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Reviewers' expertise: 

 

Reviewer #1. Microbial genomics / Computational / Intra-host evolution. 

Reviewer #2. Bacterial colonization / Pathogenesis / Citrobacter. 

Reviewer #3. Intrahost genomics / Pathogen transmission / Computational. 

 

Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

Overview: The authors present a study of controlled infection with and transmission of C. rodentium 

in laboratory mice. In particular, they focus on the ability to infer transmission chains from genomic 

data by leveraging within-host iSNVs and their allelic frequencies. The authors conclude that the 

presence/absence of iSNVs doesn’t allow for the resolution of the transmission chains due to 

multiple occurrences of transmitted iSNVs. Hence, the proposed method considers the mean change 

in allelic frequency as a divergence metric. The authors show that the proposed metric can capture 

transmission events with higher precision than the naive method. 

 

This work provides a great corpus of controlled transmission data with paired sequencing. The 

proposed method is innovative, straightforward, and sound. However, it is unclear to this reviewer 

how robust it is to: (a) variability in allelic frequency values caused by technical artifacts and (b) 

more complex evolutionary events such as indels. Additionally, it would be of high scientific value for 

the authors to compare their methodology to some recent transmission inference frameworks for 

viral data since methods for leveraging intra-host mutations have been developed and applied in 

various settings previously. 

 

Overall, it would be beneficial to see a more extensive evaluation across three key directions: 

(1) Impact of variability due to technical artifacts (e.g., comparing results under different variant 

callers or comparing results between biological replicates) 

(2) A simulation experiment that includes complex evolutionary events (recombination and/or 

horizontal gene transfer) 

(3) A direct comparison with at least one other tool that can infer transmission chains based on the 

intra-host variants 



 

Major comments 

1) In the discussion, the authors address some of the limitations of the proposed framework. 

However, given that the work relies on usage of iSVNs and their allelic frequencies, discussion of 

variation in allelic frequency due to technical reasons (e.g. sequencing depth, coverage variability, 

variant calling algorithm, etc.) is lacking. Technical variation can confound results and limit the 

resolution power of the method, and as such has to be addressed directly in the manuscript. (Also 

see line 145-148 comment) 

 

2) When discussing the novelty of the method, authors do not mention QUENTIN, a relatively recent 

method for inferring transmission networks based on viral deep sequencing data and leveraging 

within-host mutational profiles. While QUENTIN is designed for viral data, and authors propose an 

approach for bacterial infections, it can still be beneficial to reference this work since it also employs 

a Bayesian framework in its analysis (although given a more complex model and task is likely a more 

computationally demanding approach). 

 

3) While on a small-time scale and within a small population, the effect of within-host recombination 

(in the case of a viral infection) or horizontal gene transfer (in the case of a bacterial infection) can 

be negligible, on a scale of large outbreak or a pandemic it cannot be ignored. Given that the 

method relies on an averaged metric and does not provide any phylogenetic modeling, 

recombination and/or HGT events will likely confound the transmission inference calculations. To 

properly investigate and address this concern, a set of principled simulation experiments can be 

advised. 

 

4) Lines 136-141: Some additional characterization of the mutation types can be helpful here. Are 

the iSNVs that fix in a population different from the ones that don’t based on the amino acid change 

impact? Do some of the iSNVs that fix appear in other strains of C. rodentium found in GenBank? 

While I agree with authors that fully disentangling stochastic and selective components of bacterial 

evolution is challenging, additional analyses can help gain some partial understanding. 

 

5) Lines 145-148: If I understand the definition of the mean change in allelic frequency (AF) correctly, 

then the scenario in which a single locus has a large AF difference will result in the same distance as 

multiple loci having small variations in AF. This can prove problematic in cases where due to 

technical variation, two isolates can have minor differences in AF across multiple loci. 

 

 



 

 

Reviewer #2 (Remarks to the Author): 

 

The paper titled “Beyond consensus sequence: a quantitative scheme for inferring transmission 

using deep sequencing in a bacterial transmission model” provides a meaningful way to enhance 

contact tracing methods using C. rodentium as a model pathogen. The paper is well-written and 

clearly addresses the strengths and weaknesses of the proposed scheme. I have listed a few 

comments that I believe can improve the paper. 

 

1. Although the authors utilize the antibiotic pre-treated model of Nalidixic acid in conjunction with 

untreated, they haven’t clearly stated the difference in C. rodentium strain adaptation in the gut 

(with and w/o Nal) and if that contributed to some of the SNVs. Can the authors discuss this in the 

context of their conclusion? 

2. The authors are advised to increase the font size for Figure 2 axes. Its currently illegible. 

3. Figure legend 2A – Please correct CFU/g 

4. Line 107. Is the text not calling the correct figure? 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

Senghore et al describe a transmission experiment, sequencing C. rodentium as it is passaged 

through a number of independent lines of mice. Alongside this they present a mathematical method 

to identify transmission pairs from genome sequence data. The focus of the work as presented is on 

the method, and its potential general applicability for purposes of contact tracing. 

 

My view is that the experiment provides a nice dataset for the study of viral transmission in cases 

such as this, but that the mode of transmission described, whereby mice eat each others poop, is 

unrepresentative of the transmission dynamics of a large number of pathogens for which the use of 

genomic data for contact tracing would be of interest. Although the method works well as applied to 

this experiment, there are strong reasons to believe it would not improve on existing methods when 

applied to other pathogens. For this reason the claims made around contact tracing appear 

overblown. 



 

The experiment appears to be carried out well and provides a nice dataset. To the extent that the 

data might be of use to other researchers it would be valuable if the data were deposited upon 

publication into a public repository such as the Sequence Read Archive. Given that C. rodentium is 

spread via fecal-oral transmission, the bottleneck sizes observed at transmission are generally large. 

 

I was not 100% clear about the method used for processing sequence data, specifically whether the 

authors mean to cite the allelic intensity ratio \theta as used e.g. by Staaf et al., BMC Bioinformatics, 

2008; a reference or equation would be valuable at this point. What is clear is that the allele 

frequencies measured during the experiment were converted into a summary statistic, representing 

the amount that allele frequencies change across transmission. To first approximation, the change in 

an allele frequency at transmission is a function of the binomial distribution, with variance 

dependent upon the frequency p and the bottleneck size N. Given large N, small changes will be 

observed in frequencies upon transmission, increasing in a roughly linear fashion across multiple 

transmissions as observed in Figure 4B. The successful inference of who infected who depends upon 

this relationship, with small changes in allele frequency being more likely in cases of transmission 

than across more distant relationships (hence Figure 4D). 

 

The problem with the method as applied to other situations is that the majority of studies looking at 

infectious disease transmission in humans find bottlenecks that involve close to one virus particle; 

this is true for influenza (McCrone et al., eLife, 2018), SARS-CoV-2 (Lythgoe, Science, 2021), and HIV 

(Carslon et al, Science 2014): The transmission dynamics that lead to the success of the method in 

this case do not apply. As such, unless the contact tracer of the abstract is working on an outbreak of 

fecal-oral transmission in mice, it is unclear that the method would prove so valuable. The authors 

may have specific applications in mind, but without further clarification the claims of general 

applicability are not justified. 

 

Minor points: 

 

Equations 1 and 2 were not displayed properly in the manuscript I received. For example I think that 

equation 1 should have P(T | \theta) on the right hand side, not simply P(\theta). I think this is just a 

formatting error? 

 

Not all of the data shown in Figures 4D-F seems to be appropriate for a box plot. In particular, in 

Figure 4F it looks as though the ‘false’ data are bimodal: there are so many outliers that few 

conclusions can be drawn from what is shown. 

 



Line 234: “the bottleneck size is greater than or comparable to the amount of within-host diversity” - 

Please clarify: in numerical terms the two statistics are measured using different units. 



Reviewers' comments Response to reviewer comments 
  

Reviewer #1 (Remarks to the Author): 
Overview: The authors present a study of controlled infection with and transmission of C. 
rodentium in laboratory mice. In particular, they focus on the ability to infer transmission chains 
from genomic data by leveraging within-host iSNVs and their allelic frequencies. The authors 
conclude that the presence/absence of iSNVs doesn’t allow for the resolution of the transmission 
chains due to multiple occurrences of transmitted iSNVs. Hence, the proposed method considers 
the mean change in allelic frequency as a divergence metric. The authors show that the proposed 
metric can capture transmission events with higher precision than the naive method. 
This work provides a great corpus of controlled transmission data with paired sequencing. The 
proposed method is innovative, straightforward, and sound. However, it is unclear to this reviewer 
how robust it is to: (a) variability in allelic frequency values caused by technical artifacts and (b) 
more complex evolutionary events such as indels. Additionally, it would be of high scientific value 
for the authors to compare their methodology to some recent transmission inference frameworks 
for viral data since methods for leveraging intra-host mutations have been developed and applied in 
various settings previously. 
Overall, it would be beneficial to see a more extensive evaluation across three key directions: 

(1) Impact of variability due to technical artifacts (e.g., comparing results under different 
variant callers or comparing results between biological replicates) 

(2) A simulation experiment that includes complex evolutionary events (recombination and/or 
horizontal gene transfer) 

(3) A direct comparison with at least one other tool that can infer transmission chains based on 
the intra-host variants 

Major comments 
1) In the discussion, the authors address some 
of the limitations of the proposed framework. 
However, given that the work relies on usage 
of iSVNs and their allelic frequencies, 
discussion of variation in allelic frequency due 
to technical reasons (e.g. sequencing depth, 
coverage variability, variant calling algorithm, 
etc.) is lacking. Technical variation can 
confound results and limit the resolution 
power of the method, and as such has to be 
addressed directly in the manuscript. (Also see 
line 145-148 comment) 

In the final step of our variant calling pipeline, we 
identified putative sequencing artefacts that we 
labelled as noisy sites (see lines 353-355). To 
demonstrate the impact of genomic artefacts on 
the sensitivity and specify of our method, we re-
ran the transmission inference pipeline without 
excluding the 14 genomic loci that were identified 
as genome artefacts. The inclusion of genomic 
artefacts significantly decreased the ability of our 
model to distinguish transmission curves. The AUC 
of the ROC curve decreased from 0.89 to 0.56. This 
is now mentioned in the results and highlighted in 
the discussion. 



2) When discussing the novelty of the method, 
authors do not mention QUENTIN, a relatively 
recent method for inferring transmission 
networks based on viral deep sequencing data 
and leveraging within-host mutational 
profiles. While QUENTIN is designed for viral 
data, and authors propose an approach for 
bacterial infections, it can still be beneficial to 
reference this work since it also employs a 
Bayesian framework in its analysis (although 
given a more complex model and task is likely 
a more computationally demanding 
approach). 

"The reviewers reasonably requests comparing 
our method to established methods, such as 
QUENTIN. While we agree such comparisons 
would be valuable, we disagree that comparing to 
QUENTIN would be fruitful given the assumptions 
that that algorithm makes on the structure of the 
epidemic. Namely, from the QUENTIN manuscript 
"[Q]UENTIN uses the fact that generally virus 
transmission networks are social networks with a 
specific properties such as power law degree 
distribution, small diameter and presence of 
hubs". The transmission network within our 
experiment is star-like, far from a power-law 
degree distribution. This incorrect assumption will 
bias model results rendering the comparison 
fraught. As for other comparisons, we are 
unaware of any widely accepted methods beyond 
QUENTIN, and indeed, a goal of this manuscript is 
to propose our method as an adoptable method." 

3) While on a small-time scale and within a 
small population, the effect of within-host 
recombination (in the case of a viral infection) 
or horizontal gene transfer (in the case of a 
bacterial infection) can be negligible, on a 
scale of large outbreak or a pandemic it 
cannot be ignored. Given that the method 
relies on an averaged metric and does not 
provide any phylogenetic modeling, 
recombination and/or HGT events will likely 
confound the transmission inference 
calculations. To properly investigate and 
address this concern, a set of principled 
simulation experiments can be advised. – 

The reviewer raises an important point, regarding 
the role of horizontal gene transfer in evolution of 
an outbreak, especially a large-scale outbreak. 
While we recognize the importance of these 
factors, our pipeline is relying on a standard 
bacterial phylogenetic pipeline, which if carefully 
curated should not be influenced by horizontal 
gene transfer and homologous recombination. 
Bacterial phylogenies are based on the core 
genome, which is by definition devoid of 
horizontally acquired elements. However, it is 
possible that the gain and loss of genes might 
produce spurious signal in the flanking regions of 
the core genome, as a result of assembly errors. In 
the present MS, we have explicitly considered the 
potential impact of such artefacts on the 
sensitivity and specificity. And the issue has been 
previously shown to be empirically addressed by 
generation of a new closely related reference 
genome (Lee et al eLife 2020). 
 
Similarly, when analyzing samples from a broader 
outbreak, it is important to identify and remove 
regions under homologous recombination. The 
presence of homologous recombination within the 
core genome might obscure accurate phylogenies 
(See Didelot et. al Trends Microbial, 2010; Wilson 
MBio, 2014; Croucher et al Nucleic Acids Res, 
2015; Croucher et al Science, 2011; Didelot et al 



Nucleic Acids Res, 2018), but it would not 
completely remove polymorphisms such as iSNVs, 
and so would not affect this method. 
 
Applying this approach as a standard for viral 
outbreaks requires careful thought. We must 
consider that viral genomes are significantly 
smaller, and have variable mutation rates. 
Moreover, viruses may employ different routes of 
transmission that elicit variable bottleneck sizes. 
Such a model is beyond the scope of this paper as 
we have presented a straightforward method for 
quantifying within host variation, which we hope 
can be adapted to provide added resolution in 
resolving transmission routes.  

4) Lines 136-141: Some additional 
characterization of the mutation types can be 
helpful here. Are the iSNVs that fix in a 
population different from the ones that don’t 
based on the amino acid change impact? Do 
some of the iSNVs that fix appear in other 
strains of C. rodentium found in GenBank? 
While I agree with authors that fully 
disentangling stochastic and selective 
components of bacterial evolution is 
challenging, additional analyses can help gain 
some partial understanding. – 

We classified the effects of SNV and iSNVs and 
found that there was no statistically difference in 
the distribution of intergenic region mutations, 
synonymous mutations and non-synonymous 
mutations between iSNVs and SNVs (Appendix 1, 
SNP Effect table). 
We used the ICC168 strain as the reference 
genome, this strain is recognized as being 
representative of the Citrobacter rodentium 
species. Given the paucity of Citrobacter 
rodentium reference genomes in the public 
domain we were able to compare our dataset with 
only two Citrobacter strains EX33 (Accession 
number: PRJEB45982. Petty et al Plos Pathogens 
2011) and DBS100 (Accession PRJNA527323, 
Popov et al Announcement 2019). None of the 
sites identified as SNVs or iSNVs in our dataset 
corresponded to mutations in either EX33 or 
DBS100.  

5) Lines 145-148: If I understand the definition 
of the mean change in allelic frequency (AF) 
correctly, then the scenario in which a single 
locus has a large AF difference will result in 
the same distance as multiple loci having small 
variations in AF. This can prove problematic in 
cases where due to technical variation, two 
isolates can have minor differences in AF 
across multiple loci. 

In Figure 3, we show that mutations drift to 
fixation at variable rates (also see supplementary 
figure 3B). Despite these variations, when we 
average out the changes in AF, we are able to 
substantially improve the resolution between pairs 
of isolates, this is one of the remarkable things 
about this method. It provides resolution where 
traditional approaches based on fixed mutation 
would not offer discrimination. The reviewer also 
makes a useful comment on technical variation, 
this is a problem that is inherently ubiquitous to 
genomic analyses and bioinformaticians are 
continuously improving pipelines to minimize such 
noise artefacts. Like all bioinformatics pipelines, 



the user must make a concerted effort to minimize 
the impact of spurious genomic loci. In our 
methods section we have clearly laid out all the 
steps we have taken to minimize noise, and these 
steps can be replicated by our colleagues who 
wish to replicate/ adapt our approach.  

Reviewer #2 (Remarks to the Author): 
The paper titled “Beyond consensus sequence: a quantitative scheme for inferring transmission 
using deep sequencing in a bacterial transmission model” provides a meaningful way to enhance 
contact tracing methods using C. rodentium as a model pathogen. The paper is well-written and 
clearly addresses the strengths and weaknesses of the proposed scheme. I have listed a few 
comments that I believe can improve the paper. 
1. Although the authors utilize the antibiotic 
pre-treated model of Nalidixic acid in 
conjunction with untreated, they haven’t 
clearly stated the difference in C. rodentium 
strain adaptation in the gut (with and w/o Nal) 
and if that contributed to some of the SNVs. 
Can the authors discuss this in the context of 
their conclusion? –  

There was no significant difference in the SNV 
distance of transmission pairs whether the 
mice were treated with nalidixic acid or not 
(Wilcoxon Test, p-value = 0.306), however in 
mice fed with water the average number of 
new variants emerging over a transmission 
event was significantly higher that (Wilcoxon 
test, p-value > 0.01). 

2. The authors are advised to increase the font 
size for Figure 2 axes. Its currently illegible. 

 

3. Figure legend 2A – Please correct CFU/g  
4. Line 107. Is the text not calling the correct 
figure? 

Corrected. 

Reviewer #3 (Remarks to the Author): More discussion on bottleneck size and within host 
variation 

Senghore et al describe a transmission 
experiment, sequencing C. rodentium as it is 
passaged through a number of independent 
lines of mice. Alongside this they present a 
mathematical method to identify transmission 
pairs from genome sequence data. The focus 
of the work as presented is on the method, 
and its potential general applicability for 
purposes of contact tracing. 
My view is that the experiment provides a nice 
dataset for the study of viral transmission in 
cases such as this, but that the mode of 
transmission described, whereby mice eat 
each other’s poop, is unrepresentative of the 
transmission dynamics of a large number of 
pathogens for which the use of genomic data 
for contact tracing would be of interest. 
Although the method works well as applied to 

This comment is well received, and the discussion 
has been modified accordingly to reduce the 
emphasis on contact tracing. However, there is 
strong evidence that our applying our method is 
not restricted to an experimental set up involving 
fecal oral route of transmission. Below we provide 
rebuttals, and where appropriate concurrence to 
the statements made by reviewer 3. 



this experiment, there are strong reasons to 
believe it would not improve on existing 
methods when applied to other pathogens. 
For this reason, the claims made around 
contact tracing appear overblown. 
The experiment appears to be carried out well 
and provides a nice dataset. To the extent that 
the data might be of use to other researchers 
it would be valuable if the data were 
deposited upon publication into a public 
repository such as the Sequence Read Archive. 
Given that C. rodentium is spread via fecal-
oral transmission, the bottleneck sizes 
observed at transmission are generally large. 

The sequences for this work have been deposited 
in the NCBI sequence archives and are publicly 
available under the project accession number 
PRJNA884719.  

I was not 100% clear about the method used 
for processing sequence data, specifically 
whether the authors mean to cite the allelic 
intensity ratio \theta as used e.g. by Staaf et 
al., BMC Bioinformatics, 2008; a reference or 
equation would be valuable at this point. 
What is clear is that the allele frequencies 
measured during the experiment were 
converted into a summary statistic, 
representing the amount that allele 
frequencies change across transmission. To 
first approximation, the change in an allele 
frequency at transmission is a function of the 
binomial distribution, with variance 
dependent upon the frequency p and the 
bottleneck size N. Given large N, small changes 
will be observed in frequencies upon 
transmission, increasing in a roughly linear 
fashion across multiple transmissions as 
observed in Figure 4B. The successful 
inference of who infected who depends upon 
this relationship, with small changes in allele 
frequency being more likely in cases of 
transmission than across more distant 
relationships (hence Figure 4D). 

Reference to theta in our manuscript are not 
associated with the paper by Staaf et al. We define 
theta in the methods section: lines 376-380 read 
“We defined allelic frequency as the 
proportion of reads mapping to the 
alternative allele. At each variable locus, we 
computed the change in the allelic frequency 
between the two isolates. We then calculated 
the mean change in allelic ratio (θ), based on 
the number of loci where the isolates had 
different allelic frequencies.” 
 



The problem with the method as applied to 
other situations is that the majority of studies 
looking at infectious disease transmission in 
humans find bottlenecks that involve close to 
one virus particle; this is true for influenza 
(McCrone et al., eLife, 2018), SARS-CoV-2 
(Lythgoe, Science, 2021), and HIV (Carslon et 
al, Science 2014): The transmission dynamics 
that lead to the success of the method in this 
case do not apply. As such, unless the contact 
tracer of the abstract is working on an 
outbreak of fecal-oral transmission in mice, it 
is unclear that the method would prove so 
valuable. The authors may have specific 
applications in mind, but without further 
clarification the claims of general applicability 
are not justified. 

We agree that a more nuanced discussion of the 
limitations of the study is warranted, particularly 
in the context of contact tracing, and the 
discussion has been updated accordingly.  
Nonetheless, recent advances in leveraging within 
host diversity to inform transmission chains 
provide empirical support for the approach. 
Notably, the discovery of iSNVS shared among 44 
contacts of a putative index case in a large 
outbreak of the Delta variant of SARS-CoV-2 
(described in Siddle et al Cell 2022), was followed 
by the Centers for Disease Control and Prevention 
altering their guidance to recommend masking for 
vaccinated individuals. This has been published 
since the original submission of this work and is 
now cited.  
 
While the pathogen and the mode of transmission 
in this case is clearly quite different, this illustrates 
how important it is to improve our understanding 
of the circumstances in which iSNVs are 
informative, by examining them in controlled 
experimental conditions as we do in this paper. 
Further, there are many non-viral pathogens of 
significant impact that motivate this work. For 
example, Lee et al, eLife 2020, used within host 
diversity to identify a previously undetected super 
spreader event from a Tuberculosis outbreak. Hall 
et al, eLife 2020, showed that in Staphylococcus 
aureus, transmission between hosts and across 
body sites was characterized by a wide bottleneck 
size. More recently, Tonkin-Hill et al Nature 
Microbiology 2022, used within host diversity to 
improve resolution of transmission pairs in 
Streptococcus pneumoniae. They challenged prior 
assumptions that the bottleneck size of S. 
pneumoniae was 1 ,or a single cell, which was 
based on experimental work done by Kono et al 
Plos Pathogens 2016. This example emphasizes 
the importance being open minded on the 
potential utility of methods like ours, which 
leverage within host diversity to inform 
transmission. Such approaches are by no means a 
panacea for resolving transmission routes, but 
they have the potential to serve as valuable tools 
in outbreak investigation. 
The reviewer citer Carslon et al, Science 2014, as 
evidence that our method would not be applicable 



to HIV. Carlson et al paper was based on single 
gene amplicons that were subjected to PCR, not 
unbiased whole genome shotgun sequencing. The 
methods used by Carlson et al have been 
superseded by methods that rely on whole 
genome sequencing to infer bottleneck sizes such 
as Leonard et al J. Virol 2017 and Ghafari et al J. 
Virol 2020. Moreover Leitner Curr Opin HIV AIDS 
2019, emphasizes to need to account for within 
host diversity in HIV transmission saying 
“Phylodynamic reconstruction of HIV 
transmissions that include within-host HIV 
diversity have recently been established and made 
available in several software packages.” These 
include tools such as PHYLOSCANNER, SCOTTI and 
QUENTIN among others. 
Lythgoe, Science, 2021 did an in-depth analysis on 
the role of within host diversity and concluded 
that SARS-COV2 was modulated by a tight 
bottleneck. Their study included 15 household 
pairs and found that 1 of the 15 pairs shared an 
iSNV, and also found that other pairs had a 
discordance where an iSNV was a fixed mutation 
in another patient. This does suggest that our 
method would not be very effective in this 
context, but it is important to also note that 
despite being household contacts, it is not certain 
that all 15 pairs were actual transmission pairs, 
they could have been infected through an 
unsampled host(s). Additionally, the presence of 
the shared variant in one pair suggests that there 
could be scenarios where measuring AF could be 
helpful in SARS-CoV2 transmission, for example in 
a super spreader event such as that described in 
Siddle et al.   
 

Minor points: 
Equations 1 and 2 were not displayed properly 
in the manuscript I received. For example I 
think that equation 1 should have P(T | \theta) 
on the right hand side, not simply P(\theta). I 
think this is just a formatting error? 

These were typographic errors that have now 
been corrected. 

Not all of the data shown in Figures 4D-F 
seems to be appropriate for a box plot. In 
particular, in Figure 4F it looks as though the 
‘false’ data are bimodal: there are so many 

The reviewer makes a good point; however, it 
should be noted that there are up to 22 
transmission events in each step. The false 
category includes pairs that are over 10 steps 
apart as well as some that are as little as two 



outliers that few conclusions can be drawn 
from what is shown. 

transmission steps apart. Thus, the level of 
heterogeneity highlighted by the reviewer is to be 
expected. In figure 4A, we showed the density 
distributions of the mean change in allelic 
frequency, grouped by number of transmission 
steps. There you can see that the distribution of 
mean AF change in proximal pairs (2-5) are shaped 
more similarly that those that are more distant 
(10+) transmission pairs. This is not a flaw of our 
method; it reflects the biology of transmission 
pairs and the underlying premise that as things 
transmit further apart, they become more distant. 
To say that a conclusion cannot be drawn from 
this is to assume that our method is 100% 
accurate, which is not what we claim. However, 
our approach significantly improves the ability to 
differentiate transmission pairs, and this figure 
supports that claim.  

Line 234: “the bottleneck size is greater than 
or comparable to the amount of within-host 
diversity” - Please clarify: in numerical terms 
the two statistics are measured using different 
units. 

This has been reworded to read: 
“which suggests that despite being small, the 
bottleneck size is large enough to accommodate 
multiple haplotypes in a transmission event” 

 



Reviewer #1´comments: 

 

Here are my thoughts: the authors responded well to many of the concerns and the study clearly has 

merit, but an important unresolved point remains with respect to in which cases it would be 

applicable and comparisons to SNP based approaches alone (without iSNV information). There are 

limited to no experimental comparisons (simulated/real) data that clearly show the 

strengths/weaknesses of the iSNV based model for transmission inference. As a first step, a detailed 

simulated analysis similar to Figure 4 in the following paper where the authors compare 

transmission tree accuracy with (a) SNPs only, (b) iSNVs only, (c) SNPS+iSNVs, would add scientific 

rigor to this study and scheme (citation 7): 

https://academic.oup.com/aje/article/186/10/1209/3860343 .There they could clarify, for a range of 

shared iSNV proportions and bottleneck sizes, when and where their approach would me most 

useful (albeit based on a simulated setting). 

 

But more importantly, there are no comparisons to any existing approaches. If tools like Quentin 

(https://pubmed.ncbi.nlm.nih.gov/29304222/, designed to elucidate transmission networks on 

iSNVs in a bayesian framework) are not applicable as the authors state, then they should still be 

cited and they should clarify in a table/introductory text why previous approaches capable of 

leveraging iSNVs are not appropriate. Along these lines, TransPhylo indicates "TransPhylo can infer 

the transmission tree from a dated phylogeny in a way that accounts for within-host evolution”. The 

authors could compare their approach on data available from this recent TransPhylo publication 

(https://royalsocietypublishing.org/doi/10.1098/rstb.2021.0246) and compare/contrast 

transmission chains (a reference to this work is lacking). 

 

Finally, while much older data, the authors missed opportunity to revisit the Klebsiella outbreak data 

where iSNVs were not leveraged to see if that would increase concordance with the known 

epidemiological data (this study reported key discordance when using SNP only data). 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521604/. I highlight this as one such example 

where the authors could have expanded upon their analysis and compared to previous studies to 

compare/contrast/interrogate the value of iSNVs + SNPS for transmission chain inference. 

 

In summary, while I have no doubt the manuscript represents a valuable contribution, I do have 

concerns with respect to the lack of experimental validation & comparison to similar/existing tools 

(or at minimum, clear & fully justified explanation as to why these tools are fundamentally unable to 

be used in an evaluation). I am a bit less concerned about applicability to other pathogens, as tools 

that operate on iSNVs (such as those presented by the authors) are needed and valuable even for a 

subset of known pathogens. 



Reviewer 1 additional comments Response to reviewer comments 

Here are my thoughts: the authors responded well 
to many of the concerns and the study clearly has 
merit, but an important unresolved point remains 
with respect to in which cases it would be 
applicable and comparisons to SNP based 
approaches alone (without iSNV information). 
There are limited to no experimental comparisons 
(simulated/real) data that clearly show the 
strengths/weaknesses of the iSNV based model for 
transmission inference. As a first step, a detailed 
simulated analysis similar to Figure 4 in the 
following paper where the authors compare 
transmission tree accuracy with (a) SNPs only, (b) 
iSNVs only, (c) SNPS+iSNVs, would add scientific 
rigor to this study and scheme (citation 
7): https://academic.oup.com/aje/article/186/10/1
209/3860343 .There they could clarify, for a range 
of shared iSNV proportions and bottleneck sizes, 
when and where their approach would me most 
useful (albeit based on a simulated setting). 

The reviewer makes a valid observation on the need to explore the utility of 
our method over a range of parameters, compared to a SNP-based 
approach. We have now included a model that simulates the emergence of 
iSNVs and changes in allelic frequency over successive transmission steps 
with varying bottleneck sizes in lateral transmission chains (Figure 6). To 
achieve this, we designed a model that simulated transmission chains while 
allowing for variations in bottleneck sizes. Our model relied on two main 
assumptions. Firstly, we assumed that prior to transmission, individual 
single nucleotide variants (iSNVs) experience selection pressure towards 
fixation, and the resulting change in allelic frequency depends on the initial 
allele frequency and a constant coefficient, regardless of bottleneck size. 
Secondly, we postulated that at the point of transmission, iSNVs undergo a 
secondary change in allelic frequency due to the bottleneck, which can 
either drive them towards fixation or towards their elimination. 
Additionally, we considered stochastic emergence of new iSNVs at a 
constant rate, as well as the possibility of fixed SNVs reverting back to 
iSNVs. Initially, we parameterized our model using 50 variable genomic loci, 
a de novo emergence rate of iSNVs of 0.002 per site per transmission cycle 
(p), and a selection constant of 3 (S). To further investigate, we explored 
different combinations of p (0.002, 0.005, 0.01 - representing slow, 
medium, and fast emergence rates, respectively) and S (1, 3, 5, 10 - 
representing strong, mild, weak, and very weak selection forces, 
respectively). While this model is not perfect, it does a good job of showing 
how changes in bottleneck size can impact the performance of measuring 
changes in allelic frequency vs SNP distance to infer transmission. It also 
provides some insight into how rapidly evolving pathogens either via rapid 
fixation of iSNVs or rapid emergence of de novo iSNVs impacts the 
performance of both metrics.  



But more importantly, there are no comparisons to 
any existing approaches. If tools like Quentin 
(https://pubmed.ncbi.nlm.nih.gov/29304222/, 
designed to elucidate transmission networks on 
iSNVs in a bayesian framework) are not applicable 
as the authors state, then they should still be cited 
and they should clarify in a table/introductory text 
why previous approaches capable of leveraging 
iSNVs are not appropriate. Along these lines, 
TransPhylo indicates "TransPhylo can infer the 
transmission tree from a dated phylogeny in a way 
that accounts for within-host evolution”. The 
authors could compare their approach on data 
available from this recent TransPhylo publication 
(https://royalsocietypublishing.org/doi/10.1098/rst
b.2021.0246) and compare/contrast transmission 
chains (a reference to this work is lacking).  

We have included a paragraph in the introduction that details why these 
methods are not applicable to our example. Quentin uses Splittree to 
reconstruct the within host network of a host, it then compares these 
within host networks and reconstructions transmission. This is very similar 
to Phyloscanner, which sub-samples a bam file or raw reads and attempts 
to reconstruct sub-populations in the host. Both these processes introduce 
bias that may distort the true frequencies of sub-populations. Deep 
sequencing and measuring allele frequencies does a better job of 
maintaining the relative frequencies of sub-populations in the host. 
Transphylo uses a dated phylogeny to infer transmission, to incorporate 
within host diversity, one simply inputs multiple consensus genomes from 
the same host, again this relies on consensus sequences and may distort 
relative proportions of sub-populations. Moreover, it is difficult to generate 
a time signal from isolates collected over a short time period such as in an 
emerging outbreak.  

Finally, while much older data, the authors missed 
opportunity to revisit the Klebsiella outbreak data 
where iSNVs were not leveraged to see if that 
would increase concordance with the known 
epidemiological data (this study reported key 
discordance when using SNP only 
data). https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3521604/. I highlight this as one such example 
where the authors could have expanded upon their 
analysis and compared to previous studies to 
compare/contrast/interrogate the value of iSNVs + 
SNPS for transmission chain inference. 

We agree with the reviewer, there is an important need to apply our 
method to existing datasets. However, there are two challenges to finding 
an appropriate dataset. First, in order to capture within host diversity, the 
entire sample needs to be collected prior to DNA extraction. This means 
taking a sweep of all colonies on an agar plate instead of isolating a purified 
colony. Classically, pure colony isolates are the gold standard in 
microbiology and most published studies rely on this approach. The second 
challenge is that the plate sweep must be sequenced to a high sequencing 
depth in order to minimize the impact of sequencing error and also to 
capture low frequency variants. 
In principle the Klebsiella dataset proposed by the reviewer would be an 
ideal candidate to test our method. It is a well sampled outbreak with 
patients sampled at multiple times and multiple copies of the index strain 
have been sequenced. However, the sequencing depth of this study is low, 



according to the supplementary table the average coverage of genomes 
ranges between 20X and 44X. Moreover, it is not clearly stated that these 
samples are sequenced from plate sweeps. While the methods do not 
explicitly detail colony purification steps, it does reference isolation, which 
can mean colony purification.  
We previously published a reanalysis of a TB outbreak that was reanalyzed 
using deep sequencing and showed a previously undetected super spreader 
event (PMC7012596). This dataset would be ideal as it is deep sequenced 
and not colony purified, however these data were collected from an 
indigenous population in Nunavik, Canada. Given the more stringent ethical 
rules on indigenous populations we would need to resubmit a new round of 
ethic and IRB in order to reanalyze these data with our method.  
Nonetheless, we are confident that with time new datasets will be 
generated that meet the aforementioned criteria and our method can be 
deployed to aid in inference of transmission chains. 
 

In summary, while I have no doubt the manuscript 
represents a valuable contribution, I do have 
concerns with respect to the lack of experimental 
validation & comparison to similar/existing tools (or 
at minimum, clear & fully justified explanation as to 
why these tools are fundamentally unable to be 
used in an evaluation). I am a bit less concerned 
about applicability to other pathogens, as tools that 
operate on iSNVs (such as those presented by the 
authors) are needed and valuable even for a subset 
of known pathogens. 

The comments made by the reviewer are well received. We have added a 
paragraph to the introduction as stated above and we have run simulated 
transmission chains to demonstrate the added value of our method 
compared to SNP based approaches.  

 



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

I’ve reviewed the manuscript and the authors have adequately addressed my concerns. The 

additional analyses strengthen the applicability of their findings on this important topic of tracking 

within host evolution. 
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