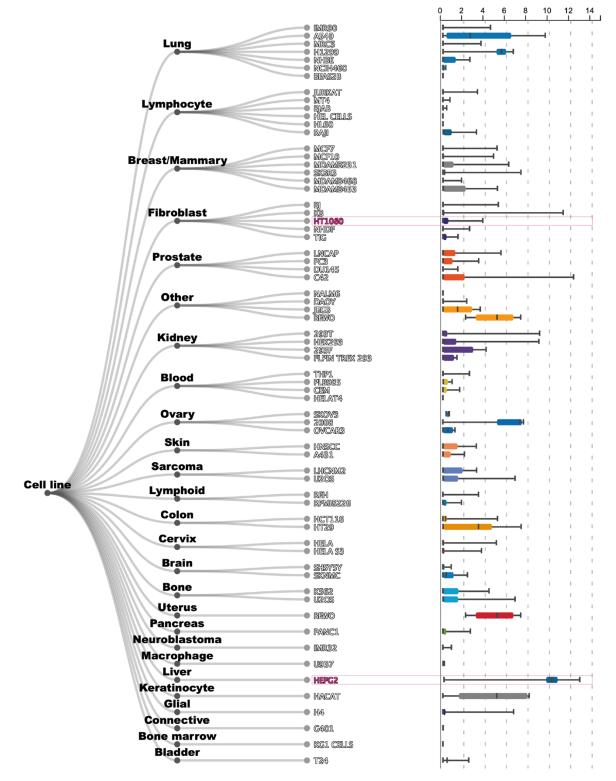
Supplementary Figures for

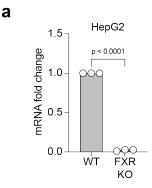
Farnesoid X Receptor activation by bile acids suppresses lipid peroxidation and ferroptosis

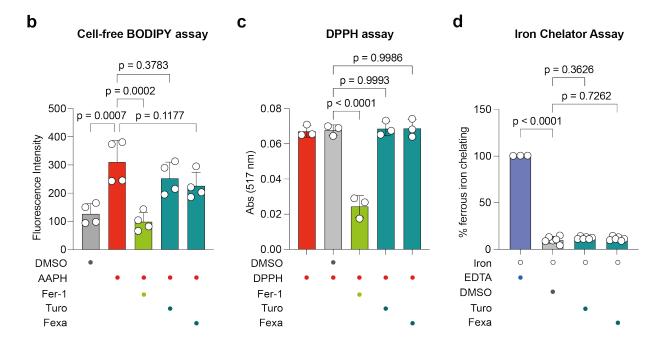
Juliane Tschuck¹, Lea Theilacker¹, Ina Rothenaigner¹, Stefanie A. I. Weiß¹, Banu Akdogan², Van Thanh Lam³, Constanze Müller⁴, Roman Graf¹, Stefanie Brandner¹, Christian Pütz¹, Tamara Rieder⁵, Philippe Schmitt-Kopplin⁴, Michelle Vincendeau³, Hans Zischka^{2,5}, Kenji Schorpp¹, and Kamyar Hadian^{1,§}

¹ Research Unit Signaling and Translation, Helmholtz Zentrum München, Neuherberg, Germany

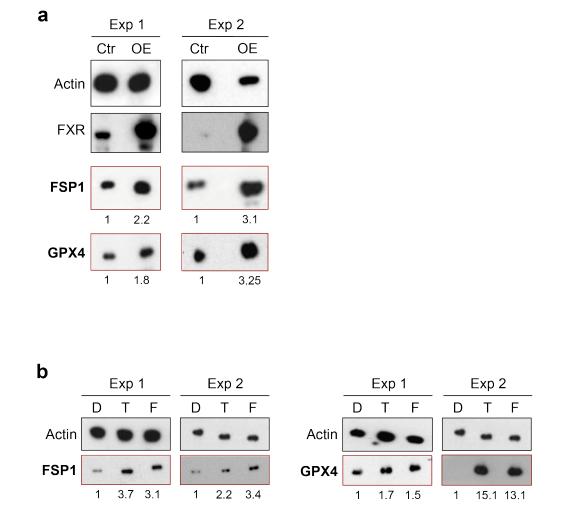

² Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, Neuherberg, Germany

³ Institute of Virology, Helmholtz Zentrum München, Neuherberg, Germany

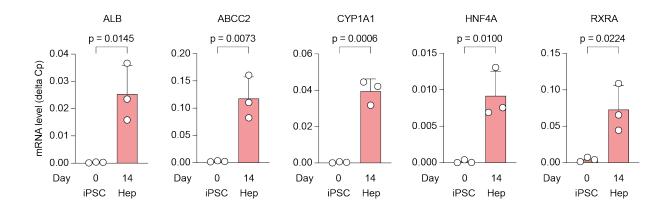

⁴ Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany

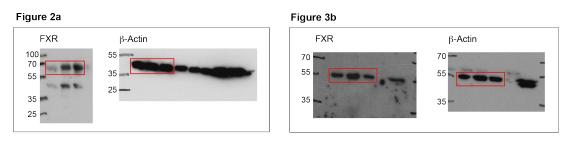

⁵ Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Munich, Germany

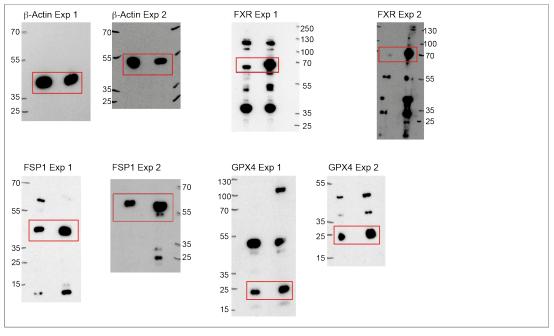
[§] Corresponding author: Kamyar Hadian, kamyar.hadian@helmholtz-muenchen.de

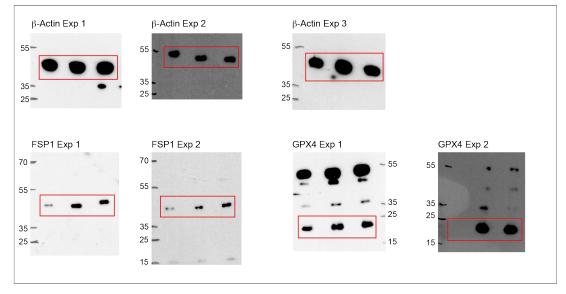


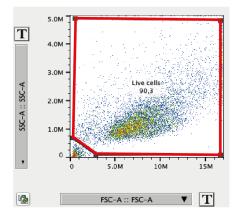
Supplementary Figure 1. Expression levels of FXR (NR1H4) across several cell lines extracted from ARCH⁴ database (*Lachmann, A., Torre, D., Keenan, A.B., Jagodnik, K.M., Lee, H.J., Wang, L., et al., 2018. Massive mining of publicly available RNA-seq data from human and mouse. Nat Commun 9(1):1366.)*

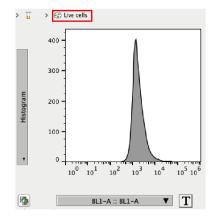



Supplementary Figure 2. a mRNA expression of FXR in wildtype (WT) and FXR knockout (KO) cells. Data are mean \pm SD of n = 3 biological replicates; unpaired two-tailed *t*-test. **b** Turofexorate and Fexaramine have no antioxidant effects in a cell-free oxidizable BODIPY-C11 assay treated with 7.5 mM free-radical-producing 2,2'-azobis(2-methyl-propanimidamide) dihydrochloride (AAPH). In contrast, we observed significant decrease in oxidative fluorescence by Fer-1. Data are mean \pm SD of n = 4 biological replicates; one-way ANOVA with Dunnett's test. **c** DPPH assay showed no antioxidant activity of Turofexorate and Fexaramine. All compounds were tested at a final concentration of 50 µM. DPPH was used at 0.05 mM. Data are mean \pm SD of n = 3 biological replicates, one-way ANOVA with Tukey's test. **d** 12 µM Turofexorate or Fexaramine are not able to chelate iron (Fe(II)) in a Ferrozine-based assay. 100 µM EDTA were used as a positive control. Data are mean \pm SD of n = 3 (EDTA) or 6 (all other treatments) biological replicates; one-way ANOVA with Dunnett's test.

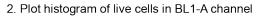

Supplementary Figure 3. **a** Western Blots of HT-1080 cells overexpressing FXR show an upregulation of target genes FSP1 and GPX4. **b** Western Blots of HepG2 cells treated with 12 μ M Turofexorate or Fexaramine for 2h show an upregulation of target genes FSP1 and GPX4. Bands were quantified using ImageJ and signals were normalized to β -Actin signals. Data from 2 biological replicates are shown. Antibodies are listed in Supplementary Tables 1 and 2.


Supplementary Figure 4. Canonical differentiation markers of hepatocytes are upregulated on mRNA level after 14 days of differentiation compared to iPSCs at day 0. RP2 was used as a housekeeper gene for normalization. Data plotted are mean \pm SD of n = 3 biological replicates; unpaired two-tailed t test.


Supplementary Figure 3a



Supplementary Figure 3b



Supplementary Figure 5. Full scans of the Western Blots in Fig. 2a, 3b and Supplementary Fig. 3a, 3b

1. Exclude dead cells from scatter plot

Sample Name	Subset Name	Count	Median : BL1-A
Specimen Fexa 1.fcs	HT1080	9010	2588
Specimen Turo 2.fcs	HT1080	3822	4957
Specimen Fer-1 1.fcs	HT1080	9062	1441
Specimen RSL3 2.fcs	HT1080	5374	16428
Specimen DMSO.fcs	HT1080	9098	1585

3. Extract median intensities of BL1-A channel

Supplementary Figure 6. Flow cytometry gating strategy and analysis for Fig. 1f, 4a, 4c, and 4d.

Supplementary Tables

Supplementary Table 1:

Primary Antibodies	Dilution	Species	Supplier
b-Actin (C4)	1:500	mouse	sc-47778, Santa Cruz
		modeo	Biotechnology
NR1H4 (FXR)	1:500	rabbit	ab228949, Abcam
FSP1 (AMID)	1:1000	rabbit	PA5-103183, Thermo
	1.1000	Tabbit	Fisher Scientific
GPX4	1:1000	rabbit	ab125066, Abcam

Supplementary Table 1:

Secondary Antibodies	Dilution	Species	Supplier
			715-035-150, Jackson
HRP-conjugated anti-mouse IgG	1:7500	donkey	ImmunoResearch
			Laboratories, Biozol
			711-035-152, Jackson
HRP-conjugated anti-rabbit IgG	1:7500	donkey	ImmunoResearch
			Laboratories, Biozol