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SUPPLEMENTARY TABLES 

Table S1. 13C (176 MHz) and 1H (700 MHz) NMR data of compounds 6 and 9 in DMSO-d6 (J in 

Hz, δ in ppm).  

  6 9 
Residue No. dC, typea δH (J, Hz)b dC, typea δH (J, Hz)b 
Phe1 1 173.8, C  173.5, C  
 2 54.6, CH 4.39, br s  53.8, CH 4.39, ddd (7.8, 7.5, 5.3)  
 3 37.7, CH2 3.04, dd (13.7, 5.3) 37.5, CH2 3.04, dd (13.7, 5.3) 
   2.89, ddd (13.7, 7.5)  2.89, dd (13.7, 7.5) 
 4 137.8, C  137.2, C  
 5/9 129.4, CH 7.16, d (7.3) 129.3, CH 7.20, d (7.6) 
 6/8 128.1, CH 7.27, t (7.6) 128.2, CH 7.28, t (7.6) 
 7 126.4, CH 7.21, t (7.3) 126.5, CH 7.22, t (7.4) 
 NH  6.47, br s  6.44, d (8.1) 
Ureido CO nd  154.6, C  
Dhb2 1 165.5, C  166.3, C  
 2 132.4, C  119.5, C  
 3 121.3, CH 5.90, q (7.4) 127.8, CH 6.30, q (7.1) 
 4 12.2, CH3 1.61, d (7.0) 13.7, CH3 1.58, d (7.1) 
 NH  7.90, q   7.cdm   7.58, s 
Gly3 1 169.2, C    
 2 42.3, CH2 3.73, overlap 

3.63, dd (17.4, 6.3) 
  

 NH  8.08, t (6.1)   
Arg4 1 170.5, C    
 2 50.2, CH 4.53, m   
 3 28.1, CH2 1.74, m   
   1.65, m   
 4 24.7, CH2 1.55, m   
   1.53, m   
 5 40.5, CH2 3.08, m   
 6 156.7, C    
 αNH  8.11, d (7.5)   
 δNH  nd   
 εNH  nd   
Pro5-
Thz6 

1 173.5, C    
2 58.3, CH 5.30, dd (8.1, 2.5)   
3 31.4, CH2 2.20, m    
  2.11, m   
4 24.0, CH2 2.00, m    
  1.93, m   
5 46.8, CH2 3.08, overlap   
1´ 168.5, C    
2´ 149.0, C    
3´ 128.3, CH 8.27, s   

aRecorded at 176 MHz. bRecorded at 700 MHz. ndNot detected. 
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Table S2. Identification numbers for MS/MS spectra deposition for pseudobulbiferamides in the GNPS 

library 

5 [M+H]1+ CCMSLIB00011427564 

5 [M+2H]2+ CCMSLIB00011427566 

6 [M+H]1+ CCMSLIB00011427563 

6 [M+2H]2+ CCMSLIB00011427567 

7 [M+H]1+ CCMSLIB00011427565 

8 [M+H]1+ CCMSLIB00011427568 

8 [M+2H]2+ CCMSLIB00011427569 
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SUPPLEMENTARY FIGURES 

 

Figure S1. High resolution [M+H]1+ MS1 spectrum for 5. 
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Figure S2. The 1H NMR spectrum of 5 (700 MHz, DMSO-d6).  
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Figure S3. The 13C NMR spectrum of 5 (176 MHz, DMSO-d6).  
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Figure S4. The DEPT135 spectrum of 5 (176 MHz, DMSO-d6).  
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Figure S5. The HSQC spectrum of 5 (700 MHz, DMSO-d6).  
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Figure S6. The 1H-1H COSY spectrum of 5 (700 MHz, DMSO-d6).  
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Figure S7. The HMBC spectrum of 5 (700 MHz, DMSO-d6).  
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Figure S8. The TOCSY spectrum of 5 (700 MHz, DMSO-d6).  
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Figure S9. The ROESY spectrum of 5 (700 MHz, DMSO-d6).   
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Figure S10. Marfey’s analysis to determine the absolute configuration of the Phe residue in 5. Extracted 

ion chromatograms (EICs) demonstrating the retention time of the 2-4-dinitrophenyl-5-L-alanine amide -

derivitized (DAA-derivatized) Phe residue resulting from the acid hydrolysis of 5 (top), retention time of 

DAA-derivatized standard of L-Phe (middle), and the retention time of the similarly derivatized standard 

of D-Phe (bottom). Of note, although only one Phe is present in 5, both a major peak of L-Phe and a minor 

one of D-Phe were detected by retention time matching. We deduced that racemization of L-Phe took place 

during acidic hydrolysis, which is akin to homophymamide A that has been verified by chemical synthesis, 

due to their exocyclic amino acid residue structures attached to the ureido bond.1 Separation was achieved 

using the Agilent Poroshell EC-C18 (100×4.6 mm, 2.7 µm) column. Mass spectrometry data were acquired 

in the negative ionization mode.  
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Figure S11. Marfey’s analysis to determine the absolute configuration of the Arg residue in 5. Extracted 

ion chromatograms (EICs) demonstrating the retention time of the DAA-derivatized Arg residue resulting 

from the acid hydrolysis of 5 (top), retention time of DAA-derivatized standard of L-Arg (middle), and the 

retention time of the similarly derivatized standard of D-Arg (bottom). By retention time matching, the Arg 

residue in 5 was determined to be L-Arg. Separation was achieved using the Agilent Poroshell EC-C18 

(100×4.6 mm, 2.7 µm) column. Mass spectrometry data were acquired in the negative ionization mode.  
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Figure S12. Marfey’s analysis to determine the absolute configuration of the Pro residue in 5. Extracted 

ion chromatograms (EICs) demonstrating the retention time of the DAA-derivatized Pro residue resulting 

from the acid hydrolysis of 5 (top), retention time of DAA-derivatized standard of L-Pro (middle), and the 

retention time of the similarly derivatized standard of D-Pro (bottom). By retention time matching, the Pro 

residue in 5 was determined to be L-Pro. Separation was achieved using the Agilent Poroshell EC-C18 

(100×4.6 mm, 2.7 µm) column. Mass spectrometry data were acquired in the negative ionization mode.  
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Figure S13. Marfey’s analysis to determine the absolute configuration of the Gln residue in 5. During 

acid hydrolysis, Gln is converted to Glu. Hence, Glu standards are used here. Extracted ion 

chromatograms (EICs) demonstrating the retention time of the DAA-derivatized Glu residue resulting 

from the acid hydrolysis of 5 (top), retention time of DAA-derivatized standard of L-Glu (middle), and 

the retention time of the similarly derivatized standard of D-Glu (bottom). By retention time matching, 

the Gln residue in 5 was determined to be L-Gln. Separation was achieved using the Agilent Poroshell 

EC-C18 (100×4.6 mm, 2.7 µm) column. Mass spectrometry data were acquired in the negative ionization 

mode.  
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Figure S14. HRMS/MS spectra for 5 (top) and 6 (bottom).  

70.0645
1+

112.0863
1+

198.0689

241.0270
1+

327.1111
1+

521.1911
1+

623.2716
1+

649.2496
1+

814.3295
1+

WZ2_147_b_MSKA007_MB_liquid_P1-A-5_01_23269.d: +MS2(814.3294), 20.6-51.6eV, 6.1min #2032

70.0644
112.0862

1+

155.0630
1+

199.0528
1+

229.0966
1+

295.1501
1+

323.1453
1+

418.1532
1+

477.2015
1+ 521.1916

1+

686.2714
1+

WZ2_147_b_MSKA007_MB_liquid_P1-A-5_01_23269.d: +MS2(686.2700), 19.4-48.4eV, 6.2min #2086
0.0

0.5

1.0

1.5

5x10
Intens.

0.0

0.5

1.0

1.5

2.0

5x10

100 200 300 400 500 600 700 800 m/z



S18 
 

 

Figure S15. The 1H NMR spectrum of 6 (700 MHz, DMSO-d6).  
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Figure S16. The 13C NMR spectrum of 6 (176 MHz, DMSO-d6).  
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Figure S17. The DEPT135 spectrum of 6 (176 MHz, DMSO-d6).  
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Figure S18. The HSQC spectrum of 6 (700 MHz, DMSO-d6).  
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Figure S19. The 1H-1H COSY spectrum of 6 (700 MHz, DMSO-d6).  
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Figure S20. The HMBC spectrum of 6 (700 MHz, DMSO-d6).  
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Figure S21. The ROESY spectrum of 6 (700 MHz, DMSO-d6).  
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Figure S22. High resolution [M+H]1+ MS1 spectrum for 7.  
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Figure S23. The 1H NMR spectrum of 7 (700 MHz, DMSO-d6).  
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Figure S24. The 13C NMR spectrum of 7 (176 MHz, DMSO-d6).  
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Figure S25. The DEPT135 spectrum of 7 (176 MHz, DMSO-d6).  
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Figure S26. HRMS/MS spectra for 5 (top) and 7 (bottom). 
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Figure S27. The HSQC spectrum of 7 (700 MHz, DMSO-d6).  
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Figure S28. The HMBC spectrum of 7 (700 MHz, DMSO-d6).  
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Figure S29. The 1H-1H COSY spectrum of 7 (700 MHz, DMSO-d6).  



S33 
 

 

Figure S30. The TOCSY spectrum of 7 (700 MHz, DMSO-d6).  
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Figure S31. The ROESY spectrum of 7 (700 MHz, DMSO-d6).  
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Figure S32. Marfey’s analysis to determine the absolute configuration of the Phe residue in 7. Extracted 

ion chromatograms (EICs) demonstrating the retention time of the DAA-derivatized Phe residue resulting 

from the acid hydrolysis of 7 (top), retention time of DAA-derivatized standard of L-Phe (middle), and the 

retention time of the similarly derivatized standard of D-Phe (bottom). Akin to 5, the racemization of L-

Phe in 7 took place.1 Separation was achieved using the Agilent Poroshell EC-C18 (100×4.6 mm, 2.7 µm) 

column. Mass spectrometry data were acquired in the negative ionization mode.  
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Figure S33. Marfey’s analysis to determine the absolute configuration of the Ala residue in 7. Extracted 

ion chromatograms (EICs) demonstrating the retention time of the DAA-derivatized Ala residue resulting 

from the acid hydrolysis of 7 (top), retention time of DAA-derivatized standard of L-Ala (middle), and the 

retention time of the similarly derivatized standard of D-Ala (bottom). By retention time matching, the Ala 

residue in 7 was determined to be L-Ala. Separation was achieved using the Agilent Poroshell EC-C18 

(100×4.6 mm, 2.7 µm) column. Mass spectrometry data were acquired in the negative ionization mode.  
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Figure S34. Marfey’s analysis to determine the absolute configuration of the Arg residue in 7. From top to 

bottom– EICs demonstrating retention time of DAA-derivitized Arg residue obtained by acid hydrolysis of 

7, DAA-derivitized standard for L-Arg spiked with the derivatized acid hydrolysate of 7, and DAA-

derivitized standard for D-Arg spiked with the derivatized acid hydrolysate of 7. By retention time 

matching, the Arg residue in 7 was determined to be L-Arg. Separation was achieved using the Agilent 

Poroshell EC-C18 (100×4.6 mm, 2.7 µm) column. Mass spectrometry data were acquired in the negative 

ionization mode.  
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Figure S35. Marfey’s analysis to determine the absolute configuration of the Pro residue in 7. Extracted 

ion chromatograms (EICs) demonstrating the retention time of the DAA-derivatized Pro residue resulting 

from the acid hydrolysis of 7 (top), retention time of DAA-derivatized standard of L-Pro (middle), and the 

retention time of the similarly derivatized standard of D-Pro (bottom). By retention time matching, the Pro 

residue in 7 was determined to be L-Pro. Separation was achieved using the Agilent Poroshell EC-C18 

(100×4.6 mm, 2.7 µm) column. Mass spectrometry data were acquired in the negative ionization mode.  
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Figure S36. Marfey’s analysis to determine the absolute configuration of the Gln residue in 7. During acid 

hydrolysis, Gln is converted to Glu; hence, Glu standards are used here. Extracted ion chromatograms 

(EICs) demonstrating the retention time of the DAA-derivatized Glu residue resulting from the acid 

hydrolysis of 7 (top), retention time of DAA-derivatized standard of L-Glu (middle), and the retention time 

of the similarly derivatized standard of D-Glu (bottom). By retention time matching, the Gln residue in 7 

was determined to be L-Gln. Separation was achieved using the Agilent Poroshell EC-C18 (100×4.6 mm, 

2.7 µm) column. Mass spectrometry data were acquired in the negative ionization mode.  
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Figure S37. HRMS/MS spectra for 6 (top) and 8 (bottom).  
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Figure S38. High resolution [M+H]1+ MS1 spectrum for 9.  
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Figure S39. The 1H NMR spectrum of 9 (700 MHz, DMSO-d6).  
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Figure S40. The 13C NMR spectrum of 9 (176 MHz, DMSO-d6).  
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Figure S41. The HSQC spectrum of 9 (700 MHz, DMSO-d6).  
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Figure S42. The HMBC spectrum of 9 (700 MHz, DMSO-d6).  
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Figure S43. The 1H-1H COSY spectrum of 9 (700 MHz, DMSO-d6).  
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Figure S44. The ROESY spectrum of 9 (700 MHz, DMSO-d6).  
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Figure S45. Marfey’s analysis to determine the absolute configuration of the Phe residue in 9. Extracted 

ion chromatograms (EICs) demonstrating the retention time of the DAA-derivatized Phe residue resulting 

from the acid hydrolysis of 9 (top), retention time of DAA-derivatized standard of L-Phe (middle), and 

the retention time of the DAA-derivatized standard of D-Phe (bottom). Akin to 5 and 7, the racemization 

of L-Phe in 9 took place.1 Separation was achieved using the Agilent Poroshell EC-C18 (100×4.6 mm, 2.7 

µm) column. Mass spectrometry data were acquired in the negative ionization mode.  
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