sqMass files. For PyProphet

score, XGBoost classifier was used with ms1ms2 level, var_library_rootmeansquare as main score and

pi0_lambda in the range [0.05 0.99] with step of 0.02. At 1% peptide FDR, we quantified 7297 peptides

mapping to 414 proteins (7% protein FDR).

2. DIAlignR

To parallelize the alignment across 949 runs, peptides were divided into 10 fractions. Default

parameters were obtained using paramsDIAlignR(). Parameters transitionIntensity and hardConstrain

were set to True, maxFdrQuery, alignedFDR1, and alignedFDR2 were set to 0.05. Minimum spanning

Tree was selected for multirun alignment. The final data matrix was filtered with mscore ≤ 0.025 and

qvalue ≤ 0.025 with signal integration across charges enabled.

3. Insulin resistant v/s insulin sensitive

Statistics for proteins found significant before and after alignment is described in the table below.

Supplementary Table 8: Fold change and p-value of proteins.

Protein
Without DIAlignR With DIAlignR

Descriptionlog2(FC) p-value log2(FC) p-value
1 ADIPOQ 0.57 4.38e-12 0.52 6.36e-11 Adiponectin
2 CNDP1 0.33 5.17e-08 0.33 9.76e-08 Beta-Ala-His dipeptidase
3 LPA 0.92 5.67e-08 0.7 5.72e-07 Lipoprotein(a)
4 APOD 0.32 4.35e-06 0.34 4.91e-07 Apolipoprotein D
5 HPR 0.28 6e-04 0.33 1.16e-04 Haptoglobin-related protein
6 IGHD 0.53 5.65e-03 0.61 4.09e-03 Immunoglobulin heavy constant delta
7 IGLV6-57 -0.55 6.58e-06 -0.56 3.26e-07 Immunoglobulin lambda variable 6-57
8 IGKC -0.34 0.027 -0.50 5.92e-05 Immunoglobulin kappa constant
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9 HP -0.3 0.102 -0.5 6.53e-05 Haptoglobin
10 IGHG2 -0.31 0.015 -0.41 2.97e-04 Immunoglobulin heavy constant gamma 2
11 PZP 0.43 6.09e-03 0.46 4.3e-03 Pregnancy zone protein

As the mscore cutoff is increased, the unaligned data has fewer missing values, however the

incorporation of false peaks affect the significant estimation in differential analysis. As demonstrated in

Suppl Table 7, increasing mscore leads to fewer proteins being associated with IR. However, since

alignment reduces error-rate, increasing mscore cutoff to 2.5% results in a consistent and higher

number of proteins. Increasing it further to 5% and 10% level, fewer known genes are found to be

significant. Proteins APOC4, IGHG4 (at 5% cutoff) have the backing of few literatures. Proteins

MAP7D3 and NPHP3, found at 10% cutoff have no known evidence of association with insulin

sensitivity, hence are questions. In both cases, we lose a known biomarker HPR from the analysis.

Figure S28 a) Distribution of peptide intensities of significant proteins for both insulin resistant
(IR) and insulin sensitive (IS) after correcting for batch effects, acquisition order and participant-specific

effects. b) Volcano plot depicting proteins that changes significantly during RVI compared to baseline

samples of an unaligned dataset. c) Cluster 1 and Cluster 2 from the unaligned dataset. The remaining

Cluster 3 and Cluster 4 are also depicted.

Supplementary Table 9: Effect of mscore (FDR) control on IR associated proteins
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FDR(%) Before alignment After alignment

Signal Integration Gene names

1 ADIPOQ, CNDP1, LPA, APOD,
IGHD, IGLV6-57, PZP

2.5

ADIPOQ, IGLV6-57, APOD,
LPA, CNDP1, PZP

Across charges ADIPOQ, CNDP1, LPA, APOD, HPR,
IGHD,IGLV6-57,IGKC,HP, IGHG2,PZP

2.5 Across runs ADIPOQ,CNDP1,LPA,APOD,HPR,HP,
IGHD, IGLV6-57, IGKC, PZP, IGHG2

5

ADIPOQ, IGLV6-57, APOD,
LPA, PZP

Across charges ADIPOQ, LPA, APOD, IGLV6-57,
IGKC, HP, IGHG2, PZP

5 Across runs ADIPOQ, LPA, APOD, IGLV6-57, PZP,
IGKC, HP, IGHG2, APOC4, IGHG4

10 Across charges ADIPOQ, LPA, APOD, IGHG4,
IGLV6-57, IGKC, APOC4, MAP7D3,
HP, IGHG2, NPHP3

10 Across runs ADIPOQ, LPA, APOD, IGHG4,
IGLV6-57, IGKC, APOC4, MAP7D3,
HP, IGHG2, NPHP3

4. Change in proteome during respiratory viral infection

Healthy visits that occurred within 180 days of infection are kept for this analysis. Infection

period is categorized into five events:

-H: Healthy before infection

IE: Infection Early (1-14 days after infection)

IL: Infection Late (14-21 days after infection)

IR: Infection Recovery (3-4 weeks after infection)

+H: Healthy time points (4 weeks after infection)

We detect 13 proteins to be statistically significant (Figure 5c) with alignment compared to eight

proteins found from the unaligned data, as described in Suppl Table 8,9. To identify the function of

these proteins, we used the IMPaLA tool [23] pathway over-representation analysis without background

list. Two proteins GC and ITIH3 were not found significant in the aligned data due to DIAlignR picking

different peaks. GC gene encodes vitamin D binding protein (DBP) that has been implicated in the

central nervous system and hepatitis C viral infection. There are also some initial reports establishing

COVID-19 prevalence and mortality to rs7041 locus of DBP. For the other gene ITIH3, there is limited

information available. It is speculated that its product protein may act as a carrier of hyaluronan in

serum which is believed to play a role in virulence. Nonetheless, the new significant proteins are due to
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lower p-value of differential analysis as with alignment correct peaks are picked/quantified (Figure S29),

as observed for S. Pyogenes analysis as well.

Supplementary Table 10: p-value of significant proteins from RVI samples with DIAlignR

Protein p-value Description
1 CPN2 2.8e-03 Carboxypeptidase N subunit 2
2 LUM 2.72e-03 Lumican
3 CPB2 2.65e-03 Carboxypeptidase B2
4 APOC3 1.92e-03 Apolipoprotein C-III
5 C9 1.12e-03 Complement component C9
6 LRG1 9.73e-04 Leucine-rich alpha-2-glycoprotein
7 IL1RAP 3.79e-04 Interleukin-1 receptor accessory protein
8 APOA4 3.1e-04 Apolipoprotein A-IV
9 SERPINA5 2.37e-04 Plasma serine protease inhibitor
10 GPLD1 9.29e-05 Phosphatidylinositol-glycan-specific phospholipase D
11 CNDP1 9.24e-05 Beta-Ala-His dipeptidase
12 LBP 1.77e-06 Lipopolysaccharide-binding protein
13 SAA1 7.97e-07 Serum amyloid A-1 protein

Supplementary Table 11: p-value of significant proteins from RVI samples without DIAlignR

Protein p-value Description
1 LRG1 9.73e-04 Leucine-rich alpha-2-glycoprotein
2 ITIH3 5.09e-04 Inter-Alpha-Trypsin Inhibitor Heavy Chain 3
3 GC 2.84e-04 Vitamin D-binding protein
4 APOA4 2.47e-04 Apolipoprotein A-IV
5 GPLD1 1.06e-04 Phosphatidylinositol-glycan-specific phospholipase D
6 CNDP1 8.83e-06 Beta-Ala-His dipeptidase
7 LBP 4.44e-06 Lipopolysaccharide-binding protein
8 SAA1 9.8e-07 Serum amyloid A-1 protein

Figure S29. Actions by DIAlignR with respect to significant and non-significant proteins in clinical

plasma data analysis.
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The core-proteins for each cluster from fuzzy c-means clustering are presented in tables below.

Proteins involved in the mentioned pathway are in boldface.

Supplementary Table 12: Core genes in each cluster (with alignment)

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Adaptive Immune
System (R-HSA-

1280218)

FCGR activation
(R-

HSA-2029481)

Complement and
coagulation

cascades (WP558)

Metabolism of
proteins (R-HSA-

392499)

C3
IGKV1D-33
IGLV3-25
IGHD
APOC3
ORM1
PROC
F13B

CLEC3B
DBH
C4BPB
MST1

SELENOP
IGLV3-21
PI16
PRG4

IGKV1D-16
IGLV3-19
IGHV3-13
IGHV3-53
IGHV3-7
IGHV4-39
IGKC
IGHG4
APOC2
GP1BA
THBS1
LPA
CETP
F5

AZGP1
BTD
INHBC
HBA2
CNDP1

SERPINA10

CP
F9
PLG
F12
KNG1
IGHG3
RBP4
TF

KLKB1
C4BPA
C8G
CLU
ITIH2
AFM

HGFAC
ADIPOQ

CFB
SERPINC1
APOA2
FGA
FGB
APCS
APOH
TTR
ALB
GC

APOB
HRG

SERPING1
BCHE
PZP

CFHR2
NPHP3
RBFA
CPB2
FETUB

Supplementary Table 13: Core genes in each cluster (without alignment)

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Adaptive immune
system (R-HSA-

1280218)

No pathway Complement and
coagulation

cascades (WP558)

Metabolism
(R-HSA-1430728)

C3
IGHV1-2
IGLV1-40
IGHV1-46
IGHV4-39
IGHM
F10

JCHAIN
RBP4
ORM1
PROC
F13B

IGKV3-15
IGKC
PPBP
CFH
ITIH2
GPX3
VARS1
IGFALS
LUM
GPLD1

SERPING1
C8G
CLU
F9

KNG1
IGHG1
A1BG
IGLL5
CPN2

PON1
TTR
BCHE
APOA2
APOC3
APOB
APOA4
ALB
GC
HP
PLG
F12
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ITIH1
C4BPB

SELENOP
APOC4
PLTP

LGALS3BP
APOF

MYBPC2
FCN2
CPB2
INPP5E
C1RL
FCGBP

CFB
IGHA1
FGA
FGB
FGG
APCS
APOH
AHSG

IGKV3-11
PZP

AZGP1
AFM
ITIH4
NPHP3
SLFN11

5. Comparison with original paper

The six proteins reported to be associated with Insulin resistance are ADIPOQ, MCAM, APOD,
PLTP, APOC4 and VTN. We do find ADIPOQ and APOD in our analysis, MCAM protein was filtered out
as it was not identified in >40% runs, other three proteins PLTP, APOC4 and VTN did have p-value less
than 0.05, however, the effect-size was not higher than log2(1.25). Beside using older versions of
proteomics data analysis software and not performing retention time alignment across all runs, analysis
methodology is one of the main factors. The study was focused on combining and analyzing
multi-omics data, hence, it is possible that due to including so many hypotheses, the other proteins
were missed. In addition, the analysis was performed with protein-level intensities and missing values
were imputed compared to this paper where peptide-level intensities are followed without any
imputation. Moreover, the association was determined to SSPG level in the original study, whereas, we
have performed binary classification for being either insulin resistance or insulin sensitive.

Supplementary Note 9: Software Versions

Although DIAlignR uses raw chromatogram data compared to features used by TRIC, the
method is scalable to 1000s of runs due to the embarrassingly parallel nature of alignment across
peptides. Hence, the computation can be divided across multiple CPUs reducing memory requirements
and execution time. The table below shows the computing cost comparison of both tools.

Supplementary Table 14: Computational cost for TRIC and DIAlignR

Study # Peptides Cost DIAlignR TRIC

Multilab study:
229 HEK293
cell lysate runs

41834

RAM/cpu 10G 24 G

Time/cpu 4 hr 2 hr

cpus 10 1
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Study # Peptides Cost DIAlignR TRIC

Prediabetic study:
949 plasma runs 11419

RAM/cpu 12G 96 G

Time/cpu 2.5 hr 20 hr

cpus 10 1
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