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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author):

In their paper, Symanski et al. describe a system by which inorganic syntheses can be systematically 

improved and understood through an iterative procedure. In general, I think this paper is excellent 

and deserves to be published, ideally soon given how quickly this topic in the community. I also 

believe the paper needs very few additions, as it contains a lot of valuable information, a very-well 

informed commentary, and a nice clarification of the limits and practical considerations of the 

software tool (which is far too uncommon in modern methods papers). 

I only have one recommendation for the paper, which is to make the discussion of structural and 

compositional features a little more thorough. My understanding of ARROWS from this paper is that 

the only information that is used a-priori about precursor structures and formulas are derived from 

DFT reaction energies. Honestly, I appreciate this - I think it makes the system more interpretable 

and physical, but presumably precursor structure does matter and could be used predictively. The 

authors claim that there is no universal structural representation, which is true, but there are at 

least two options (standard matminer site-statistic and graph-based) that are very commonly used 

today and would be reasonable to try. The authors don't need to do this (at least not for this paper), 

but I would comment on how structural features might be used in either future iterations of the tool 

or in other tools to understand how precursor structure relates to reactivity and selectivity of 

synthesis. 

Reviewer #2 (Remarks to the Author):

# Review overview 

- This paper aims to optimize the yield of the target phase in solid-state reactions, proposing a 

method to select precursors (starting material or intermediates) with a large negative energy 

difference from the target phase using first-principles calculations. Furthermore, the method aims to 

improve the efficiency of yield enhancement of the target phase by feeding back actual synthesis 

experiment results, adding precursors not on the initial candidate list, and newly considering the 

presence of inert intermediates. 

- Reaction process design in reactions between inorganic solids has yet to be established due to the 

complexity of long-range atomic diffusion and its reactive processes. However, it's a cutting-edge 

theme approached by several groups, including the authors, leveraging first-principles calculations 

and machine learning techniques. 

- Attempts to evaluate the driving force of reactions from first-principles calculation results based on 

thermodynamic backgrounds have already been performed several times, as cited in this paper, with 

some success for various compounds. What makes this method unique is the addition of feedback 

from unsuccessful synthesis results. 

- The authors have successfully improved yields with what seems to be a relatively small number of 

trials by applying this method to three target phases as case studies. The selection of the three 



target phases and the synthesis conditions are appropriate for demonstrating this method, revealing 

the authors' profound expertise. 

- This paper succinctly summarizes the authors' ideas and actual processes that underpin this 

method and can evaluate performance based on appropriate results. 

- On the other hand, from the viewpoint of a synthesis researcher, I don't feel any impact from this 

method. To make the paper more understandable to synthesis researchers, you might find the 

following comments helpful. 

# Comments 

- As seen with the three sample cases presented this time, when the desired compounds are known, 

approximately 200 solid-state synthesis reactions are not particularly difficult for synthesis 

researchers. The proposed method here suggests a reduction in experimental repetitions by 

iteratively and sequentially selecting precursors and conducting synthesis experiments. However, 

performing possible combinations simultaneously and in parallel is a conventional method in 

synthesis processes. Even if parallel experimentation leads to a larger number of trials, it might 

eventually lead to the discovery of better synthesis conditions in a shorter time. 

- As the authors mentioned in the method section, this approach is only applicable when the crystal 

structures of the target phase and precursors are clearly known, as it uses first-principles 

calculations. For instance, when the target phase has partially occupied sites or is a completely new 

material, or when the starting materials are amorphous, or when hydroxides, acid hydroxides, or 

hydrates with unclear hydrogen sites are used, evaluating their energy is challenging. Also, in solid-

state synthesis, the reactivity changes even with the same starting material if the particle size or 

crystallinity changes, and the time required for the reaction also changes with the density of the 

compacted powder. A preliminary calcination process, which holds at a slightly lower temperature 

than the actual calcination for a short time, can also effectively contribute to single-phase formation. 

However, it seems such factors are not explicitly considered. It may be helpful to separate the 

method into the calculation and experimental sections and provide more specific examples of its 

application range in each. 

- This paper lacks citations of important methods concerning synthesis process design in solid-state 

reactions. Several are introduced in the second paragraph on page 3, but the only method using 

machine learning introduced is from the authors' own group. It does not cite studies that predict 

synthesis results using a recommender system and parallel synthesis experiments (for example, 

10.1021/acs.chemmater.9b01799). I believe that with the utilization of robotics, machine learning 

methods based on in-house experimental data will become increasingly important, even though 

their examples were limited due to the limited number of synthesis experiments. 

- In the YBCO example, the authors mention the well-known reason for the low yield when BaCO3 is 

used as a starting material, which is due to its high decomposition temperature. If a human 

researcher were to assume the current calcination temperature and hold time, BaCO3 would not be 

used from the start, and thus, this method seems to be doing something unnecessary. Similarly, in 

the synthesis of NTMO, the inclusion of MoO2, which is known to have a melting point several 

hundred Kelvin higher than MoO3, as a precursor candidate in low-temperature synthesis would not 

be conceivable from a synthesis researcher's perspective. Can't this kind of thing be incorporated 

into the method as prior knowledge? 

- The evaluation that BaCuO2 and Y2BaCuO5 are inert and thus planning the experiment to exclude 

them from the synthesis path is not sufficiently explained. For instance, the fact that their energy is 

close to YBCO and consumes much of the driving force of the starting material is not a valid reason. 

This is because, as the authors show in the NTMO example, a reaction can occur even with a small 

driving force. In particular, in the YBCO case, since the calcination time is limited, whether or not 



they are inert seems to depend on prior knowledge from previous research. Therefore, it does not 

seem to me to be the "Autonomous decision making" mentioned in the title. 

- Does the set of 47 precursors in the YBCO case cover all combinations that could potentially 

produce YBCO in stoichiometric proportions? In relation to this, in Figure 4, white squares seem to 

represent untested combinations, but were they determined to be unnecessary for exploration 

using the current method even after 188 experiments? 

- In the YBCO case, why is the number of syntheses necessary to find all 10 good yield conditions 

used as the standard for comparison between BO, GA, and the current method? From the viewpoint 

of improving the synthesis process, it should be sufficient if any one of the ten can be found in the 

shortest possible time. Does the current method still show significant superiority when evaluated 

with such a metric? 

- As the authors mention, the way information is fed to the predictive model in BO or GA seems 

unfair compared to the current method, and I did not feel the comparison itself was meaningful. 

Rather, I believe it is necessary to compare with experimental design methods such as the D-optimal 

design. 

- In the case of NTMO, there is a description that extending the calcination time improves the yield 

because ΔG' is small. Is this decision made automatically by the current method? If not, the 

"Autonomous decision making" in the paper title feels exaggerated. 

- The chemical reaction formulas annotated on the XRD profile in Figure 1b need an explanation as 

to whether they indicate a combination of precursors or phases identified from XRD. 

- The temperature is inconsistent between the caption of Figure 5a and the main text. 

Reviewer #3 (Remarks to the Author): 

The focus of this manuscript is the development of an autonomous decision making approach for 

inorganic solid state syntheses. The use of high temperature solid state syntheses has, of course, 

results in a host of technologically important materials. While the mechanical steps of this synthetic 

approach appear simple, a great deal of complexity lies under the surface. The authors nicely focus 

on an often unobserved, but critically important component of these reactions, the formation of 

intermediate phase that either enable or preclude the formation of the desired product. 

1. A central question that remains in the mind of this reviewer is the construction of the initial 

reaction parameters. These include, temperature ranges, hold times, the presence or absence of 

regrinding steps, and reaction conditions (oxidizing, reducing, inert atmospheres). 

- The authors note that hold times are specified for each study. The chosen times are rather short (4 

or 8 h) with respect to more tradition high temperature solid state approaches. How were these 

times chosen? The choices of reaction time between regrinding steps more often conform to 

experimenter schedules than the reactions themselves (there is nothing magical about 24 h), and 

shorter times are desired of course. Having said that, there is some concern that short times without 

repeated regrinding steps selects for kinetic products in reactions generally governed by 

thermodynamics. 

- The chemistry of many solid-state reactions can and does vary as a function of temperature. By this 

I mean that the phase diagram being explored does not remain unchanged as the temperature 

increases or decreases. For example, the authors correctly note that the traditional synthesis 

temperature for YBCO lies above the temperature window explored in this work. The identification 



of BaCO3 as a problematic reactant at lower temperatures does not map onto its demonstrated 

utility at 950 C. 

2. A second central theme is a quest routes for phase pure samples of known or unknown materials 

as quickly as possible. The infrastructure balance has shifted in this proposed synthetic methodology 

from traditional approaches. Traditionally one would run many reactions in parallel in a single 

furnace, as composition can vary between samples but temperature cannot. Conducting a range of 

reagent combinations are different temperatures either requires more furnaces or more sequential 

studies. The authors should comment on this balance. 

3. The possibility of transfer learning in this approach is interesting and enticing. The authors note 

the possibility of predicting the formation of other compounds within the Y-Ba-Cu-O system (or 

more accurately – compound that could be made from the reagents used in the YBCO study). Does 

transfer learning extend between systems? If, for example, one was to explore BSCCO, would the 

YBCO work transfer? 

4. The identification of pair wise interactions that result in either reactive or inert intermediates is 

both important and informative. 

5. The authors should be cautious in the determination of weight percent using diffraction data. 

Many parameters affect peak intensity (or area) that are distinct from weight percent. These include 

grain size, crystallinity, average atomic scattering factor to name three. 
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Reviewer #1 

 

General Assessment: 

In their paper, Szymanski et al. describe a system by which inorganic syntheses can be systematically 

improved and understood through an iterative procedure. In general, I think this paper is excellent and 

deserves to be published, ideally soon given how quickly this topic develops in the community. I also 

believe the paper needs very few additions, as it contains a lot of valuable information, a very-well 

informed commentary, and a nice clarification of the limits and practical considerations of the software 

tool (which is far too uncommon in modern methods papers). 

I only have one recommendation for the paper, which is to make the discussion of structural and 

compositional features a little more thorough. My understanding of ARROWS from this paper is that the 

only information that is used a-priori about precursor structures and formulas are derived from DFT 

reaction energies. Honestly, I appreciate this - I think it makes the system more interpretable and physical, 

but presumably precursor structure does matter and could be used predictively. The authors claim that 

there is no universal structural representation, which is true, but there are at least two options (standard 

matminer site-statistic and graph-based) that are very commonly used today and would be reasonable to 

try. The authors don't need to do this (at least not for this paper), but I would comment on how structural 

features might be used in either future iterations of the tool or in other tools to understand how precursor 

structure relates to reactivity and selectivity of synthesis. 
 

Response:  

We thank the reviewer for their positive comments. The possibility of incorporating structure-based 

descriptors into the workflow for synthesis design and decision-making is an interesting point that indeed 

warrants further consideration. We have now added a paragraph to the Discussion section of the paper, 

describing the potential ways in which such information may be utilized in future iterations of our 

algorithm.  

 

Discussion, Page 23: There exist several opportunities to improve the efficiency and interpretability of 

ARROWS3. The algorithm currently relies on thermodynamic arguments to optimize a target’s yield, 

specifically by assuming that synthesis reactions with large driving force will be most effective. Future 

work may additionally consider the influence of kinetic factors such as diffusion and nucleation rates, 

though these are currently challenging to assess in a quantitative fashion due to both computational 
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limitations and a lack of clarity on the relevant conditions under which each process should be evaluated. 

Related efforts have developed approximate models for nucleation rates that consider the structural 

similarity between precursor and target materials, in addition to their associated reaction energy28. Such 

factors could be incorporated into ARROWS3 and its precursor ranking scheme by using structural 

descriptors based on matminer statistics56 or graph-based representations57–59. Descriptors related to 

particle morphology and sample density could also be included in the optimization process, as both have 

been reported to affect synthesis outcomes60,61. 
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Reviewer #2 

 

General Assessment: 

This paper aims to optimize the yield of the target phase in solid-state reactions, proposing a method to 

select precursors (starting material or intermediates) with a large negative energy difference from the 

target phase using first-principles calculations. Furthermore, the method aims to improve the efficiency 

of yield enhancement of the target phase by feeding back actual synthesis experiment results, adding 

precursors not on the initial candidate list, and newly considering the presence of inert intermediates. 

Reaction process design in reactions between inorganic solids has yet to be established due to the 

complexity of long-range atomic diffusion and its reactive processes. However, it's a cutting-edge theme 

approached by several groups, including the authors, leveraging first-principles calculations and machine 

learning techniques. Attempts to evaluate the driving force of reactions from first-principles calculation 

results based on thermodynamic backgrounds have already been performed several times, as cited in this 

paper, with some success for various compounds. What makes this method unique is the addition of 

feedback from unsuccessful synthesis results. The authors have successfully improved yields with what 

seems to be a relatively small number of trials by applying this method to three target phases as case 

studies. The selection of the three target phases and the synthesis conditions are appropriate for 

demonstrating this method, revealing the authors' profound expertise. This paper succinctly summarizes 

the authors' ideas and actual processes that underpin this method and can evaluate performance based on 

appropriate results. On the other hand, from the viewpoint of a synthesis researcher, I don't feel any 

impact from this method. To make the paper more understandable to synthesis researchers, you might 

find the following comments helpful. 

 

Response:  

We thank the reviewer for their feedback. Each comment is addressed in detail below. 

 

Comment 1: 

As seen with the three sample cases presented this time, when the desired compounds are known, 

approximately 200 solid-state synthesis reactions are not particularly difficult for synthesis researchers. 

The proposed method here suggests a reduction in experimental repetitions by iteratively and sequentially 

selecting precursors and conducting synthesis experiments. However, performing possible combinations 

simultaneously and in parallel is a conventional method in synthesis processes. Even if parallel 
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experimentation leads to a larger number of trials, it might eventually lead to the discovery of better 

synthesis conditions in a shorter time. 

 

Response:  

The reviewer raises a good point regarding the use of parallelization in synthesis experiments. While our 

method is generally designed to handle sequential experiments so that one synthesis outcome can be used 

to inform the next choice of experimental parameters, it can also be applied with batched experiments 

performed in parallel. To this end, the user may specify a batch size when running ARROWS3, which 

will control how many experiments are suggested at once. The algorithm will then learn from the 

outcomes of these experiments simultaneously before suggesting the next batch of samples to evaluate. 

 

To showcase the influence of parallelization on the efficiency of ARROWS3, we have now performed 

additional tests on the YBCO dataset. Four optimization campaigns were carried out, each with a 

different batch size, and the resulting curves are plotted in Supplementary Fig. 4a (see below). 

 

 
Supplementary Figure 4: (a) Number of optimal synthesis routes for YBCO identified with respect to 

the number of experimental samples queried by ARROWS3. Each curve represents a single optimization 

campaign performed using a different batch size.  
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The results demonstrate that the optimization process becomes less efficient when a larger batch size is 

used, requiring more samples to be tested before all optimal synthesis routes can be found. However, as 

the reviewer points out, the use of larger batches may still be beneficial when parallelization is available, 

and the user wishes to exhaust the search space as quickly as possible. Indeed, substantially fewer 

experimental iterations (i.e., batches) are required to identify all optimal synthesis routes when a larger 

batch size is used. 

 

To better illustrate the tradeoff that exists between the number of samples and batches required to 

complete the optimization process, we have created Supplementary Fig. 4b (see below). 

 

 
Supplementary Figure 4: (b) The number of batches and individual samples required to identify all ten 

optimal synthesis routes. Each dot represents the requirements for one optimization campaign performed 

with a distinct batch size. 

 

This plot reveals a clear anti-correlation between the number of samples and batches required to identify 

all optimal synthesis routes for YBCO. Whether fewer samples or batches are preferred is up to the user, 

who may balance the tradeoff between these two quantities by setting the batch size accordingly.  

 

These results are now discussed in the manuscript, and the relevant text copied below.  
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Results, YBCO, Pages 14-15: The results presented in Fig. 3 and Fig. 4 were obtained by querying 

experiments in a serial (one-by-one) fashion. This allowed ARROWS3 to continually learn from each 

experimental outcome and update its ranking of precursor sets accordingly. However, traditional 

experiments are often parallelized. For example, multiple sets of precursors with a shared synthesis 

temperature may be tested simultaneously by loading them into one furnace33. Such an approach is also 

compatible with ARROWS3, for which a batch size can be specified to control how many experiments 

are suggested at each iteration. As shown in Supplementary Fig. 4, the use of a larger batch size reduces 

the number of iterations (i.e., batches) required to identify all the optimal synthesis routes for YBCO. 

However, because a larger batch size limits the opportunities where ARROWS3 can learn and update its 

ranking, it also leads to a larger number of individual samples that must be queried to identify the optimal 

routes. Hence, there exists a tradeoff between the number of batches and individual samples required to 

complete the optimization process, and the batch size acts as a hyperparameter to adjust this tradeoff 

depending on the user’s objectives and experimental setup. 

 
Comment 2: 

As the authors mentioned in the method section, this approach is only applicable when the crystal 

structures of the target phase and precursors are clearly known, as it uses first-principles calculations. 

For instance, when the target phase has partially occupied sites or is a completely new material, or when 

the starting materials are amorphous, or when hydroxides, acid hydroxides, or hydrates with unclear 

hydrogen sites are used, evaluating their energy is challenging. Also, in solid-state synthesis, the 

reactivity changes even with the same starting material if the particle size or crystallinity changes, and 

the time required for the reaction also changes with the density of the compacted powder. A preliminary 

calcination process, which holds at a slightly lower temperature than the actual calcination for a short 

time, can also effectively contribute to single-phase formation. However, it seems such factors are not 

explicitly considered. It may be helpful to separate the method into the calculation and experimental 

sections and provide more specific examples of its application range in each. 

 

Response:  

We agree with many of these points and have added text throughout the Methods section to better explain 

the limitations of ARROWS3, as well as to outline which aspects can be customized by the user. 

Furthermore, we have added a new paragraph to the Discussion section outlining possible improvements 

that could be made to the algorithm. All related text is copied below. 
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Methods, Initial ranking by ∆G, Page 26: In cases where a novel phase (not available in the Materials 

Project) is considered, we use the DFT-calculated energy of the convex hull at that phase’s composition. 

 

Methods, Initial ranking by ∆G, Page 27: Our consideration of ∆G is a simplification of the factors 

that dictate solid-state synthesis. In addition to selecting optimal precursors, the particle morphology and 

heating rate can also have a substantial influence on reaction outcomes60,61. Furthermore, certain 

compounds may react with the atmosphere prior to heating, e.g., to form carbonates or hydroxides. Such 

factors are currently not accounted for but could in principle be included by studying the evolution of 

each individual precursor as a function of temperature and time. Because this information is not generally 

available for all compounds and precursor powders, the current implementation of ARROWS3 focuses 

only on ∆G, which is more readily calculated using the methods described in the previous few paragraphs. 

 

Methods, Temperature selection for intermediate identification, Pages 28-29: By default, 

ARROWS3 operates under the assumption that a linear heating ramp is used to reach the specified hold 

temperature (𝑇). In practice, however, a preheating step is occasionally used to decompose certain 

precursors at a temperature lower than the specified hold. For example, nitrate precursors such as LiNO3 

and NaNO3 are often preheated to avoid rapid evolution of gases at higher temperature64. To handle such 

cases, expected decomposition temperatures and products can be incorporated into the pairwise reaction 

database prior to running ARROWS3. Without the user providing this information, the algorithm will 

still identify the decomposition product except in cases where that product reacts with another phase 

prior to XRD measurements, which would otherwise preclude its detection. 

 

Discussion, Page 23: There exist several opportunities to improve the efficiency and interpretability of 

ARROWS3. The algorithm currently relies on thermodynamic arguments to optimize a target’s yield, 

specifically by assuming that synthesis reactions with large driving force will be most effective. Future 

work may additionally consider the influence of kinetic factors such as diffusion and nucleation rates, 

though these are currently challenging to assess in a quantitative fashion due to both computational 

limitations and a lack of clarity on the relevant conditions under which each process should be evaluated. 

Related efforts have developed approximate models for nucleation rates that consider the structural 

similarity between precursor and target materials, in addition to their associated reaction energy28. Such 

factors could be incorporated into ARROWS3 and its precursor ranking scheme by using structural 
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descriptors based on matminer statistics56 or graph-based representations57–59. Descriptors related to 

particle morphology and sample density could also be included in the optimization process, as both have 

been reported to affect synthesis outcomes60,61. 

 

Comment 3: 

This paper lacks citations of important methods concerning synthesis process design in solid-state 

reactions. Several are introduced in the second paragraph on page 3, but the only method using machine 

learning introduced is from the authors' own group. It does not cite studies that predict synthesis results 

using a recommender system and parallel synthesis experiments (e.g., 10.1021/acs.chemmater.9b01799). 

I believe that with the utilization of robotics, machine learning methods based on in-house experimental 

data will become increasingly important, even though their examples were limited due to the limited 

number of synthesis experiments. 

 

Response:  

The introduction has now been updated to include further discussion regarding previous work on the 

optimization of synthesis procedures in materials science and chemistry. Relevant citations, including 

the work highlighted by the reviewer, have also been added. Please find the revised text below. 

 

Introduction, Page 3: In the place of fixed ranking schemes, active learning algorithms have been used 

for the optimization of synthesis procedures29,30. These algorithms can adapt from failed experiments and 

decide which parameters should be tested in later iterations. Bayesian optimization and genetic 

algorithms have each found success when coupled with synthesis techniques based on flow chemistry31 

and thin film deposition32. However, these “black box” approaches are often restricted to handling 

continuous variables such as temperature and time, while categorical variables are more difficult to 

optimize. For example, choosing which precursors to use for the synthesis of a novel material is 

particularly challenging as it involves discrete selections from a vast range of chemical compositions and 

structures, instead of simply fine-tuning parameters on a continuous scale. Recent work has made 

progress on this front by combining parallel synthesis experiments with tensor decomposition analysis, 

which can be used to predict the most effective starting materials and processing conditions from just a 

subset of their possible combinations33. 
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Comment 4: 

In the YBCO example, the authors mention the well-known reason for the low yield when BaCO3 is 

used as a starting material, which is due to its high decomposition temperature. If a human researcher 

were to assume the current calcination temperature and hold time, BaCO3 would not be used from the 

start, and thus, this method seems to be doing something unnecessary. Similarly, in the synthesis of 

NTMO, the inclusion of MoO2, which is known to have a melting point several hundred Kelvin higher 

than MoO3, as a precursor candidate in low-temperature synthesis would not be conceivable from a 

synthesis researcher’s perspective. Can’t this kind of thing be incorporated into the method as prior 

knowledge? 

 

Response:  

Information regarding the utility of certain precursors and temperatures can indeed be used to aid in the 

algorithm’s decision making. In its current implementation, such prior knowledge should be referred to 

when designing the search space over which ARROWS3 performs its optimization. This is now discussed 

in detail in the Methods section, with the associated text copied below. 

 

Methods, Formulation of the search space, Page 26:  Any prior knowledge regarding the chemical 

system should be used when designing the search space. For example, the lower temperature bound 

(𝑇!"#) may be chosen to exceed the known decomposition temperatures of all carbonates and hydroxides 

being considered as precursors. Similarly, the upper temperature bound (𝑇!$%) may be chosen below the 

melting points of the precursors if the user wishes to retain a product consisting of solid powder. With 

respect to precursor selection, it may often be beneficial to exclude compounds that are known to be inert 

in the temperature ranged being considered; however, this can also be learned by ARROWS3 through 

experimentation (see YBCO in the main text). The algorithm’s self-learning capabilities become critical 

in chemical systems where the precursor properties are largely unknown. 

 

However, for the examples provided in our work, we used minimal prior information when designing 

the search spaces. This was done to mimic the exploration of novel chemistries where little is known 

about the system beforehand, making them particularly challenging for ARROWS3 to deal with.  

 

We do agree that the optimization could be accelerated if the available precursors were chosen more 

intelligently, as the reviewer suggests. To demonstrate this, we performed a new optimization campaign 
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targeting YBCO, this time excluding BaCO3 as it is known to be relatively inert below its decomposition 

temperature. The resulting optimization curve is shown in Supplementary Fig. 1 (see below). 

 

 
Supplementary Figure 1: Number of optimal synthesis routes for YBCO identified as a function of the 

experimental iterations required by ARROWS3. The blue line represents optimization performed 

throughout the entire search space (see Methods in the main text), while the red line represents optimi-

zation performed in that space while excluding BaCO3 as a precursor. This test is designed to probe the 

effect of incorporating prior knowledge into the search space, as a domain expert may decide to exclude 

BaCO3 owing to its high decomposition temperature. 

 

As anticipated, all ten optimal synthesis routes were identified by ARROWS3 while requiring fewer 

experimental iterations. These results are now discussed in the main text. Please find the additions below. 

 

Results, YBCO, Pages 8-9: The fourth most common impurity is BaCO3, which is likely slow to react 

owing to its high decomposition temperature in air (1000 °C)44,45. We note that such information could 

in principle be leveraged when designing the search space, e.g., by removing BaCO3 from the list of 

precursors since the proposed temperature range lies below its known decomposition temperature. 

Indeed, doing so reduces the number of experiments required to identify all optimal synthesis routes from 

87 to 70 (Supplementary Fig. 1). 
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Comment 5: 

The evaluation that BaCuO2 and Y2BaCuO5 are inert and thus planning the experiment to exclude them 

from the synthesis path is not sufficiently explained. For instance, the fact that their energy is close to 

YBCO and consumes much of the driving force of the starting material is not a valid reason. This is 

because, as the authors show in the NTMO example, a reaction can occur even with a small driving force. 

In particular, in the YBCO case, since the calcination time is limited, whether or not they are inert seems 

to depend on prior knowledge from previous research. Therefore, it does not seem to me to be the 

"Autonomous decision making" mentioned in the title. 

 

Response:  

We agree that even reactions with small driving force can sometimes proceed on a reasonably short 

timeframe. However, whether this is true depends on the kinetics of the processes involving the materials 

at hand. A fixed reaction energy may be considered large or small depending on the chemical space. For 

example, the precursor sets available for NTMO span a relatively narrow range of reaction energies 

(∆G > −279 meV/atom) when compared with those for YBCO (∆G > −684 meV/atom). As such, a 

small reaction energy in the YBCO space might be considered much larger in the NTMO space. 

 

A key principle of ARROWS3 is that it ranks precursor sets by their relative reaction energies within a 

given chemical space. This operates under the assumption that when chemistry is fixed, reactions with 

larger driving forces will generally occur more rapidly than those with smaller driving forces. 

 

We would also like to stress that a precursor set will never be excluded for having a low reaction energy. 

Instead, it will simply be given lower priority in the ranking formed by ARROWS3. The algorithm skips 

a precursor set only when it can predict that set evolves to form a set of intermediates that were previously 

observed to be unsuccessful. This is detailed in the third paragraph of the Methods section, within 

Temperature selection for intermediate identification.  

 

To clarify the role of reaction energy in the ranking of precursor sets, a new paragraph (copied below) 

has been added to the Methods section. 

 

Methods, Updated ranking by ∆G′, Pages 29-30: We acknowledge that it is generally difficult to 

ascertain whether a given reaction energy is large enough for the associated transformation to occur 
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within a reasonably short timeframe. The reaction rate is determined not only by the energy change, but 

also by several factors related to diffusion and nucleation. These rates are highly non-trivial to predict 

and strongly dependent on the specific chemistry being considered. Given these considerations, 

ARROWS3 is designed to rank various precursor sets based on their relative reaction energies to form a 

target phase, whether from the initial precursors (∆G) or from the intermediates that form during synthesis 

(∆G&). While this affects the order in which different precursor sets are tested, none are excluded for 

having a low reaction energy. Instead, such precursors will be tested at a later stage in the optimization 

process, if necessary. 

 

Comment 6: 

Does the set of 47 precursors in the YBCO case cover all combinations that could potentially produce 

YBCO in stoichiometric proportions? In relation to this, in Figure 4, white squares seem to represent 

untested combinations, but were they determined to be unnecessary for exploration using the current 

method even after 188 experiments? 

 

Response:  

Yes, the 47 precursor sets evaluated in our experiments do cover all possible combinations whose 

stoichiometric proportions are uniquely defined with respect to YBCO. In Fig. 4, the white squares do 

not represent pairs of reactants that were untested; rather, they represent pairs whose reactivity could not 

be determined with a high degree of confidence. There are two causes for this, each of which are now 

discussed in the Results section of the manuscript (revised text copied below). 

 

Results, YBCO, Page 13: There also exist some pairs of compounds whose reactivity was not learned 

by ARROWS3 during its optimization of YBCO synthesis. These 23 pairs are denoted by the white 

(unshaded) squares in Fig. 3. We observe two factors that prevent ARROWS3 from learning pairwise 

reaction information. First, when two phases (e.g., A|B) react in a three-phase set (A, B, and C), the 

algorithm is unable to learn how the remaining phase (C) interacts with the already reacted compounds 

(A and B). Separate experiments based on the individual pairs (A|C and B|C) would be required to 

determine their reactivity. Second, when multiple pairwise reactions take place within the temperature 

increments over which we sample (Δ𝑇 = 100 °C), the algorithm cannot determine the precise reaction 

sequence between the lower and upper temperatures (e.g., between 600 and 700 °C). In principle, the 
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second limitation can be overcome by using a smaller temperature interval; however, doing so would 

also require more experiments. 

 

We have also clarified the meaning of the white squares in Fig. 4. These changes are provided below. 

 

From the caption of Fig. 4: White squares (unshaded) represent pairs of phases whose reactivity was 

not learned by ARROWS3. 

 

Comment 7: 

In the YBCO case, why is the number of syntheses necessary to find all 10 good yield conditions used 

as the standard for comparison between BO, GA, and the current method? From the viewpoint of 

improving the synthesis process, it should be sufficient if any one of the ten can be found in the shortest 

possible time. Does the current method still show superiority when evaluated with such a metric? 

 

Response:  

We agree that, in practice, it is sufficient to identify just one optimal synthesis route for a given target. 

However, we tasked each approach with finding all ten optimal routes for YBCO to improve the statistics 

of the results and ensure that ARROWS3 performed well not only by chance. We would also like to note 

that identifying multiple synthesis routes can sometimes be beneficial for practical applications, e.g., 

providing options from which the most practical and cost-effective route can be chosen. 

 

When applied to find just one optimal synthesis route, ARROWS3 requires only ten experimental 

iterations. In contrast, the techniques based on BO and GAs require on average 16 and 17 iterations, 

respectively, to accomplish the same task. In addition to their reduced efficiency, BO and GAs each show 

a substantial degree of variability in the time required to identify an optimal synthesis route. To illustrate 

this, we have added a plot (Supplementary Fig. 2a, copied below) that shows the number of experiments 

required to identify just one optimal synthesis route for YBCO when implementing BO and GAs with 

different random starting seeds. For comparison, we also show the results from two deterministic 

algorithms (D-optimal design and ARROWS3) in Supplementary Fig. 2a. Further details on the 

implementation of D-optimal design (which is newly added to the manuscript) are given in our response 

to Comment 8. 
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The large spread in the number of iterations required to identify one optimal route persists even when 

identifying all ten optimal routes, as shown by Supplementary Fig. 2b (copied below). Moreover, the 

performance of ARROWS3 is substantially better than all other algorithms when used to identify all ten 

optimal routes as it has been given more time to learn which reactions are most effective to produce 

YBCO. In contrast, its performance is only slightly better than the other algorithms when used to identify 

just one optimal route. 
 

 

 
Supplementary Figure 2: Distributions showing the number of experimental iterations required to iden-

tify (a) at least one optimal synthesis route for YBCO, or (b) all ten optimal synthesis routes for YBCO. 

Results are categorized by the optimization algorithm used to identify these routes. In each violin plot, 

the embedded box extends from lower to upper quartiles of the distribution. Black dots are used to denote 
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the mean. Because BO and GAs are stochastic, the number of iterations required by each varies substan-

tially depending on the random starting seed. In contrast, D-optimal design and ARROWS3 are both 

deterministic.  

 

In addition to these newly created supplementary figures, the task of identifying just one optimal 

synthesis route for YBCO is now discussed in the main text. Please find the relevant text below. 

 

Results, YBCO, Page 9: While in practice it would be sufficient to identify just one optimal synthesis 

procedure for a given target, tasking the algorithm with identifying all optimal procedures for YBCO 

allows us to showcase its ability to learn over many experimental iterations (Supplementary Fig. 2). It 

also reduces the likelihood that ARROWS3 discovers an optimal synthesis route by chance, thereby 

increasing our confidence in the performance of the algorithm. 

 

Comment 8: 

As the authors mention, the way information is fed to the predictive model in BO or GA seems unfair compared 

to the current method, and I did not feel the comparison itself was meaningful. Rather, I believe it is necessary to 

compare with experimental design methods such as the D-optimal design. 

 

Response:  

We thank the reviewer for this interesting suggestion. An implementation of D-optimal design has now 

been tested and its results are included in the manuscript. A revised version of Fig. 3a is copied on the 

next page (below). The details of this approach are included in Supplementary Note 1. 

 

D-optimal design appears to perform quite well when used to propose few experiments, outperforming 

all other algorithms tested here. We suspect its effectiveness can be attributed to its ability to select 

diverse experimental parameters based on different (untested) precursors. However, the optima 

discovered by D-optimal design quickly levels off when it is used to propose many experiments. It 

underperforms ARROWS3 after 40 experiments, at which point our algorithm can glean information 

from the previous experimental outcomes and suggest improved precursor combinations. 

 

We also note that the number of experiments to propose using methods such as D-optimal design is 

difficult to choose a priori – the number of samples that must be tested to identify one (or all ten) optimal 

synthesis routes is not known beforehand. 
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Fig. 3: Optimization results from the experimental YBCO synthesis dataset. (a) Number of optimal 

synthesis routes identified as a function of the experimental iterations required by ARROWS3, Bayesian 

Optimization (BO), a Genetic Algorithm (GA), and D-Optimal design (D-Opt). The dashed line 

represents the total number of optimal synthesis routes in the dataset. 

 

To discuss D-optimal design, substantial revisions have been made throughout the manuscript. Please 

find those changes copied below. We have also added a new folder (named “Black-Box”) to our github 

repository containing all the code used to evaluate Bayesian optimization, genetic algorithms, and D-

optimal design. 

 

Results, YBCO, Page 9: As a baseline with which to compare the performance of ARROWS3 on the 

YBCO dataset, we applied D-optimal design with progressively larger sets of proposed experiments. 

This approach aims to select the experiments whose outcomes will be maximally informative46 to a model 

that maps the input variables (precursors and temperature) onto the output (YBCO yield). Here we 

assume a linear relationship between the two (Supplementary Note 1). 
 

Results, YBCO, Page 10: ARROWS3 successfully identified all 10 optimal routes from 87 experiments, 

which account for just 46% of the entire design space (spanning 188 experiments). D-optimal design, on 

the other hand, required 165 experiments to accomplish the same task. Though, it is worth noting that D-

optimal design was quick to identify three optimal synthesis routes in the first 12 experiments. 
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ARROWS3, although slower to identify optimal routes in the early stages of optimization, eventually 

surpassed D-optimal design once it gathered sufficient information regarding the reactivity of various 

phases in the Y-Ba-Cu-O chemical space. 

 

Discussion, Page 22: Efficient data collection in vast experimental domains is a longstanding challenge. 

Traditional approaches based on design of experiments52,53, including the D-optimal design algorithm 

tested here, can aid in the selection of experiments that are most informative to model a quantity such as 

target yield. However, these methods can fall short when dealing with a particularly large search space 

or when the quantity of interest is sparsely valued. Both challenges exist in solid-state synthesis, where 

many precursor combinations are often available for a given target, most of which fail to produce that 

target in any measurable amount. This warrants the use of active learning algorithms that can efficiently 

navigate the search space by adapting from failed experiments. Here we evaluated the performance of 

two such methods, Bayesian optimization and genetic algorithms, when applied to optimize the synthesis 

of YBCO. While each is known to perform well on continuous variables such as time or temperature54,55, 

our tests show that they fail on the discrete task of precursor selection. 

 

Supplementary Note 1 

D-optimal design was used as an initial benchmark with which to compare the performance of 

ARROWS3 on the YBCO synthesis dataset. This approach is commonly used in the Design of 

Experiments (DoE), and it is designed specifically to select the combination of experimental parameters 

that maximize the determinant of the information matrix. For a more detailed explanation of optimal 

design and the information matrix, we refer the reader to previous work1. Here we perform D-optimal 

design under the assumption that the yield of our target phase (YBCO) is linearly related to the selection 

of precursors (𝑃') and synthesis temperature (𝑇) through some coefficients (𝑐') that can be learned: 

𝑌𝑖𝑒𝑙𝑑 = 	8𝑐'𝑃'

(

')*

+ 𝑐(+,𝑇 

Where 𝑃' is represented using a one-hot encoding as outlined in Supplementary Note 2 and 𝑁 is equal 

to the number of available precursors (e.g., 11 precursors for YBCO). All temperatures are normalized 

such that values between 600 and 900 °C are mapped onto values between 0 and 1. After building the 

information matrix for this model, the parameters that maximized its determinant were identified by 

using the CVXPY and CVXOPT packages within Python. The number of experiments proposed by this 

approach were progressively increased from one set of parameters up to 188 sets of parameters (i.e., all 
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experiments available in the YBCO space). The number of optimal synthesis routes (yielding pure 

YBCO) contained within each batch of proposed experiments was identified and used to plot the gray 

curve shown in Fig. 3 of the main text. 
 

Comment 9: 

In the case of NTMO, there is a description that extending the calcination time improves the yield because 

ΔG' is small. Is this decision made automatically by the current method? If not, the “Autonomous 

decision making” in the paper title feels exaggerated. 

 

Response:  

The decision to increase the calcination time was not made automatically by the algorithm in its current 

implementation. We would like to clarify that the main application of ARROWS3 is to optimize the 

selection of precursors for targeted synthesis. It is less well-suited to handle temperature and hold times, 

which themselves are numerical and therefore could be readily optimized using more standard algorithms 

such as Bayesian optimization. 

 

Nevertheless, the reviewer raises an interesting point and we do believe that the current algorithm could 

be extended to make decisions regarding temperature and hold time. For example, in cases where a 

moderate target yield (~50%) is obtained from a set of precursors with a short hold time, ARROWS3 

may check whether the remaining reactions needed to improve target’s yield are thermodynamically 

favorable. If this is the case, then a longer hold time may be used to enable such reactions to take place.  

 

The possibility of these additions to ARROWS3 are now discussed in the manuscript (see below). 

 

Discussion, Page 24: Beyond the selection of optimal precursors, synthesis planning often requires the 

heating profile to be carefully designed. Previous work has addressed this challenge by using standard 

optimization techniques55, which perform well as the heating profile can be described in terms of 

continuous variables (e.g., temperature and time). However, our findings show that a more physics-

informed approach may also be viable. For the synthesis of each target material studied in this work, 

ARROWS3 used a short hold time (4 h) to identify the precursors and temperature that give maximal 

target yield. If necessary, manual decisions were made to increase the hold time if 1) the target yield was 

lower than desired, and 2) the leftover reactions needed to grow the target were thermodynamically 
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favorable. In doing so, > 90% yield was obtained for all three target materials we considered. Moreover, 

it was shown that such high yield was possible only for the precursor sets optimized by ARROWS3 at 

short hold time, thereby demonstrating that long hold times need not be used when testing various 

precursors. Decisions regarding when to extend the hold time after identifying an optimal set of 

precursors could later be incorporated into ARROWS3, enabling further progress toward complete 

autonomy in solid-state synthesis.  

 

Comment 10: 

The chemical reaction formulas annotated on the XRD profile in Figure 1b need an explanation as to 

whether they indicate a combination of precursors or phases identified from XRD. 

 

Response:  

The chemical formulae presented in Fig. 1b correspond to phases identified from XRD performed on 

samples heated at the specified temperatures. This is now clarified in the figure, as well as its caption. 

 

From the caption of Fig. 1: (b) Experiments are performed at iteratively higher temperatures to identify 

reaction intermediates. The chemical formulae listed in this panel represent phases identified from XRD 

measurements at each temperature. 

 

Comment 11: 

The temperature is inconsistent between the caption of Figure 5a and the main text. 

 

Response:  

This error has now been corrected such that the caption mentions the correct temperature (400 °C). 

 

From the caption of Fig. 5: The top panel shows the weight fraction of NTMO obtained from each 

precursor set when tested at 400 °C. The bottom panel displays the weight fraction of a competing phase, 

Na2Mo2O7, obtained at 300 °C. 
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Reviewer #3 

 

General Assessment: 

The focus of this manuscript is the development of an autonomous decision-making approach for 

inorganic solid-state syntheses. The use of high temperature solid state syntheses has, of course, results 

in a host of technologically important materials. While the mechanical steps of this synthetic approach 

appear simple, a great deal of complexity lies under the surface. The authors nicely focus on an often 

unobserved, but critically important component of these reactions, the formation of intermediate phase 

that either enable or preclude the formation of the desired product. 

 

Response:  

We thank the reviewer for their feedback. Each of their comments are addressed below. 

 

Comment 1: 

A central question that remains in the mind of this reviewer is the construction of the initial reaction 

parameters. These include, temperature ranges, hold times, the presence or absence of regrinding steps, 

and reaction conditions (oxidizing, reducing, inert atmospheres). 

- The authors note that hold times are specified for each study. The chosen times are rather short 

(4 or 8 h) with respect to more tradition high temperature solid state approaches. How were these 

times chosen? The choices of reaction time between regrinding steps more often conform to 

experimenter schedules than the reactions themselves (there is nothing magical about 24 h), and 

shorter times are desired of course. Having said that, there is some concern that short times 

without repeated regrinding steps selects for kinetic products in reactions generally governed by 

thermodynamics. 

- The chemistry of many solid-state reactions can and does vary as a function of temperature. By 

this I mean that the phase diagram being explored does not remain unchanged as the temperature 

increases or decreases. For example, the authors correctly note that the traditional synthesis 

temperature for YBCO lies above the temperature window explored in this work. The 

identification of BaCO3 as a problematic reactant at lower temperatures does not map onto its 

demonstrated utility at 950 C. 
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Response:  

Regarding the first comment from the reviewer, we chose to use short hold times specifically to make 

the problems more difficult, i.e., to provide more challenging test cases on which to validate our 

algorithm. For example, YBCO is generally thought to be thermodynamically stable at high temperature, 

and therefore any combinations of precursors would likely give high yield if held long enough at high 

temperature and subjected to intermittent regrinding. However, our work aims to show that ARROWS3 

can identify fast reaction pathways enabled by large ∆G, which can be achieved through optimal 

precursor selection. We believe this to be of interest for commercial applications in the large-scale 

synthesis of materials, where shorter hold times can assist in conserving energy and costs.  

 

Furthermore, we believe that experiments with short hold times can act as surrogates to identify precursor 

combinations that are most effective, even when subjected to improved grinding longer hold times. 

Indeed, this was demonstrated for two of the targets considered in our work. An optimal precursor set 

(Na2O, MoO3, and TeO2) for NTMO was identified using experiments with a hold time of only 4 h. When 

this same set was heated for a longer time of 8 h, the target yield increased from 62% to 94%. In contrast, 

when a non-optimal set was tested using a longer hold time of 8 h, it did not produce any detectable 

amount of NTMO.  

 

We have now clarified these points in the manuscript. The possibility of extending automated decision 

making to modify the heating profile is also discussed. The relevant text is provided below. 

 

Results, YBCO, Page 8: Such a short hold time was used specifically to make the optimization task 

more challenging, as longer heating durations with intermittent regrinding are typically required to form 

highly pure YBCO samples42. 

 

Discussion, Page 24: Beyond the selection of optimal precursors, synthesis planning often requires the 

heating profile to be carefully designed. Previous work has addressed this challenge by using standard 

optimization techniques55, which perform well as the heating profile can be described in terms of 

continuous variables (e.g., temperature and time). However, our findings show that a more physics-

informed approach may also be viable. For the synthesis of each target material studied in this work, 

ARROWS3 used a short hold time (4 h) to identify the precursors and temperature that give maximal 

target yield. If necessary, manual decisions were made to increase the hold time if 1) the target yield was 
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lower than desired, and 2) the leftover reactions needed to grow the target were thermodynamically 

favorable. In doing so, > 90% yield was obtained for all three target materials we considered. Moreover, 

it was shown that such high yield was possible only for the precursor sets optimized by ARROWS3 at 

short hold time, thereby demonstrating that long hold times need not be used when testing various 

precursors. Decisions regarding when to extend the hold time after identifying an optimal set of 

precursors could later be incorporated into ARROWS3, enabling further progress toward complete 

autonomy in solid-state synthesis.  

 

Regarding the second comment from the reviewer, we agree that temperature can have a significant 

impact on synthesis outcomes. Generally, prior knowledge should be employed in designing the search 

space over which ARROWS3 performs its optimization (please see our response to Comment 4 from 

Reviewer #2). In the case of YBCO, we chose to keep the synthesis temperatures low specifically to 

make the problem more challenging for ARROWS3, as well as to avoid melting, which we found made 

sample extraction more difficult. 

 

The selection of temperature bounds is now discussed in more detail in the Methods (see below). 

 

Methods, Formulation of the search space, Page 26:  Any prior knowledge regarding the chemical 

system should be used when designing the search space. For example, the lower temperature bound 

(𝑇!"#) may be chosen to exceed the known decomposition temperatures of all carbonates and hydroxides 

being considered as precursors. Similarly, the upper temperature bound (𝑇!$%) may be chosen below the 

melting points of the precursors if the user wishes to retain a product consisting of solid powder. With 

respect to precursor selection, it may often be beneficial to exclude compounds that are known to be inert 

in the temperature ranged being considered; however, this can also be learned by ARROWS3 through 

experimentation (see YBCO in the main text). 

 

Comment 2: 

A second central theme is a quest to obtain routes for phase pure samples of known or unknown materials 

as quickly as possible. The infrastructure balance has shifted in this proposed synthetic methodology 

from traditional approaches. Traditionally one would run many reactions in parallel in a single furnace, 

as composition can vary between samples, but temperature cannot. Conducting a range of reagent 

combinations are different temperatures either requires more furnaces or more sequential studies. The 
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authors should comment on this balance. 

 

Response:  

Please refer to our response to Comment 1 from Reviewer #2. We have now performed additional tests 

that illustrate the role of parallel experiments in optimization campaigns guided by ARROWS3. 

 

Comment 3: 

The possibility of transfer learning in this approach is interesting and enticing. The authors note the 

possibility of predicting the formation of other compounds within the Y-Ba-Cu-O system (or more 

accurately – compound that could be made from the reagents used in the YBCO study). Does transfer 

learning extend between systems? If, for example, one was to explore BSCCO, would the YBCO work 

transfer? 

 

Response:  

The pairwise reactions learned by ARROWS3 are transferrable so long as there exists some overlap 

between the new and previously tested chemistries. In other words, some elements (and their precursors) 

must be shared between the two target materials being considered.  

 

The degree to which transfer learning will be successful is defined by the amount of overlap between the 

two chemical spaces, i.e., how many elements are shared between them. In the example provided by the 

reviewer (Bi-Sr-Ca-Cu-O), only one of the metals (Cu) is shared with chemical space tested in this work 

(Y-Ba-Cu-O). As such, only reactions involving Cu (e.g., thermal decomposition of CuCO3) will be 

transferred when performing optimization in the BSCCO space. 

 

If, on the other hand, two or more elements are shared between chemical spaces, then the pairwise 

reactions involving those elements will be transferred. 

 

We now clarify this point in the Discussion.  

 

Discussion, Page 23:  Predictions of this nature will in general become more abundant as the overlap 

between chemical spaces increases, specifically when considering target materials with two or more 

shared elements. 
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Comment 4: 

The identification of pairwise interactions that result in either reactive or inert intermediates is both 

important and informative. 

 

Response:  

We thank the reviewer for their positive feedback. 

 

Comment 5: 

The authors should be cautious in the determination of weight percent using diffraction data. Many 

parameters affect peak intensity (or area) that are distinct from weight percent. These include grain size, 

crystallinity, average atomic scattering factor to name three. 

 

Response:  

We agree with the reviewer that obtaining precise weight fractions is a complicated task that requires 

careful considerations of many factors. In our tests, we only estimated the weight fractions such that they 

may be compared in a relative fashion, i.e., a reaction with high target yield can be distinguished from 

one with low target yield. 

 

We have now clarified these points in the manuscript (see below).  

 

Methods, YBCO synthesis, Page 30: Weight fractions were approximated by assessing the relative peak 

intensities of the constituent phases in each mixture. A more careful approach based on Rietveld 

refinement, which accounts for properties such as grain size and texture, would be required to obtain 

precise weight fractions. However, this work only requires that we compare relative weight fractions 

between different experiments, enabling ARROWS3 to identify the most effective synthesis route for a 

given target. 



REVIEWER COMMENTS 

Reviewer #2 (Remarks to the Author): 

I have reviewed the thoughtful response from the Authors. I believe the quality of the manuscript, 

which was already high, has been further enhanced. However, my comment that this paper lacks 

impact for synthesis researchers remains unchanged after reading the revised manuscript. This is 

because synthesis researchers believe that it would be faster and more reliable to conduct a few 

hundred synthesis experiments rather than using this method to sequentially carry out 

experiments when the target compound is determined and the corresponding starting materials 

are listed. I think this is due to a history where the thermodynamic stability calculated by first-

principles calculations has not necessarily led to synthesizability. Also, the lack of surprises in the 

chemical trends obtained by this method, such as issues with BaCO3 or MoO2, may be a 

contributing factor. I thought that in the future, problems such as kinetics that are not provided by 

first-principles calculation results might be further improved by devising ways to feed back 

experimental results. Furthermore, I think that the more complex the system, the greater the 

benefits of this method. 

As I wrote in my previous comments, this paper concisely summarizes the Authors' ideas and the 

actual process that underlies this method. Apart from the point that there is no impact on 

synthesis researchers, this revision has further improved, and I think it has become a good 

manuscript. Also, I have one question regarding the newly added part. 

I have a question about the exploration with different batch sizes shown in Supplementary Figure 

4a. In the case of a batch size of 16, the increment in the No. of Samples Tested should be 16, but 

looking at the graph, it seems to be increasing by a smaller number each time. Also, why is there 

no difference due to batch size in the initial rise? 

Reviewer #3 (Remarks to the Author):

The authors have increased the quality and clarity of this manuscript through the revisions they 

describe. This manuscript is quite excellent and I believe that the science it contains represents a 

step forward. The strategy to bring data science and ML techniques to bear upon the selection of 

reactants (based upon both desirable and undesirable combinations) is important. 

The role of parallelization is important in such experimental efforts, as the experimentalist are 

focused on minimizing the number of reactions (reagent cost, experimenter effort) and wall time. 

These two factors are often at odds with one another, and the ability to specify a batch size is a 

welcome addition. The data presented in Supplementary Figure 4a are interesting. The 

presentation of these data highlights the value in more batches (for a given total number of 

reactions, the number of optima discovered is highest for smaller batch sizes (more opportunities 

to learn between batches)). However, given fixed hold times for each reaction, the authors should 

also plot the number of optima discovered vs wall time. 

On page 13, the authors describe 23 unshaded (white) squares in Figure 3. These squares are 

present in Figure 4, not Figure 3.
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Reviewer #2 

 

General Assessment: 

I have reviewed the thoughtful response from the Authors. I believe the quality of the manuscript, which 

was already high, has been further enhanced. However, my comment that this paper lacks impact for 

synthesis researchers remains unchanged after reading the revised manuscript. This is because synthesis 

researchers believe that it would be faster and more reliable to conduct a few hundred synthesis 

experiments rather than using this method to sequentially carry out experiments when the target 

compound is determined, and the corresponding starting materials are listed. I think this is due to a history 

where the thermodynamic stability calculated by first-principles calculations has not necessarily led to 

synthesizability. Also, the lack of surprises in the chemical trends obtained by this method, such as issues 

with BaCO3 or MoO2, may be a contributing factor. I thought that in the future, problems such as kinetics 

that are not provided by first-principles calculation results might be further improved by devising ways 

to feedback experimental results. Furthermore, I think that the more complex the system, the greater the 

benefits of this method. 

 

As I wrote in my previous comments, this paper concisely summarizes the Authors' ideas and the actual 

process that underlies this method. Apart from the point that there is no impact on synthesis researchers, 

this revision has further improved, and I think it has become a good manuscript. 

 

Comment 1: 

I have a question about the exploration with different batch sizes shown in Supplementary Figure 4a. In 

the case of a batch size of 16, the increment in the No. of Samples Tested should be 16, but looking at 

the graph, it seems to be increasing by a smaller number each time. 

 

Response:  

In the original version of Supplementary Fig. 4a, we simulated experimental batching by restricting our 

decision-making algorithm from updating the order in which samples were tested until after every 𝑁 

experiments, with 𝑁 being the batch size. However, when tracking the number of optimal synthesis routes 

discovered, we still examined each sample individually based on their order within each batch. As such, 

the curves plotted in Supplementary Fig. 4a could rise more frequently than the designated batch size. 
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We agree with the reviewer that our original approach to the simulation of experimental batching may 

be difficult to follow, and is not necessarily representative of actual experiments, where new optimal 

synthesis routes can only be discovered after a full batch of samples have been tested. Accordingly, we 

have now updated the Supplementary Fig. 4a such that the number of optima can increase only when the 

sample number is a multiple of the designated batch size. The update figure is copied below, in addition 

to the new panels (b and d) that were created in response to Reviewer 3’s comments. 

 

 

Supplementary Figure 4: Effects of batch size on the optimization of YBCO synthesis. (a) Number of 

optimal synthesis routes identified with respect to the number of samples queried by ARROWS3. Each 

curve represents an optimization campaign performed with a distinct batch size. (b) Number of optimal 

synthesis routes discovered versus the furnace hold for evaluating the required number of batches. (c) 

Number of batches and samples required to identify all ten optimal synthesis routes, with each dot sym-

bolizing an optimization campaign for a specific batch size. (d) Total furnace hold time required to iden-

tify all optimal synthesis routes for each batch size. 
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Comment 2: 

In Supplementary Figure 4a, why is there no difference due to batch size in the initial rise? 

 

Response:  

The initial experiments show little change because our decision-making algorithm requires some time to 

gather enough data before adjusting its priority of experiments. When few pairwise reactions have been 

observed, the algorithm does not have enough information to determine which precursor sets will produce 

favorable intermediates that retain a large driving force to form the desired target. Without the ability to 

predict the outcomes of new (untested) precursor sets, no changes are made to the order in which 

experiments are performed. This means that changing the batch size will have little effect on the 

experimental sequence early on, and therefore the curves are unaffected at low sample number. In 

contrast, many updates are made at later stages. Because increasing the batch size reduces the opportunity 

window to make these updates, it has a large effect on the resulting curves in Supplementary Fig. 4a. 

This point is now clarified in the main text. 

 

From Page 15: The efficiency with which samples are queried becomes particularly affected at later 

stages in the experiments, where the algorithm has sufficient knowledge of the chemical space to make 

frequent updates to its ranking of different precursor sets. 
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Reviewer #3 

 

General Assessment: 

The authors have increased the quality and clarity of this manuscript through the revisions they describe. 

This manuscript is quite excellent, and I believe that the science it contains represents a step forward. 

The strategy to bring data science and ML techniques to bear upon the selection of reactants (based upon 

both desirable and undesirable combinations) is important. The role of parallelization is important in 

such experimental efforts, as the experimentalist are focused on minimizing the number of reactions 

(reagent cost, experimenter effort) and wall time. These two factors are often at odds with one another, 

and the ability to specify a batch size is a welcome addition. The data presented in Supplementary Figure 

4a are interesting. The presentation of these data highlights the value in more batches (for a given total 

number of reactions, the number of optima discovered is highest for smaller batch sizes (more opportu-

nities to learn between batches).  

 

Response:  

We thank the reviewer for their positive feedback. 

 

Comment 1: 

Given fixed hold times for each reaction, the authors should also plot the number of optima discovered 

versus wall time. 

 

Response:  

Two new plots analyzing the effect of batch size on the total furnace hold time required to identify 

optimal synthesis routes have now been added to Supplementary Fig. 4 (panels b and d). The revised 

figure is also copied below.  
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Supplementary Figure 4: Effects of batch size on the optimization of YBCO synthesis. (a) Number of 

optimal synthesis routes identified with respect to the number of samples queried by ARROWS3. Each 

curve represents an optimization campaign performed with a distinct batch size. (b) Number of optimal 

synthesis routes discovered versus the furnace hold for evaluating the required number of batches. (c) 

Number of batches and samples required to identify all ten optimal synthesis routes, with each dot sym-

bolizing an optimization campaign for a specific batch size. (d) Total furnace hold time required to iden-

tify all optimal synthesis routes for each batch size. 
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Comment 2: 

On page 13, the authors describe 23 unshaded (white) squares in Figure 3. These squares are present in 

Figure 4, not Figure 3. 

 

Response:  

The text has been corrected so that it now refers to Figure 4. 
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