SUPPLEMENTARY INFORMATION FOR:

Pseudobulbiferamides: plasmid-encoded ureidopeptide natural products with biosynthetic gene clusters shared among marine bacteria of different genera

Weimao Zhong,¹ Nicole M. Aiosa,^{1,†} Jessica M. Deutsch,^{1,†} Neha Garg,^{1,2} and Vinayak Agarwal^{1,3,*}

¹School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
²Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, 30332, USA
³School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
[†]Equal contribution authors
*Correspondence: <u>vagarwal@gatech.edu</u>; Ph: (+1)404-385-3798

TABLE OF CONTENTS

Table S1–S2

Figures S1–S45

Supplementary references

SUPPLEMENTARY TABLES

			6		9
Residue	No.	$\delta_{\rm C}$, type ^a	$\delta_{ m H}(J,{ m Hz})^{ m b}$	$\delta_{\rm C}$, type ^a	$\delta_{ m H}(J,{ m Hz})^{ m b}$
Phe ¹	1	173.8, C		173.5, C	
	2	54.6, CH	4.39, br s	53.8, CH	4.39, ddd (7.8, 7.5, 5.3)
	3	37.7, CH ₂	3.04, dd (13.7, 5.3)	37.5, CH ₂	3.04, dd (13.7, 5.3)
			2.89, ddd (13.7, 7.5)		2.89, dd (13.7, 7.5)
	4	137.8, C		137.2, C	
	5/9	129.4, CH	7.16, d (7.3)	129.3, CH	7.20, d (7.6)
	6/8	128.1, CH	7.27, t (7.6)	128.2, CH	7.28, t (7.6)
	7	126.4, CH	7.21, t (7.3)	126.5, CH	7.22, t (7.4)
	NH		6.47, br s		6.44, d (8.1)
Ureido	CO	nd		154.6, C	
Dhb ²	1	165.5, C		166.3, C	
	2	132.4, C		119.5, C	
	3	121.3, CH	5.90, q (7.4)	127.8, CH	6.30, q (7.1)
	4	12.2, CH ₃	1.61, d (7.0)	13.7, CH ₃	1.58, d (7.1)
_	NH		7.90, q		7.58, s
Gly ³	1	169.2, C			
	2	$42.3, CH_2$	3.73, overlap		
			3.63, dd (17.4, 6.3)		
	NH		8.08, t (6.1)		
Arg ⁴	1	170.5, C			
	2	50.2, CH	4.53, m		
	3	$28.1, CH_2$	1.74, m		
			1.65, m		
	4	24.7, CH ₂	1.55, m		
	-		1.53, m		
	5	$40.5, CH_2$	3.08, m		
	6	156.7, C			
	αNH		8.11, d (7.5)		
	∂NH		nd		
ъś	εNH	172 5 6	nd		
Pro ³ -	1	173.5, C			
I NZ'	2	58.3, CH	5.30, dd (8.1, 2.5)		
	3	$31.4, CH_2$	2.20, m		
			2.11, m		
	4	$24.0, CH_2$	2.00, m		
			1.93, m		
	5	46.8, CH ₂	3.08, overlap		
	1′	168.5, C			
	2′	149.0, C			
	3′	128.3, CH	8.27, s		

Table S1. ¹³C (176 MHz) and ¹H (700 MHz) NMR data of compounds **6** and **9** in DMSO- d_6 (*J* in Hz, δ in ppm).

^aRecorded at 176 MHz. ^bRecorded at 700 MHz. ndNot detected.

Table S2. Identification numbers for MS/MS spectra deposition for pseudobulbiferamides in the GNPS
 library

- 5 [M+H]¹⁺ CCMSLIB00011427564
- 5 [M+2H]²⁺ CCMSLIB00011427566
- 6 [M+H]¹⁺ CCMSLIB00011427563
- 6 [M+2H]²⁺ CCMSLIB00011427567
- 7 [M+H]¹⁺ CCMSLIB00011427565
- 8 [M+H]¹⁺ CCMSLIB00011427568
- 8 [M+2H]²⁺ CCMSLIB00011427569

SUPPLEMENTARY FIGURES

Figure S1. High resolution $[M+H]^{1+}MS^{1}$ spectrum for **5**.

Figure S2. The ¹H NMR spectrum of 5 (700 MHz, DMSO- d_6).

Figure S3. The 13 C NMR spectrum of 5 (176 MHz, DMSO- d_6).

Figure S4. The DEPT135 spectrum of 5 (176 MHz, DMSO-*d*₆).

Figure S5. The HSQC spectrum of 5 (700 MHz, DMSO-*d*₆).

Figure S6. The 1 H- 1 H COSY spectrum of **5** (700 MHz, DMSO- d_{6}).

Figure S7. The HMBC spectrum of 5 (700 MHz, DMSO-*d*₆).

Figure S8. The TOCSY spectrum of 5 (700 MHz, DMSO- d_6).

Figure S9. The ROESY spectrum of 5 (700 MHz, DMSO-*d*₆).

Figure S10. Marfey's analysis to determine the absolute configuration of the Phe residue in **5**. Extracted ion chromatograms (EICs) demonstrating the retention time of the 2-4-dinitrophenyl-5-L-alanine amide - derivitized (DAA-derivatized) Phe residue resulting from the acid hydrolysis of **5** (top), retention time of DAA-derivatized standard of L-Phe (middle), and the retention time of the similarly derivatized standard of D-Phe (bottom). Of note, although only one Phe is present in **5**, both a major peak of L-Phe and a minor one of D-Phe were detected by retention time matching. We deduced that racemization of L-Phe took place during acidic hydrolysis, which is akin to homophymamide A that has been verified by chemical synthesis, due to their exocyclic amino acid residue structures attached to the ureido bond.¹ Separation was achieved using the Agilent Poroshell EC-C18 ($100 \times 4.6 \text{ mm}$, $2.7 \mu \text{m}$) column. Mass spectrometry data were acquired in the negative ionization mode.

Figure S11. Marfey's analysis to determine the absolute configuration of the Arg residue in **5**. Extracted ion chromatograms (EICs) demonstrating the retention time of the DAA-derivatized Arg residue resulting from the acid hydrolysis of **5** (top), retention time of DAA-derivatized standard of L-Arg (middle), and the retention time of the similarly derivatized standard of D-Arg (bottom). By retention time matching, the Arg residue in **5** was determined to be L-Arg. Separation was achieved using the Agilent Poroshell EC-C18 (100×4.6 mm, 2.7 μ m) column. Mass spectrometry data were acquired in the negative ionization mode.

Figure S12. Marfey's analysis to determine the absolute configuration of the Pro residue in **5**. Extracted ion chromatograms (EICs) demonstrating the retention time of the DAA-derivatized Pro residue resulting from the acid hydrolysis of **5** (top), retention time of DAA-derivatized standard of L-Pro (middle), and the retention time of the similarly derivatized standard of D-Pro (bottom). By retention time matching, the Pro residue in **5** was determined to be L-Pro. Separation was achieved using the Agilent Poroshell EC-C18 (100×4.6 mm, 2.7 μ m) column. Mass spectrometry data were acquired in the negative ionization mode.

Figure S13. Marfey's analysis to determine the absolute configuration of the Gln residue in **5**. During acid hydrolysis, Gln is converted to Glu. Hence, Glu standards are used here. Extracted ion chromatograms (EICs) demonstrating the retention time of the DAA-derivatized Glu residue resulting from the acid hydrolysis of **5** (top), retention time of DAA-derivatized standard of L-Glu (middle), and the retention time of the similarly derivatized standard of D-Glu (bottom). By retention time matching, the Gln residue in **5** was determined to be L-Gln. Separation was achieved using the Agilent Poroshell EC-C18 ($100 \times 4.6 \text{ mm}$, $2.7 \mu \text{m}$) column. Mass spectrometry data were acquired in the negative ionization mode.

Figure S14. HRMS/MS spectra for 5 (top) and 6 (bottom).

Figure S15. The ¹H NMR spectrum of 6 (700 MHz, DMSO- d_6).

Figure S16. The 13 C NMR spectrum of 6 (176 MHz, DMSO- d_6).

Figure S17. The DEPT135 spectrum of 6 (176 MHz, DMSO-*d*₆).

Figure S18. The HSQC spectrum of 6 (700 MHz, DMSO-*d*₆).

Figure S19. The ¹H-¹H COSY spectrum of **6** (700 MHz, DMSO- d_6).

Figure S20. The HMBC spectrum of 6 (700 MHz, DMSO-*d*₆).

Figure S21. The ROESY spectrum of 6 (700 MHz, DMSO- d_6).

Figure S22. High resolution $[M+H]^{1+} MS^1$ spectrum for 7.

Figure S23. The ¹H NMR spectrum of 7 (700 MHz, DMSO-*d*₆).

Figure S24. The 13 C NMR spectrum of 7 (176 MHz, DMSO- d_6).

Figure S25. The DEPT135 spectrum of **7** (176 MHz, DMSO-*d*₆).

Figure S26. HRMS/MS spectra for 5 (top) and 7 (bottom).

Figure S27. The HSQC spectrum of 7 (700 MHz, DMSO-*d*₆).

Figure S28. The HMBC spectrum of 7 (700 MHz, DMSO-*d*₆).

Figure S29. The ¹H-¹H COSY spectrum of **7** (700 MHz, DMSO- d_6).

Figure S30. The TOCSY spectrum of 7 (700 MHz, DMSO-*d*₆).

Figure S31. The ROESY spectrum of 7 (700 MHz, DMSO-*d*₆).

Figure S32. Marfey's analysis to determine the absolute configuration of the Phe residue in 7. Extracted ion chromatograms (EICs) demonstrating the retention time of the DAA-derivatized Phe residue resulting from the acid hydrolysis of 7 (top), retention time of DAA-derivatized standard of L-Phe (middle), and the retention time of the similarly derivatized standard of D-Phe (bottom). Akin to 5, the racemization of L-Phe in 7 took place.¹ Separation was achieved using the Agilent Poroshell EC-C18 (100×4.6 mm, 2.7 μ m) column. Mass spectrometry data were acquired in the negative ionization mode.

Figure S33. Marfey's analysis to determine the absolute configuration of the Ala residue in 7. Extracted ion chromatograms (EICs) demonstrating the retention time of the DAA-derivatized Ala residue resulting from the acid hydrolysis of 7 (top), retention time of DAA-derivatized standard of L-Ala (middle), and the retention time of the similarly derivatized standard of D-Ala (bottom). By retention time matching, the Ala residue in 7 was determined to be L-Ala. Separation was achieved using the Agilent Poroshell EC-C18 (100×4.6 mm, 2.7 μ m) column. Mass spectrometry data were acquired in the negative ionization mode.

Figure S34. Marfey's analysis to determine the absolute configuration of the Arg residue in 7. From top to bottom– EICs demonstrating retention time of DAA-derivitized Arg residue obtained by acid hydrolysis of 7, DAA-derivitized standard for L-Arg spiked with the derivatized acid hydrolysate of 7, and DAA-derivitized standard for D-Arg spiked with the derivatized acid hydrolysate of 7. By retention time matching, the Arg residue in 7 was determined to be L-Arg. Separation was achieved using the Agilent Poroshell EC-C18 (100×4.6 mm, 2.7 μ m) column. Mass spectrometry data were acquired in the negative ionization mode.

Figure S35. Marfey's analysis to determine the absolute configuration of the Pro residue in 7. Extracted ion chromatograms (EICs) demonstrating the retention time of the DAA-derivatized Pro residue resulting from the acid hydrolysis of 7 (top), retention time of DAA-derivatized standard of L-Pro (middle), and the retention time of the similarly derivatized standard of D-Pro (bottom). By retention time matching, the Pro residue in 7 was determined to be L-Pro. Separation was achieved using the Agilent Poroshell EC-C18 (100×4.6 mm, 2.7 μ m) column. Mass spectrometry data were acquired in the negative ionization mode.

Figure S36. Marfey's analysis to determine the absolute configuration of the Gln residue in 7. During acid hydrolysis, Gln is converted to Glu; hence, Glu standards are used here. Extracted ion chromatograms (EICs) demonstrating the retention time of the DAA-derivatized Glu residue resulting from the acid hydrolysis of 7 (top), retention time of DAA-derivatized standard of L-Glu (middle), and the retention time of the similarly derivatized standard of D-Glu (bottom). By retention time matching, the Gln residue in 7 was determined to be L-Gln. Separation was achieved using the Agilent Poroshell EC-C18 (100×4.6 mm, 2.7 μm) column. Mass spectrometry data were acquired in the negative ionization mode.

Figure S37. HRMS/MS spectra for 6 (top) and 8 (bottom).

Figure S38. High resolution $[M+H]^{1+} MS^1$ spectrum for **9**.

Figure S39. The ¹H NMR spectrum of **9** (700 MHz, DMSO- d_6).

Figure S40. The ¹³C NMR spectrum of 9 (176 MHz, DMSO- d_6).

190

Figure S41. The HSQC spectrum of 9 (700 MHz, DMSO-*d*₆).

Figure S42. The HMBC spectrum of 9 (700 MHz, DMSO-*d*₆).

Figure S43. The ¹H-¹H COSY spectrum of **9** (700 MHz, DMSO- d_6).

Figure S44. The ROESY spectrum of 9 (700 MHz, DMSO-*d*₆).

Figure S45. Marfey's analysis to determine the absolute configuration of the Phe residue in **9**. Extracted ion chromatograms (EICs) demonstrating the retention time of the DAA-derivatized Phe residue resulting from the acid hydrolysis of **9** (top), retention time of DAA-derivatized standard of L-Phe (middle), and the retention time of the DAA-derivatized standard of D-Phe (bottom). Akin to **5** and **7**, the racemization of L-Phe in **9** took place.¹ Separation was achieved using the Agilent Poroshell EC-C18 (100×4.6 mm, 2.7 µm) column. Mass spectrometry data were acquired in the negative ionization mode.

SUPPLEMENTARY REFERENCES

(1) Kanki, D.; Nakamukai, S.; Ogura, Y.; Takikawa, H.; Ise, Y.; Morii, Y.; Yamawaki, N.; Takatani, T.; Arakawa, O.; Okada, S.; Matsunaga, S. *J Nat Prod* **2021**, *84*, 1848.