Supplementary Information:

DIAPH1-MFN2 interaction regulates mitochondria-SR/ER contact and modulates ischemic/hypoxic stress

Gautham Yepuri¹, Lisa M. Ramirez², Gregory G. Theophall², Sergei V Reverdatto², Nosirudeen Quadri¹, Syed Nurul Hasan, Lei Bu³, Devi Thiagarajan, Robin Wilson¹, Raquel López Díez¹, Paul F. Gugger¹, Kaamashri Mangar¹, Navneet Narula⁴, Stuart D. Katz³, Boyan Zhou⁵, Huilin Li⁵, Aleksandr B. Stotland⁶, Roberta A. Gottlieb⁷, Ann Marie Schmidt¹, Alexander Shekhtman^{2#}, Ravichandran Ramasamy^{1#*}

¹Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016

²Department of Chemistry, University of Albany, State University of New York, Albany, New York, 12222

³Department of Medicine, Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, New York 10016

⁴Department of Pathology, NYU Grossman School of Medicine, New York, New York 10016

⁵Department of Population Health, NYU Grossman School of Medicine, New York, New York 10016

⁶Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048

⁷Department of Biomedical Sciences, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048

*Corresponding Author, email: ravichandran.ramasamy@nyulangone.org,

These authors jointly supervised this work

Supplementary figure 1| **Data supporting figure 1: a.** represents bright field image with clean borders of iPSC colony successfully reprogrammed from human adult dermal fibroblasts and IF

staining for positive iPSC markers OCT4/SOX2 and NANOG. Scale bar 200 µm. b. Videos represent beating of CMs differentiated from HiPSCs at day 24 using 10x and day 36 using 20x objective with Olympus CK-2 Phase Contrast Microscope. c. Flow-cytometry showing double positivity for CM marker cTNT and adult CM marker TNNI3. d. TEM images to measure Mito-ER distance in H9C2 cells and respective quantification. Scale bar 0.5 µm. (n=4 biologically independent samples, wilcoxon rank-sum test for p values) e. Fluorescent images using Zeiss LSM 710 confocal imaging system of HEK293T expressing Mito marker pECFP-Mito (CFP), DIAPH1red fluorescent protein, (RFP), and ER marker mEmerald-Calreticulin-N-16 (Emerald), and the overlaid images. Nuclear stained (DAPI stained) HEK293T are shown prior to the overlay images. Scale bar 10 μ m. f. represents pulldown assay using antibody to DIAPH1 in HiPSCs followed by Western blotting with antibody to MFN1. g. qPCR showing *DIAPH1* gene expression normalized either to 18s or *PPIA* in H9C2, HMVECs and BMDMs from WT or global DKO ("gDKO") mice h-i-j. Leica SP8 confocal microscopy images of DUOLINK PLA and respective quantification of signal demonstrating DIAPH1-MFN2 interactions in H9C2 cells (h), i. HMVECs (i) and j. BMDMs (j). (g-j, n=4 biologically independent samples, unpaired t-test (H9C2 and HMVECs) and wilcoxon rank-sum test(BMDMs) was performed for p values). k. Leica SP8 confocal microscopy images of Alexa FluorTM 488 Phalloidin to stain F-actin (green) and Deoxyribonuclease I, Alexa FluorTM 594 Conjugate to stain G-actin (red) and corresponding quantification of relative intensity of F/G actin. Scale bar 25 µm. (n=6 biologically independent samples, TukeyHSD test was performed for p value). I. represents Leica SP8 confocal microscopy images of DUOLINK PLA signal in HiPSC-CMs either treated with VEH (DMSO) or 10 µM Latrunculin-B (LATB) for 1 h before H/R. (n=4 biologically independent samples, Welch's

ANOVA with t-test pooled SD Test for p value). Data are presented as the mean \pm SEM. Source data are provided as a Source Data file.

Supplementary figure 2| **Data supporting figure 1: a.** Leica SP8 confocal microscopy images at 63X magnification representing DUOLINK PLA for DIAPH1-MFN2 under both baseline and H/R conditions, and **b**. DIAPH2-MFN2 interactions in HiPSC-CMs under both baseline and H/R

conditions. (n=4 biologically independent samples). Source data are provided as a Source Data file.

Supplementary figure 3 Data supporting figure 1: a. Leica SP8 confocal microscopy images at 63X magnification representing DUOLINK PLA for DIAPH1-VDAC1, **b.** DIAPH1-GRP75, **c.** DIAPH1-IP3R and **d.** DIAPH1-RHOA interactions in HiPSC-CMs under baseline and H/R conditions. (**a-d**, n=4 biologically independent samples). **e.** represents DUOLINK PLA VDAC-IP3R interactions along with quantification in shScr and sh*DIAPH1* HiPSC-CMs under H/R. (n=4

biologically independent samples, unpaired t test was performed for p value). Data are presented as the mean \pm SEM. Source data are provided as a Source Data file.

Supplementary figure 4 | Data supporting figure 2: DID-MFN2 interactions. a. ¹H-¹⁵N-HSQC spectra of 100 μ M [U-¹⁵N]-DAD^{M1199L} upon titration with 125 μ M of MFN2 of 15N DAD^{M1199L} showing no interaction. b-f. SDS-PAGE analysis of cross-linked DID and MFN2. DID and/or MFN2 (50 µM) were incubated with cross-linkers (500 µM or 250 µM) for 1-2 h at room temperature. Aliquots of the cross-linking reaction were loaded onto an 8% SDS-polyacrylamide resolving gel. Bands corresponding to the DID monomer, MFN2 monomer, or the cross-linked DID-MFN2 1:1 complex are indicated by black arrows. b. Comparison between cross-linking reactions carried out with heterobifunctional (amine-to-sulfhydryl) cross-linkers KMUS, SMCC, and SMPB. Lane 9 shows a distinct band ~75 kDa pertaining to the 1:1 DID-MFN2 complex when SMCC is used. c-f. Cross-linking reactions using the homobifunctional (amine-to-amine) crosslinkers, DSG c, BS(PEG)₉ d, BS(PEG)₅ e, and BS₃ f. In c and d, Lanes 6-9 show a faint band at ~75 kDa corresponding to the 1:1 DID-MFN2 complex. This band is absent in control reactions carried out with DID + cross-linker and MFN2 + cross-linker. In panels (e) and (f), this band is also absent in Lanes 6-9. g. Representative mass spectra of DID-MFN2 peptides cross-linked using BS(PEG)₉ (top) and SMCC (bottom). h-i. Distribution of docking solutions based on HADDOCK score and the RMSD of the interfacial residues (i-RMSD). iRMSD is calculated between the average structure in the cluster and the lowest energy structure of the reference [PDB: 6JFK]. h. Docking results using both AIRs and UIRs and i. Docking results using only UIRs.

Supplementary figure 5 | **Data supporting figure 2:** Comparison and analysis of structural models of the DID-DD:MFN2 tetrameric complex using UIRs or both UIRs and AIRs. **a.** Blue and red ribbons represent MFN2 monomers using UIRs and UIRs & AIRs, respectively. Grey and black ribbons represent the DID-DD dimer. **b.** Both docking models show the binding interfaces of DID and MFN2 overlap with the binding interface of DID and DAD. Residues of MFN2 in contact with DID-DD are colored blue. The residues of DID that belong to both the binding interface between DID-DAD and DID-MFN2 are colored cyan. Those that are in the binding interface between DID-DAD exclusively are colored yellow, and those that belong to the

DID-MFN2 binding interface exclusively are colored orange. **c.** The electrostatic maps of MFN2 and DID-DD complex were shown by translating the molecules 50 Å apart from each other to highlight the surface and charge complementarity of the complex. Salt bridges are shown with small dotted lines; the solid box area is depicted in panel **d.** Salt bridges between MFN2 and DID in are labeled with arrows. Residues of MFN2 are labeled with an "M" superscript, and residues of DID-DD are labeled with a "D" superscript.

Supplementary figure 6 | **Data supporting figure 3:** Principle component analysis plot of studies in HiPSCs from bulk RNAseq data and the effects of *DIAPH1* silencing under baseline and H/R conditions. (n=4 biologically independent samples).

Supplementary figure 7| Data supporting figure 3: a. Western blot analysis was performed in shScr and sh*DIAPH1* HiPSC-CMs under baseline and H/R conditions. a represents proteins which

were significantly up- or down-regulated and **b** represents proteins which were not influenced by silencing *DIAPH1* supporting gene expression data from figure 3f. **c.** protein expression data for Mito fission/fusion markers. α -Tubulin was used as loading control to normalize all blots. Quantification was performed using NIH-ImageJ software. (n=4 biologically independent samples. Welch's ANOVA with Games-Howell pairwise comparison Test for PARKIN, GADD34, Krushal-Wallis with Dunn's pairwise comparison test for PERK, EDEM1 and MFN2 and ANOVA with TukeyHSD pairwise comparison for DIAPH1, NRF2, TOMM40, BCL2, NEFL, PINK1, and DRP1for p values). Data are presented as the mean ± SEM. All statistics and source data are provided as a Source Data file.

Supplementary figure 8 Data supporting figure 4: Gene map representing integration of both MitoT and doxycycline inducible rtTA3 constructs for efficient transfection.

Supplementary figure 9 Data supporting figure 4: isolated perfused mice hearts from WT and global *Diaph1* null (DKO) mice expressing MitoTimer gene. Fluorescence imaging was performed using LEICA SP8 confocal microscope at 63X magnification. Fluorescence signal for green was detected at ex/em range. 488 nm to 530 nm. Laser intensity for 488nm filter was maintained constant at 1.8% and Argon laser power at 20%. Fluorescence signal for red was detected at ex/em. range 561 nm to 590 nm. Laser intensity for 562 nm line was maintained at 2%. Quantification represents ratio of relative intensity of green to red indicating the turnover of Mito.(n=6, n=5 (WT-IR) biologically independent samples, Welch's ANOVA with t-test with pooled SD pairwise comparison test was performed for p value). All statistics and source data are provided as a Source Data file.

Supplementary figure 10 Data supporting figure 5: a. Detection of the Flp-mediated excision event by PCR. Lane 3, 9 & 10: Heterozygous *Diaph1* floxed mice. Lane 4-8: The WT nonrecombined allele. Lane 1 & 2: WT genomic DNA was used as a positive control. PCR without template (H₂O) served as a negative control. M: 1 kb DNA-ladder (NEB). b. qPCR on CMs isolated from WT and *Diaph1* floxed mice to measure *Diaph1* silencing, which was not observed in kidney. (n=7 biologically independent samples, unpaired t-test was performed for p value). c. represents TTC-stained sections from mice hearts for quantification displayed in figure 5b. Data are presented as the mean \pm SEM. All statistics and source data are provided as a Source Data file.

Supplementary Tables

Supplementary Table 1 | Data supporting figure 2. Sequence Comparison between MFN2

Constructs

Full-length human MFN2*, Uniprot ID **O95140**

MSLLFSRCNSIVTVKKNKRHM²²AEVNASPLKHFVTAKKKINGIFEQLGAYIQESATFLEDT YRNAELDPVTTEEQVLDVKGYLSKVRGISEVLARRHMKVAFFGRTSNGKSTVINAMLWDK VLPSGIGHTTNCFLRVEGTDGHEAFLLTEGSEEKRSAKTVNQLAHALHQDKQLHAGSLVS VMWPNSKCPLLKDDLVLMDSPGIDVTTELDSWIDKFCLDADVFVLVANSESTLMQTEKHF FHKVSERLSRPNIFILNNRWDASASEPEYMEEVRRQHMERCTSFLVDELGVVDRSQAGDR IFFVSAKEVLNARIQKAQGMPEGGGALAEGFQVRMFEFQNFERRFEECISQSAVKTKFEQ

HTVRAKQIAEAVRLIMDSLHMAAREQQVYCEEMREERQDR⁴⁰⁰ LKFIDKQLELLAQDYKLRIK QITEEVERQVSTAMAEEIRRLSVLVDDYQMDFHPSPVVLKVYKNELHRHIEEGLGRNMSD RCSTAITNSLQTMQQDMIDGLKPLLPVSVRSQIDMLVPRQCFSLNYDLNCDKLCADFQED IEFHFSLGWTMLVNRFLGPKNSRRALMGYNDQVQRPIPLTPANPSMPPLPQGSLTQEEFM VSMVTGLASLTSRTSMGILVVGGVVWKAVGWRLIALSFGLYGLLYVYERLTWTTKAKERA FKRQFVEHASEKLQLVISYTGSNCSHQVQQELSGTFAHLCQQVDV⁷⁰⁶TRENLEQEIAAMNKK IEVLDSLQSKAKLLRNKAGWLDSELNMFTHQYLQPSR⁷⁵⁷

Truncated, modified cytosolic-MFN2*

MGSSHIHHHHHSSGLVPRGSHM ²²AEVNASPLKHFVTAKKKINGIFEQLGAYIQESATFLEDT YRNAELDPVTTEEQVLDVKGYLSKVRGISEVLARRHMKVAFFGRTSNGKSTVINAMLWDKV LPSGIGHTTNCFLRVEGTDGHEAFLLTEGSEEKRSAKTVNQLAHALHQDKQLHAGSLVSVMW PNSKCPLLKDDLVLMDSPGIDVTTELDSWIDKFCLDADVFVLVANSESTLMQTEKHFFHKVSE RLSRPNIFILNNRWDASASEPEYMEEVRRQHMERCTSFLVDELGVVDRSQAGDRIFFVSAKEV LNARIQKAQGMPEGGGALAEGFQVRMFEFQNFERRFEECISQSAVKTKFEQHTVRAKQIAEAV RLIMDSLHMAAREQQVYCEEMREERQDR⁴⁰⁰ ⁷⁰⁶TRENLEQEIAAMNKKIEVLDSLQSKAKLLRNKAGWLDSELNMFTHQYLQPSR⁷⁵⁷

* MFN2 domains HD1, GTPase, and HD2 are colored in red, orange, and green, respectively. Residues highlighted in yellow are present in the construct used by Li *et al. Nat Commun* 10, 4914 (2019). https://doi.org/10.1038/s41467-019-12912-0, [PDB entry 6JFK].

Supplementary Table 2 | Data supporting figure 2. Intermolecular cross-links between DID

and MFN2

Cross-linker reagent	DSG	SMCC			
Spacer length	7.7 Å		8.3	Å	
Specificity	Homobifunctional		Heterobif	unctional	
	Reactive toward primary amines	Forms a thio-eth	ner bond between a p	rimary amine and	l a sulfhydryl group
Sequences of	³⁶⁹ GEEDSYDLKG ³⁷⁸	²²¹ LKAFMNNKF ²²⁹	²²¹ LKAFMNNKF ²²⁹ - ¹⁵⁴ SGLRDMPLLSCLE ¹⁶⁶ - ¹⁵⁸ KTVNQLAHAI		
cross-linked	- ⁷⁴ QVLDV K GY ⁸¹	¹³¹ NCFLRVE ¹³⁷	³⁷ KKINGIF ⁴³		- ¹⁵⁸ DMPLLSCL1 ⁶⁵
peptides					
Cross-linked	DID K377 – MFN2	DID K228 – MFN2	DID C164 – N	1FN2 K37	MFN2 K158-DID C164
residues	K79	C132			
Mtheoretical	2128.992 Da	2211.109 Da	2471.304 Da		2341.204 Da
[M]experimental	2128.976 Da	2211.107 Da	2471.323 Da		2341.195 Da
Error	-7.3 ppm	-0.86 ppm	7.7 ppm		-4.0 ppm
Cross-linker reagent	BS(PEG)9				
Spacer length			35.8 Å		
Specificity	Homobifunctional				
		Reactive	e toward primary ami	nes	
Sequences of	¹⁸⁶ SKCPLLKDD ¹⁹⁴ -	¹⁰³ GRTSNGKSTV ¹¹² -	³⁰⁵ SAKEVLNA ³¹² -	350SQSAVKT350	⁶ - ⁷²⁷ LQS K AK ⁷³² -
cross-linked	¹⁴³ KSAMM*YIQ ¹⁵⁰	³¹¹ KVGCLQL ³¹⁷	²²⁵ MNNKFGIK ²³²	³⁰⁰ DGLKSGTT	IAL ³⁰⁷ TIALKVGC ³¹⁴ -
peptides	M* - oxidized			K ³¹¹	
	Methionine				
Cross-linked	MFN2 K192 – DID	MFN2 K109 – DID	MFN2 K307 – DID	MFN2 K355 – I	DID MFN2 730 – DID
residues	K143	K311	K228	K303	K311
Mtheoretical	2483.222 Da	2244.200	2260.240	2401.317	1956.118
[M] _{experimental}	2483.215 Da	2244.177	2260.200	2401.358	1956.085
Error	-2.5 ppm	-10 ppm	16 ppm	17 ppm	-17 ppm

Supplementary Table 3 Data supporting figure 2. Active residues on MFN2 and DID-DD

used to define ambiguous interaction restraints

Active Residues on each MFN2 monomer	Active Residues on each DID monomer (within 5 Å of
(positive cross-links with DID)	DAD in the model of a DID-DAD complex)
37, 79, 109, 132, 158, 192, 307, 355, 730	177, 178, 222, 225, 226, 227, 231, 261, 262, 264, 265, 266,
	268, 29, 316, 319, 320, 323, 357, 360, 361, 366

Supplementary Table 4 | Data supporting figure 2. Distance violations in the representative

Atom pairs	Expected	Observed	Violations at	Violations
_	distances	distances	or below 5 Å	above 5 Å
N ^ɛ of Lys 143 (DID-DD, seg ID B)	35.8 Å	38.7 Å	2.9 Å	-
and N ^ɛ of Lys 192 (MFN2, seg ID A)				
N ^ɛ of Lys 1143 (DID-DD, seg ID B)	35.8 Å	36.4 Å	0.6 Å	-
and N ^ɛ of Lys 2192 (MFN2, seg ID				
C)				
N^{ϵ} of Lys 109 (MFN2, seg ID A) and	35.8 Å	40.9 Å	-	5.1 Å
N ^ε of Lys 311 (DID-DD, seg ID B)				
N ^ε of Lys 2109 (MFN2, seg ID C)	35.8 Å	40.9 Å	-	5.1 Å
and N ^ɛ of Lys 1311 (DID-DD, seg ID				
B)				
N^{ϵ} of Lys 307 (MFN2, seg ID A) and	35.8 Å	30.7 Å	-	-5.1 Å
N ^ε of Lys 228 (DID-DD, seg ID B)				
N ^ε of Lvs 2307 (MFN2, seg ID C)	35.8 Å	30.9 Å	-4.9 Å	-
and N^{ϵ} of Lys 1228 (DID-DD, seg ID				
B)				
N^{ϵ} of Lys 355 (MFN2, seg ID A) and	35.8 Å	40.8 Å	5.0 Å	_
N ^ε of Lys 303 (DID-DD, seg ID B)				
N^{ε} of Lys 2355 (MFN2, seg ID C)	35.8 Å	40.7 Å	4.9 Å	_
and N^{ε} of Lvs 1303 (DID-DD, seg ID				
B)				
N^{ε} of Lys 730 (MFN2, seg ID A) and	35.8 Å	30.9 Å	-4.9 Å	_
N^{ε} of Lys 311 (DID-DD, seg ID B)				
N^{ε} of Lys 2730 (MFN2, seg ID C)	35.8 Å	30.8 Å	-5.0 Å	_
and N^{ε} of Lys 1311 (DID-DD, seg ID	001011	001011	0.011	
B)				
N^{ε} of Lys 79 (MFN2, seg ID A) and	7.7 Å	9.1 Å	1.4 Å	_
N^{ε} of Lys 377 (DID-DD, seg ID B)				
N^{ε} of Lys 2079 (MFN2, seg ID C)	7.7 Å	8.4 Å	0.7 Å	_
and N^{ε} of Lys 1377 (DID-DD, seg ID	,,,,,,,	01111	0.7.11	
B)				
N^{ε} of Lys 158 (MFN2, seg ID A) and	8.3 Å	17.7 Å	-	9.4 Å
S^{γ} of Cvs 164 (DID-DD, seg ID B)				2
N^{ϵ} of Lys 2158 (MFN2, seg ID C)	8.3 Å	19.1 Å	-	10.8 Å
and S^{γ} of Cys 1164 (DID-DD, seg ID				
B)				
N^{ε} of Lys 37 (MFN2, seg ID A) and	83Å	37.4 Å	-	29.1 Å
S^{γ} of Cys 164 (DID-DD, seg ID B)	0.011	57111		27.111
N^{ε} of Lys 2037 (MFN2 seg ID C)	83Å	35.6 Å	_	27 3 Å
and S^{γ} of Cys 1164 (DID-DD seg ID	0.5 11	55.671		27.5 11
B)				
S^{γ} of Cys 132 (MEN2 seg ID A) and	83Å	15 8 Å	_	75Å
N^{ε} of Lys 228 (DID-DD seg ID R)	0.5 11	10.071	_	1.5 11
S^{γ} of Cys 2132 (MEN2 seg ID C) and	83Å	172Å	_	89Å
N^{ε} of Lys 1228 (DID-DD. seg ID B)	0.5 / 1	17.211	_	0.7 11

model of the docked A₂B₂ DID-DD-MFN2 complex

Supplementary Table 5 | Data supporting figure 2. Hydrogen bonds and salt bridges in the

Hydrogen bonds	Salt bridges
HZ2 of Lys 36 (MFN2) and OE1 of Glu 356	NZ of Lys 36 (MFN2) and OE1 of Glu 356
(DID-DD)	(DID-DD)
HZ2 of Lys 37 (MFN2) and OD1 of Asn 355	NZ of Lys 37 (MFN2) and OD1 of Asp 357
(DID-DD)	(DID-DD)
O of Lys 37 (MFN2) and HH12 of Arg 359	NZ of Lys 38 (MFN2) and OE1 of Glu 354
(DID-DD)	(DID-DD)
O of Lys 37 (MFN2) and HH22 of Arg 359	NZ of Lys 38 (MFN2) and OD2 of Asp 357
(DID-DD)	(DID-DD)
HZ2 of Lys 38 (MFN2) and OD2 of Asp 357	OE1 of Glu 44 (MFN2) and NE of Arg 351
(DID-DD)	(DID-DD)
HZ3 of Lys 38 (MFN2) and OD2 of Asp 357	OE1 of Glu 44 (MFN2) and NH1 of Arg 351
(DID-DD)	(DID-DD)
HZ2 of Lys 38 (MFN2) and OE1 of Glu 354	OE2 of Glu 44 (MFN2) and NH1 of Arg 359
(DID-DD)	(DID-DD)
OE1 of Glu 44 (MFN2) and HH11 of Arg 351	NH1 of Arg 86 (MFN2) and OE2 of Glu 370
(DID-DD)	(DID-DD)
HH11 of Arg 86 (MFN2) and OE2 of Glu 370	NH2 of Arg 86 (MFN2) and OE2 of Glu 371
(DID-DD)	(DID-DD)
OE1 of Glu 90 (MFN2) and HD22 of Asn 363	OD1 of Asp 140 (MFN2) and NZ of Lys 261
(DID-DD)	(DID-DD)
O of Asp 140 (MFN2) and HZ2 of Lys 261	NZ of Lys 192 (MFN2) and OD1 of Asp 357
(DID-DD)	(DID-DD)
O of Asp 140 (MFN2) and HZ3 of Lys 261	
(DID-DD)	
OD1 of Asp 140 (MFN2) and HZ3 of Lys 261	
(DID-DD)	
OD1 of Asp 140 (MFN2) and HZ2 of Lys 261	
(DID-DD)	
(DD1 of Asp 140 (MFN2) and HE21 of Gin 316	
(DID-DD)	
O of Gly 141 (MFN2) and HZ3 of Lys 261	
(DID-DD) ND1 of Hig 142 (MEN2) and O of Lyg 261	
(DD DD)	
(DID-DD) IIE2 of His 142 (MEN2) and O of Mot 125	
(DD)	
(DD-DD) H72 of Lys 158 (MEN2) and O of Let 172	
(DID-DD) HZ1 of Lys 158 (MEN2) and OD1 of Ala 123	
(DID_DD)	
(DID-DD) HZ1 of Lys 158 (MEN2) and OD1 of Asn 226	
(DID-DD)	
(JD DD) HZ3 of Lys 158 (MFN2) and OD1 of Asn 226	
(DID-DD)	

representative model of the docked A₂B₂ DID-DD-MFN2 complex

Supplementary Table 6 | Data supporting figure 2. HADDOCK Parameters

Parameter	Value		
Structure definition	Molecule 1, Segment ID A: first MFN2 monomer (residue numbers 24-		
	756)*		
	Molecule 2, Segment ID B: DID-DD dimer (residue numbers 142-444 on		
	the first monomer and 1142-1444 on the second monomer)*		
	Molecule 3, Segment ID C: second MFN2 monomer (residue numbers		
	2024-2756)*		
	*Numbering on the second monomer corresponds to the value from the		
	first monomer incremented by 1000 (for DID) or 2000 (for MFN2) to		
TT' 4' 1' 4 4' 4 4	distinguish between monomers during docking		
Histidine protonation states	Automatically defined (default)		
Semi-flexible and fully-	Automatically defined (default)		
Ilexible segments	Detree of Malassels 1 and Malassels 1, 10		
Molecular interaction	Between Molecule 1 and Molecule 1: 1.0		
matrix	Between Molecule 1 and Molecule 2: 1.0		
	Between Molecule 2 and Molecule 5: 1.0		
	Between Molecule 2 and Molecule 2: 1.0		
	Between Molecule 2 and Molecule 2: 1.0		
	Between Molecule 3 and Molecule 1: 1.0		
	Between Molecule 3 and Molecule 2: 1.0		
	Between Molecule 3 and Molecule 3: 1.0		
Distance restraints	Unambiguous restraints:		
	assign (resid 192 and segid A and name NZ) (resid 143 and segid B and		
	name NZ) 35.8 5.0 5.0		
	assign (resid 109 and segid A and name NZ) (resid 311 and segid B and		
	name NZ) 35.8 5.0 5.0		
	assign (resid 307 and segid A and name NZ) (resid 228 and segid B and		
	name NZ) 35.8 5.0 5.0		
	assign (resid 355 and segid A and name NZ) (resid 303 and segid B and		
	name NZ) 35.8 5.0 5.0		
	assign (resid 730 and segid A and name NZ) (resid 311 and segid B and		
	name NZ) 35.8 5.0 5.0		
	assign (resid 79 and segid A and name NZ) (resid 377 and segid B and		
	name NZ) 7.7 5.0 5.0		
	assign (resid 158 and segid A and name NZ) (resid 164 and segid B and		
	name SG) $8.35.05.0$		
	assign (resid 3/ and segid A and name NZ) (resid 164 and segid B and $rame SC) \approx 2.5 0.5 0$		
	name SC) 6.5 5.0 5.0		
	assign (1000 102 and segue A and name SO) (1000 220 and segue D and name NZ) 8 3 5 0 5 0		
	assign (resid 2192 and segid C and name NZ) (resid 1143 and segid R		
	and name NZ) $35.85.05.0$		
	assign (resid 2109 and segid C and name NZ) (resid 1311 and segid B		
	and name NZ) 35.8 5.0 5.0		
	assign (resid 2307 and segid C and name NZ) (resid 1228 and segid B		
	and name NZ) 35.8 5.0 5.0		

	assign (resid 2355 and segid C and name NZ) (resid 1303 and segid B and name NZ) 35.8 5.0 5.0 assign (resid 2730 and segid C and name NZ) (resid 1311 and segid B and name NZ) 35.8 5.0 5.0 assign (resid 2079 and segid C and name NZ) (resid 1377 and segid B and name NZ) 7.7 5.0 5.0 assign (resid 2158 and segid C and name NZ) (resid 1164 and segid B and name SG) 8.3 5.0 5.0 assign (resid 2037 and segid C and name NZ) (resid 1164 and segid B and name SG) 8.3 5.0 5.0 assign (resid 2132 and segid C and name SG) (resid 1164 and segid B and name SG) 8.3 5.0 5.0 assign (resid 2132 and segid C and name SG) (resid 1228 and segid B and name NZ) 8.3 5.0 5.0
	Non-polar hydrogens removed during docking (default) Random exclusion of a fraction of AIRs enabled, with 2 partitions for random exclusion (default)
Sampling parameters (default)	Number of structures for rigid docking: 1000 Number of trials for rigid body minimization: 5 Sample 180 degrees rotated solutions during rigid body EM: Enabled Number of structures for semi-flexible refinement: 200 Solvent used for last iteration: water Number of structures for explicit solvent refinement: 200 Electrostatic energy term, Epsilon: 10.0
Parameters for clustering (default)	Clustering method – Fraction of Common Contacts (FCC) RMSD Cutoff for clustering: 0.6 Angstrom Minimum cluster size: 4
Dihedral and hydrogen bond restraints, residual dipolar couplings, pseudo contact shift restraints, relaxation anisotropy restraints	None
Noncrystallographic symmetry restraints	None
Symmetry Restraints	Enabled, with force constant of 10.0 C2 Symmetry Pairs: First C2 pair: Seg ID B residues 142-444 and seg ID B residues 1142- 1444 Second C2 pair: Seg ID A residues 24-756 and seg ID C residues 2024- 2756
Energy constants for unambiguous restraints and ambiguous restraints (default) Iterations it0: Rigid body EM it1: Semi-flexible SA it2: Water refinement	First iteration: 0 Last iteration: 2 Energy constants per stage Hot: 10.0 Cool1: 10.0 Cool2: 50.0 Cool3: 50.0

Energy and interaction	Nonbonded parameters: OPLSX, dihedral angle restraints included			
parameters (default)	Electrostatic energy terms included during rigid body docking and semi-			
	flexible SA Constant dielectric (cdie) electrostatic energy term			
	Scaling of intermolecular interactions for rigid body EM: 1.0			
	Scaling of intermolecular interactions for semi-flexible SA (it1): initial			
	values of 0.001 for both rigid body dynamic stage and cool2, 0.05 for			
	cool3; final values of 0.001 for rigid body dynamic stage and 1.0 for both			
	cool2 and cool3			
Scoring parameters	Default values for it0, it1, and water refinement			
	Evdw: 0.01, 1.0, 1.0			
	Eelec: 1.0, 1.0, 0.2			
	Eair: 0.01, 0.1, 0.1			
	Esym: 0.1,0.1,0.1			
	Edesolv: 1.0,1.0,1.0			
	dEint: 0.0, 0.0, 0.0			

Supplementary Table 7 Data supporting figure 2. Statistics for the most reliable clusters of

Type of interaction	AIRs (DID residues bound to DAD	Unambiguous interaction restraints	
restraints	were defined as active residues)	(from positive cross-links between	
	Unambiguous interaction restraints	DID and MFN2)	
	(from positive cross-links between		
	DID and MFN2)		
Most reliable cluster	Cluster 1	Cluster 6	
HADDOCK score (a.u.)	-139.0 ± 13.1	-255.0 ± 16.1	
Cluster size	47	9	
RMSD from the overall	6.0 ± 0.6	0.6 ± 0.3	
lowest-energy structure			
(kcal·mol ⁻¹)			
Van der Waals energy	-122.6 ± 9.6	-154.5 ± 12.9	
(kcal·mol ⁻¹)			
Electrostatic energy	-1508.8 ± 109.8	-1009.1 ± 30.3	
(kcal·mol ⁻¹)			
Desolvation energy	23.1 ± 17.6	56.4 ± 13.3	
(kcal·mol ⁻¹)			
Restraints violation energy	1707.3 ± 164.01	433.4 ± 31.21	
(kcal·mol ⁻¹)			
Buried Surface Area (Å ²)	5453.2 ± 340.4	5429.8 ± 147.1	
Z-Score	-1.9	-1.4	

docking solutions obtained using different docking protocols

Clone ID	Knockdown Gene	Target Sequence
TRCN0000118678	DIAPH1	GCCCAGAATCTCTCAATCTTT
TRCN00000626660	AGER	GCGGCTGGAATGGAAACTGAA
SHC002V	Controls	Non-Mammalian

Supplementary Table 8: Clone IDs (Materials and Methods)

Taqman Catalog #	Human Gene
Hs00946556_m1	DIAPH1
Hs00762436_s1	TOMM40
Hs00975961_g1	NRF2
Hs01048932_g1	BCL2
Hs00196245_m1	NEFL
Hs01038322_m1	PARKIN
Hs00984003_m1	PERK
Hs00169585_m1	GADD34
Hs00976004_m1	EDEM1
Hs04194521_s1	PPIA
Taqman Catalog #	Rat Gene
Rn01406955_m1	Diaph1
Rn00690933_m1	Ppia
Taqman Catalog #	Mouse Gene
Mm00438700_m1	Diaph1
Mm02342430_g1	Ppia

Supplementary Table 9: Primers used in the studies (Materials and Methods)

Antibodies for PLA	Host	Company	Cat #	Dilution
DIAPH1	Rabbit	ABCAM	ab129167	1:200
DIAPH2	Rabbit	ABCAM	ab181165	1:200
MFN2	Mouse	ABCAM	ab56889	1:150
MFN1	Mouse	SIGMA	WH0055669M4	1:200
VDAC1	Mouse	ABCAM	ab186321	1:200
GRP75	Mouse	ABCAM	ab2799	1:200
IP3R	Mouse	ABCAM	ab252536	1:200
IP3R1	Rabbit	Cell Signaling	8568	1:200
RHOA	Mouse	ABCAM	ab54835	1:200
Antibodies for WB	Host	Company	Cat #	
DIAPH1	Rabbit	ABCAM	ab129167	1:1000
MFN2	Mouse	ABCAM	ab56889	1:1000
NRF2	Rabbit	ABCAM	ab137550	1:1000
PINK1	Rabbit	Cell Signaling	6946S	1:1000
PARKIN	Mouse	Cell Signaling	4211S	1:1000
GADD34	Mouse	ABCAM	ab236516	1:1000
α-TUBULIN	Mouse	SIGMA	T5168	1:25000
TOMM40	Rabbit	ABCAM	ab185543	1:1000
BCL2	Rabbit	ABCAM	ab32124	1:1000
NEFL	Rabbit	Novus Biologicals	NB300-131	1:1000
PERK	Mouse	Cell Signaling	31928	1:1000
EDEM1	Rabbit	ABCAM	ab200645	1:1000
DRP1	Rabbit	ABCAM	ab184247	1:1000

Supplementary Table 10: Primary antibodies used for DUOLINK PLA and Western blotting studies