

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

The benefits and harms of perioperative high fraction inspired oxygen for surgical site infection prevention: a protocol for a systematic review and meta-analysis of individual patient data of randomised controlled trials

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-067243
Article Type:	Protocol
Date Submitted by the Author:	15-Aug-2022
Complete List of Authors:	de Jonge, Stijn; Amsterdam UMC Locatie AMC, Surgery; Amsterdam UMC Locatie AMC, Anaesthesiology Hulskes, Rick; Amsterdam UMC Locatie AMC, Anaesthesiology; Amsterdam UMC Locatie AMC, Surgery Weenink, Robert ; Amsterdam UMC Locatie AMC, Anaesthesiology Meyhoff, Christian; Copenhagen University Hospital, Anaesthesia and Intensive Care Leslie, Kate; The Royal Melbourne Hospital, Anaesthesia Myles, Paul; Monash University, Anaesthesia and Peroperative Medicine Forbes, Andrew; Monash University, Epidemiology and Preventive Medicine Greif, Robert ; Inselspital University, Epidemiology and Preventive Medicine Greif, Robert ; Inselspital University, Anaesthesiology & Critical Care Medicine Kurz, Andrea; Cleveland Clinic, General Anesthesiology & Critical Care Medicine Kurz, Anaret; University of Western Ontario, Anaesthesiology & Sessler, Daniel; Cleveland Clinic, Martin, Janet; University of Western Ontario, Anaesthesiology & Perioperative Medicine and Department of Epidemiology & Biostatistics Dijkgraaf, Marcel; Amsterdam UMC Locatie AMC, Epidemiology and Data Science Pryor, Kane; Weill Cornell Medical College, Anesthesiology Belda, F. Javier; Hospital Clinico Universitario, Surgery; Hospital Clinico Universitario, Anaesthesia and Critical Care Gurman, Gabriel; Ben-Gurion University of the Negev, Anaesthesiology and Critical Care Medicine Scifres, Christina; Indiana University School of Medicine, McKenna, David; Wright State University, Obstetrics and Gynaecology Chan, MTV; The Chinese University of Hong Kong, Anesthesia and Intensive Care Thibon, Pascal; Centre d'appui pour la prevention des infections associees aux soins d'Ile-de-France Mellin-Olsen, Jannicke; World Federation of Societies of Anesthesiologists Allegranzi, B; World Health Organization Boermeester, Marja; Amsterdam UMC Locatie AMC, Anaesthesiology Hollmann, Markus; Amsterdam UMC Locatie AMC, Anaesthesiology

Keyword	ds: ANAESTHETICS, WOUND MANAGEMENT, Infection control < INFECTIOUS DISEASES, SURGERY
	SCHOLARONE [™]
	Manuscripts
For peer rev	view only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3	1	TITLE PAGE
4		
5	2	The benefits and harms of perioperative high fraction inspired oxygen for surgical site infection
6	-	
7 8	3	prevention: a protocol for a systematic review and meta-analysis of individual patient data of
9 10	4	randomised controlled trials
11 12	5	S. W. de Jonge ^{1a,b,2*} , R. H. Hulskes ^{1a,2} , R. P. Weenink ² , C. S. Meyhoff ³ , K. Leslie ⁴ , P. S. Myles ⁵ , A.
13	6	Forbes ⁶ , R. Greif ^{7,8} , O. Akça ⁹ , A. Kurz ¹⁰ , D. I. Sessler ¹¹ , J. Martin ¹² , M. G. Dijkgraaf ^{13a,b} , K. O. Pryor ¹⁴ ,
14 15	7	F. J. Belda ¹⁵ , C. Ferrando ^{16a,16b} , G. M. Gurman ¹⁷ , C. Scifres ¹⁸ , D. S. McKenna ¹⁹ , M. T. V. Chan ²⁰ , P.
16 17	8	Thibon ²¹ , J. Mellin-Olsen ²² , B. A. Allegranzi ²³ , M. A. Boermeester ^{1a, b} , M. W. Hollmann ²
18	9	^{1a} Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
19	10	^{1b} Gastroenterology Endocrinology & Metabolism, Amsterdam, the Netherlands, Amsterdam, The Netherlands
20	11	² Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
21	12	³ Department of Anaesthesia and Intensive Care, Copenhagen University Hospital – Bispebjerg and Frederiksberg, Copenhagen, Denmark
22	13	⁴ Department of Critical Care, Melbourne Medical School, University of Melbourne, Australia
23	14	⁵ Department of Anaesthesiology and Perioperative Medicine, Alfred Hospital and Monash University, Melbourne, Australia
24	15	⁶ Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
25	16	⁷ Department of Anaesthesiology and Pain Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
26	17	⁸ School of Medicine, Sigmund Freud University Vienna, Vienna, Austria
27	18	⁹ Department of Anaesthesiology & Critical Care Medicine, Johns Hopkins University, Maryland, United States of America
28	19	¹⁰ Department of Anaesthesiology and department of Outcomes Research, Cleveland Clinic Cleveland Ohio, Ohio, United States of America
29	20	¹¹ Department of Outcomes Research, Cleveland Clinic Cleveland Ohio, Ohio, United States of America
30	21	¹² Department of Anaesthesiology & Perioperative Medicine and Department of Epidemiology & Biostatistics, University of Western
31	22	Ontario, Canada
	23	^{13a} Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Amsterdam, The Netherlands
32	24	^{13b} Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
33	25	¹⁴ Department of Anaesthesiology, Weil Medical College of Cornell University, New York City, New York, United States of America
34	26	¹⁵ Department of Surgery and Department of Anaesthesia Critical Care, Hospital Clinico Universitario De Valencia, Valencia, Spain
35	27	^{16a} Department of Anaesthesiology and Critical Care, Hospital Clínic I Provincial, Barcelona, Spain
36	28	^{16b} CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
37	29	¹⁷ Department of Anaesthesiology and Critical Care Medicine, Ben Gurion University of the Negev, Beer Sheva, Israel
38	30	¹⁸ Department of Obstetrics and Gynaecology, Indiana University School of Medicine, Indianapolis, United States of America
39	31	¹⁹ Department of Obstetrics and Gynaecology, Wright State University and Miami Valley Hospital, Ohio, United States of America
40	32	²⁰ Department of Anaesthesia and Intensive Care, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
41	33	²¹ Centre d'appui pour la Prévention des Infections Associées aux Soins, CPias Normandie, Centre Hospitalo-Universitaire, Caen, Normandy,
42	34	France
43	35	²² World Federation of Societies of Anaesthesiologists
44	36	²³ World Health Organization, Service Delivery and Safety, Infection Prevention and Control Global Unit
45	37	
46		
47	38	*Corresponding author
48 49	39	Corresponding author: S. W. de Jonge, Amsterdam UMC, University of Amsterdam, Meibergdreef 9,
50	40	1105 AZ Amsterdam, the Netherlands, email: s.w.dejonge@amsterdamumc.nl, telephone number
51 52	41	0031 (0)20 566 9111.
53 54	42	Word count: 2652 (excluding title page, abstract, article summary, tables, ethics and dissemination,
55	43	and references)
56 57	44	
58 59	45	Keywords: general anaesthesia; hyperoxia; postoperative outcome; surgical site infection; surgical
60	46	wound infection

1

BMJ Open

2 3 4	47	ABSTRACT
5 6	48	Introduction: The use of high fraction of inspired oxygen (FiO ₂) intraoperatively for the prevention of
7	49	surgical site infection (SSI) remains controversial. Consequently, there is considerable practice
8 9	50	variation in oxygen use. Early promising results have been replicated with varying success, and
10 11	51	subsequent meta-analyses are equivocal. Since the initial promising results, perioperative care has
12 13	52	changed considerably with consequences for hemodynamics, microcirculation, and peripheral
14	53	oxygen delivery. These changes may explain the inconsistency in results, but the available published
15 16	54	data provides insufficient detail on the participant level to test this hypothesis. The purpose of this
17 18	55	individual participant data meta-analysis is to assess the described benefits and harms of
18 19	56	intraoperative high (0.60-1.00) FiO $_2$ compared to regular (0.21-0.40) FiO $_2$ and its potential effect
20 21	57	modifiers.
22 23	58	
24 25		
26	59	Methods and analysis: The initial search conducted for the WHO guidelines for the prevention of
27 28	60	surgical site infection reviews will be updated. Medical databases and online trial registries will be
29 30	61	searched to include all randomised and quasi-randomised controlled trials comparing the effect of
31	62	intraoperative high FiO ₂ (0.60-1.00) to regular FiO ₂ (0.21-0.40) in patients undergoing surgery. Two
32 33	63	researchers will independently assess articles retrieved by the search against the eligibility criteria for
34	64	inclusion and methodological quality. Investigators of the identified trials will be invited to
35 36	65	collaborate, comment on the study protocol, and supply the individual participant data of their initial
37 38	66	trial and any additional follow-up data. The primary outcomes will be SSI within 90 days after surgery
39	67	by the author's discretion, serious adverse events, and all-cause mortality within the longest
40 41	68	available follow-up. Data will be analysed with the one-step approach. Additional analysis included
42 43	69	exploration of effect-modifiers. The certainty of evidence will be assessed using GRADE
44	70	methodology.
45 46	71	
47 48	72	Ethics and dissemination: Ethics approval is not required. Investigators will de-identify individual
49 50	73	participant data before it is shared. The results will be submitted to a peer-review journal.
51 52		
53 54	74	
55	75	Trial Registration Number: PROSPERO CRD42018090261
56 57		
58 59		
60		

ARTICLE SUMMARY

Strengths and limitations of this study

- Individual participant data meta-analysis (IPD MA) of (quasi-)randomised controlled trials is considered the gold standard of evidence-based medicine, providing the best possible analysis of the available data on the participant level, permitting the investigation of potential effect modifiers.
- <text> IPD MA requires the collaboration of all investigators that have published data on the relevant topic and leads to a broad consensus on the outcome and interpretation of the analysis
- IPD MA depends on the quality of data that is made available by the authors of the original studies.

BMJ Open

2 3 4	87	INTRODUCTION
5 6	88	Surgical site infection (SSI) is one of the most common healthcare-associated infections and leads to
7 8	89	morbidity, mortality, and longer hospital stay.(1-4) The attributable costs can be more than €14.000
9	90	per SSI, and European totals are estimated to range from €1.5 to €19 billion per year.(5, 6) In 2016-
10 11	91	2017, both the World Health Organization (WHO) and the Centres of Disease Control and Prevention
12 13	92	(CDC) independently released evidence-based guidelines on the prevention of SSI that included a
14	93	recommendation in favour of the administration of high fraction of inspired (FiO ₂) for patients
15 16	94	undergoing surgery under general anaesthesia.(7-9) This has led to a debate between opponents and
17 18	95	proponents of the use of high FiO $_{ m 2}$ in several editorials and correspondences across medical
19	96	speciality literature.(10-20) Concerns were raised on the safety of the use of high FiO $_2$ as well as the
20 21 22	97	different study results in supporting and not supporting use of high FiO $_2$ to reduce SSI.(10-20)
23 24	98	In response to these concerns, the WHO conducted an independent systematic review on the safety
25	99	of high intraoperative FiO $_2$ and updated the systematic review on its effectiveness, excluding the
26 27	100	disputed trials.(21, 22) No evidence of harm to discourage the use of high FiO ₂ was found, yet the
28 29	101	evidence of an effect of SSI had become weaker, and the recommendation was adjusted
30	102	accordingly.(23) Despite many randomised controlled trials, various meta-analyses, and guideline
31 32	103	recommendations, uncertainty remains. This leads to practice variation that inevitably exposes
33 34	104	patients to suboptimal care.(24) There is a need for better understanding and consensus on this
34 35 36	105	issue.
37 38	106	Since the early promising results, perioperative care has changed considerably. Open abdominal
39	107	surgery has been largely replaced by laparoscopic surgery, fluid management has moved from liberal
40 41	108	to restrictive, to advanced goal directed regimens and active perioperative warming has become a
42 43	109	mainstay.(25-27) All these changes have considerable consequences for hemodynamic,
44	110	microcirculation, and eventually peripheral oxygen delivery.(28-30) These changes may explain the
45 46	111	inconsistency in reproducibility, but the available data provides insufficient detail on the participant
47 48	112	level to test the potential of high FiO_2 . Meta-analysis of individual participant data uses the raw
49	113	individual-level data from the original study for synthesis and overcomes this limitation.(31, 32) IPD
50 51	114	MA enables analysis of uniform outcomes with more statistical power and assessment of potential
52 53	115	effect modifiers.(33, 34) Importantly, IPD MA requires collaboration with all published researchers on
54	116	the topic leading to a broad consensus on the outcome of data analysis and interpretation.
55 56	117	The purpose of this IPD MA is to assess the potential benefits and harms of intraoperative high (0.60-
57 58	118	1.00) FiO ₂ compared to traditional (0.21-0.40) FiO ₂ and its effect modifiers in patients undergoing
59 60	119	surgery. This IPD MA is initiated by the University of Amsterdam / Amsterdam University Medical

Center, and encouraged by the WHO and the World Federation of Societies of Anaesthesiologists (WFSA) to provide patients and practitioners with the best possible evidence and guidance on this disputed area and will give clearance of the disputed hypothesis that high FiO₂ reduces the incidence of SSI.

e dis,

2 3 4	124
5 6	125
7 8	126
9 10	127
11	128
12 13	129
14 15	130
16 17	131
18 19	132
20 21	133
22 23	134
24	135
25 26	136
27 28	137
29	138
30 31	139
32 33 34	140
35	141
36 37	142
38 39	143
40	144
41 42	145
43 44	146
45	147
46 47	148
48 49	149
50	150
51 52	151
53 54	152
55	153
56 57	100
58 59	154
60	155

24 METHODS AND ANALYSIS

125 **Protocol and registration**

This study protocol is registered with the International Prospective Register of Systematic Reviews
(PROSPERO) on 7 March 2018 and was last updated on 15 July 2022 (registration number
CRD42018090261). The study protocol is designed and written to adhere to the Preferred Reporting
Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P)(35) and the Preferred
Reporting Items for Systematic Review Meta-Analysis of individual patient data (IPD) (PRISMAIPD).(32)

3 Patient and Public Involvement Statement

This project is encouraged by the World Health Organization (WHO), and the World Federation of Societies of Anesthesiologists (WFSA) to provide patients and practitioners with the best possible evidence and guidance on this disputed area. WHO and WFSA have provided external independent review and advice on research direction and aim.

140 Governance

35141This study is an initiative of the Amsterdam University Medical Centre, encouraged by the WHO and36142the WFSA. Both organisations recognise the urgent need for this research and provide external37143independent review and advice. The writing committee consists of the study coordinator, two38144reviewers, a lead methodologist, and a principal investigator from both the surgery and the38anaesthesiology department of the Amsterdam University Medical Centre and two external content36matter experts. The writing committee is entirely independent of the initial trials and has full36responsibility for all methodological decisions. A broader steering committee with representatives of36the collaborating trial groups identified during the project will be invited to comment on and co-36author the final protocol and IPD MA report. By sharing their IPD, collaborators will obtain one co-36authorship on the IPD MA report and one additional co-authorship if data of more than 30036participants is shared. For transparency and against intellectual bias, a record will be kept of all36comments. Any important amendments to the protocol will be recorded in PROSPERO record and36discussed in the methods section of the final report.

50 155 Eligibility criteria

We will include all randomised and quasi-randomised controlled trials comparing the effect of intraoperative high FiO₂ (0.60-1.0) to traditional FiO₂ (0.21-0.40) in patients undergoing surgery. These trials may include patients of any age undergoing surgery except for neonates, regardless publication, language, or year of conduct and should include at least data on age, sex, mean FiO₂ administered, method of oxygen administration, SSI, mortality, or other serious adverse events. Any outcome found to be recorded in these trials will be included in the analysis. Studies without random or quasi-random treatment allocation, animal studies, and studies outside of the intraoperative period will be excluded.

Identifying studies – information sources

The initial search conducted for the WHO guideline will be updated by a professional information specialist.(21, 22) Medical databases will be searched, including MEDLINE, EMBASE, CENTRAL, CINHAL, and the WHO regional databases. Online trial registries will be searched to identify potential unpublished evidence or any ongoing trials. The search will not be limited by language or date of publication. A final update will be conducted before the final round of revisions preceding submission for publication. The reference list of all included studies will be hand searched for any additional relevant trials not already identified through database searching. All corresponding authors of relevant clinical trials will be contacted to review the list of identified studies for the omission of potentially relevant studies missed by the search.

Study selection process

Two reviewers will independently assess articles retrieved by the search against the eligibility criteria. After screening the title and abstract, the full text of potentially eligible papers will be retrieved and assessed. When no full paper exists, or trial eligibility is in doubt, the study authors will be contacted to provide further information. Any discrepancies in study selection will be resolved through consensus and discussion with a senior author. All studies that pass title and abstract screening but were not eligible for inclusion will be listed with the reasons for exclusion.

Study collaboration invitation

Authors of eligible studies will be contacted and invited to collaborate on the IPD MA. An email invitation will be sent to the corresponding authors outlining the IPMDA goals. If no reply is received within two weeks, a second email request will be sent to the corresponding and first author. If no

BMJ Open

response is received again, we will try to contact all authors by email and telephone. IPD data will be
considered unavailable if numerous times (at least five) no reply is received if authors no longer have
access to the study data or consent to collaboration.

9 191

192 Data collection process

The collaborating investigators will be requested to sign a data transfer agreement describing the ownership and storage of the IPD before de-identified IPD is shared. Whenever possible, data collection, interview on the protocol, and formal handoff on the data codebook will be done electronically via email, videoconference, or a suitable alternative. Whenever requested by the original investigator, a researcher will visit the investigators for a physical data transfer, in-person interview, and data codebook handoff. In the unlikely event that individual patient data will not be made available, the reason will be recorded. The aggregate data of the study will be used in a sensitivity analysis. Aggregate data collection will be performed as appropriate for a regular meta-analysis by two independent reviewers according to a predefined data extraction sheet and overseen by a senior author to settle potential discrepancies. The University of Amsterdam's Clinical Research Unit will facilitate secure data storage.

33 204

205 Data items

Data items will include all data recorded by the initial trial investigators including, but not limited tothe items listed in table 1 and table 2.

Table 1. Baselin	Table 1. Baseline and procedure characteristics		
Baseline	Sex, age, BMI (kg/m ²), ASA physical status score, smoking status, peripheral vascular disease, diabetes, (metastatic) cancer, congestive heart disease, (pulmonary) hypertension, chronic obstructive pulmonary disease, immunosuppressant use, peripheral oxygen saturation (%), glucose (mg/dL), indication for surgery, emergency procedure		
Preoperative	Use of preoperative antibiotic prophylaxis (dose and agent), timing of preoperative antibiotic prophylaxis, use of mechanical bowel preparation, haemoglobin (g/dL), use of antibiotic bowel preparation, cytostatic chemotherapy, radiotherapy		
Intraoperative	Surgical procedure(s), organ involvement, contamination (CDC wound classification(36)), laparoscopic surgery, mean arterial pressure (MAP) (mmHg), haemoglobin (g/dL), heart rate (beats/min), hemodynamic monitoring method, hemodynamic management algorithm, crystalloid infusion (ml), colloid Infusion (ml), red-cell transfusion (units), duration of surgery (min), duration of anaesthesia (min), mean core temperature (°C), lowest core temperature (°C), mean net fluid supplementation (ml/kg/hr), arterial oxygen saturation (%),		

peripheral oxygen saturation (%), subcutaneous oxygen tension (mm Hg), muscle oxygen tension (mm Hg), partial pressure of arterial oxygen (mmHg), mean FiO₂ (%), mean PEEP (cmH₂O), ventilator flow (L/min), peak airway pressure (mmHg),

respiratory frequency, vasopressor agent, vasopressor agent used (mg), glucose (mg/dL), use of general anaesthesia, use of spinal or epidural anaesthesia, use of mechanical ventilation, use of nitrous oxide, total blood loss (ml), fluids (ml), end

duration (days), cytostatic chemotherapy, radiotherapy, haemoglobin (g/dL), VAS pain score, use of postoperative oxygen suppletion (duration, method and FiO₂), haemoglobin (g/dL), peripheral oxygen saturation (%), partial pressure of arterial oxygen (mmHg), subcutaneous oxygen tension (mmHg), muscle oxygen tension

plateau pressure (mmHg), tidal Volume (ml/kg predicted body weight),

Use of postoperative antibiotics (dose and agent), postoperative antibiotic

pre/intra/postoperative period (timing of initiation, concentration, duration), oxygen supply and mode of administration (Intubation, use and type of face

mask, nasal prongs), carrier gas (N₂, N₂0, medical or room air), protocol-defined target or range of partial pressure of arterial oxygen (mmHg) or peripheral

SSI within 90 days after surgery by the author's discretion

All-cause mortality within the longest available follow-up

Serious adverse events defined by the ICH guidelines for good clinical

Respiratory insufficiency: defined as the need for respiratory assistance provided as ventilator therapy or non-invasive ventilation within 90

SSI monitored according to the CDC criteria and specified as either

Unplanned ICU admission (not part of routine postoperative care)

Anastomotic leakage as defined by the international study group of

Total duration of hospitalization, including readmissions related to the

Survival within the longest available follow-up

Hospital readmissions within 90 days after surgery

Any cardiovascular complication at any time after surgery Any pulmonary complications at any time after surgery

New or recurrent cancer diagnosis at any time after surgery Any further clinically relevant outcome reported in the IPD

superficial, deep, organ/space(40)

(mmHg), glucose (mg/dL), NNIS score(37), SSI risk score(38) Total duration and concentration of oxygen exposure during the

tidal CO₂

oxygen saturation (%)

Table 2. Outcome data and effect measure specification

practice(39)

(days)

days after surgery

rectal cancer(41)

initial hospitalization

these cases will be excluded from the analysis based on loss to follow up.

Stroke at any time after surgery

* When patients are reoperated within follow up for reasons other than surgical site infection

-

-

_

Postoperative

Oxygen

Primary

Secondary

Exploratory

Administration

& Monitoring

3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
16 17
17
18
19
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
35
36
30 37
3/
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
•
58

208

1 2

210 Missing data

209

59

1 2		
3 4 5 6 7 8 9	211	When variables are missing at the participant level and the missing at random assumption is
	212	plausible, multiple imputations by chained equations may be applied in each trial separately before
	213	proceeding with the analysis. Variables that miss systematically i.e., unknown for the entire study,
	214	will not be imputated. When this concerns variables included in pre-defined analysis, studies
10	215	systematically missing this variable will be excluded from that analysis. When this concerns variables
11 12	216	not included in pre-defined analysis, these variables will be dropped from the main outcome analysis
13 14	217	as potential confounding variables. The set of available variables for the main analysis will thus be
15	218	determined by the data set with the least available variables. Variables from richer sets will remain
16 17	219	available for exploratory analysis among data sets with the variable available.
18 19	220	
20	220	
21 22	221	Individual Participant Data integrity
23 24	222	We will check IPD for potential missing, invalid, or out-of-range values, inconsistencies, and
25 26	223	discrepancies with the aggregate publication. When identified, we will seek to resolve the issues with
27	224	the trial investigators to improve data quality and ensure that trials are represented accurately. In
28 29	225	addition, any modelling assumptions made in the initial analysis will be evaluated (i.e., missing at
30 31	226	random in the case of multiple imputation or non-informative censoring and proportional hazards in
32	227	the case of time to event data). In the case of any concerns on IPD integrity further prove of
33 34	228	execution of the trial and substantiation of the results may be requested such as prove of
35 36	229	institutional review board approval or original case record forms. If concerns cannot be resolved with
37	230	the trial investigators, the data of the concerning study will not be included in the primary analysis
38 39	231	and the reason for exclusion will be explicitly stated.
40 41	232	
42	232	Risk of bias
43 44	233	Risk of bias
45 46	234	Two reviewers will independently assess the quality of the included studies using the Cochrane risk-
47 48	235	of-bias tool for randomised trials (Rob 2).(42) Studies will be judged as "low risk", "some concerns",
48 49 50 51 52 53 54 55 56 57 58	236	or "high risk of bias". Publication bias will be assessed using a contour enhanced funnel plot.(43)
	237	Additionally, the IPD will be used to directly check process parameters of some of the bias domains.
	238	Randomization and allocation concealment will be assessed by checking baseline imbalances.
	239	Incomplete outcome data will be assessed by checking the IPD to ensure all randomized patients are
	240	included. All available clinically relevant outcomes in the IPD will be reported in the IPD MA. For time
	241	to event outcomes such as mortality, pattern and extent of follow up will be checked. When needed,
59 60		

additional follow up with original authors will be conducted to rectify any imbalances as far aspossible.

245 Synthesis methods

All outcomes will be analysed according to the intention to treat principle and using a one-step approach for IPD MA. In the one-step approach, IPD will be modelled from all studies simultaneously using the generalised linear mixed model framework and the statistical model appropriate for the type of outcome being analysed (i.e., logistic regression for binary outcome data, linear regression for continuous outcome data, and Cox-regression for time to event data). A random treatment effect term will be added to the model and all other parameters (intercepts, prognostic factor effects and residual variances) will be stratified by trial to account for the clustering of patients within studies. Maximum likelihood with quadrature will be used as estimation method and study-specific centering of the variables.(44) Variables potentially affecting the outcome that, despite randomisation, show baseline imbalances across treatment arms will be considered for adjustment based on the criteria for confounder selection by VanderWeele and Shpitser. (45-48) Procedure duration is considered an important proxy for the complexity of the procedure and will also be considered for adjustment despite being measured during the exposure. (47, 48) We assume that the FiO₂ used does not affect procedure duration. Benjamini-Hochberg correction will be used to account for multiple testing for the primary and secondary outcomes when appropriate.(49)

a 261

262 Exploration of variation in effects

To explore the causes of heterogeneity and identify factors modifying the effects of high intraoperative FiO₂, we will perform pre-specified subgroup analyses by extending the one-step meta-analysis framework to include treatment-covariate interaction terms. Subgroups will be defined according to mean core temperature (<35°C), mean net fluid supplementation (<15ml/kg/hr), use of mechanical ventilation, use of nitrous oxide, use of preoperative antibiotic prophylaxis, and procedure duration (>2.5h). All subgroup variables have been proposed as effect modifiers in previous studies and have a plausible biological substantiation. (50-61) Cut-offs are driven by previously reported data. (50-61) Treatment-covariate interaction terms p < 0.05 will be considered statistically significant. Dose-response variation will be explored by total O₂ exposure duration for each primary outcome.

Page 13 of 21

BMJ Open

274 Additional analysis

A sensitivity analysis will be conducted to test the impact of excluding trials using N₂O as a carrier gas on the pooled effect estimate. In the case of exclusion of trials due to concerns on IPD integrity, a sensitivity analysis will be conducted to test the impact of including the concerning data on the pooled effect estimate. When multiple imputation is performed, a complete case analysis will also be conducted. In studies with sufficiently detailed data on the intervention, all analyses will also be conducted according to the per-protocol principle after adjustment for confounding factors due to incomplete adherence to the assigned treatments or use of off-protocol concomitant therapies according to the variable selection principles described for the primary analysis. Per protocol treatment will be defined as an FiO_2 of 0.80 ± 0.05 for at least 75% of the ventilation time in the intervention group, and an FiO_2 smaller than 0.40 with a margin of 0.05, for 75% in the control group. Patients requiring more oxygen for medical reasons, for example to maintain adequate saturation, after initial ventilation with an FiO₂ of 0.45 are exempted and not considered a protocol deviation. A sensitivity analysis will be conducted according to the two-step approach. All studies will be reanalysed separately, similarly to the one-step approach but without the term for trial clustering. The new aggregate data of each study will then be synthesised in a second step synthesising an overall estimate using maximum likelihood method followed by the Hartung-Knapp Sidik-Jonkman correction assuming random effects. (62) Between-study variance will be evaluated using τ^2 ; in addition, the Chi^2 test for heterogeneity will be performed with p <0.100 considered statistically significant.. In the unlikely event that IPD will not be made available, aggregate study data will be included in the analyses during step two. Any unforeseen challenge during the analysis or choice that leads to discussion in the steering group that cannot be resolved by consensus will also be subjected to sensitivity analysis. For time to event outcomes a survival curve will be added to the Cox-regression analysis.

.

299 Certainty of the cumulative estimate

The Grading of Recommendations Assessment Development and Evaluation (GRADE) working group methodology will be used to assess the overall quality of evidence for the following domains: risk of bias, unexplained inconsistency, indirectness, imprecision, publication bias, and magnitude of effect. Additional domains may be considered where appropriate. Optimal information size, defined as the number of participants needed for a single adequately powered trial, was calculated assuming a type-1 error (α) of 0.05, a type 2 error (β) of 0.2 and a relative risk reduction of 0.25.(63) If a confidence interval failed to exclude appreciable benefit or harm, defined as a relative risk reduction

3 4	307	or increase of 0.25, the quality of evidence will be downgraded regardless of the optimal information
4 5	308	size.(63) The overall certainty will be classified using four levels: high, moderate, low, and very
6 7	309	low.(64)
8 9 10	310	
11 12	311	Software
13 14 15	312	Results will be processed using R 4.0.4.
15 16 17	313	
18 19	314	ETHICS AND DISSEMINATION
20 21 22	315	Ethical approval
22 23 24	316	Ethical approval is not deemed necessary for this study protocol.
25 26	317	
27 28 29	318	Dissemination
30	319	This protocol and the results of this study will be submitted to a peer-reviewed medical journal
31 32 33	320	regardless of the outcome. The protocol will be submitted before the data is gathered and analysed.
34	321	
35 36 37	322	Competing interests
38	323	S.W.J. reports receipt of grants from Photonics in Healthcare, Integra LifeSciences, and Ethicon
39 40	324	outside the submitted. P.S.M. reports receipt of grants or contracts from the Australian National
41 42	325	Health and Medical Research Council (NHMRC), Practitioner Fellowship and Projects Grants, payment
43	326	of expert testimony from Avant Medical Indemnity, and participation on a Data Safety Monitoring
44 45	327	Board of Advisory Board for the SNAP, TOPIC-2 and BONANZA trials. A.F. reports receipt of
46 47	328	institutional grants from the Australian Research Council Discovery Project and National Health and
48	329	Medical Research Council Ideas outside the submitted work and participation on a Data Safety
49 50 51 52	330	Monitoring Board or Advisory Board for the Australian Kidney Trials Research Network (INCH-HD,
	331	IMPEDE, TEQCH-PD, PHOSPHATE, BEST Fluids, N3RO trial, CKD-FIX, IMPROVE-FIX). R.G. reports
53 54	332	participation on Steering Committee for the IntuBot Innosuisse Projekt and has a leadership role as
55	333	ERC Director of Guidelines and ILCOR, and ILCOR Task Force Chair on Education, Implementation and
56 57	334	Team, and Treasurer of European Airway Management society, and reports receipt without any
58	335	payment of airway equipment for the research of the following: Intersurgical, Karl Storz, Verathon
59 60	336	Inc, Aircraft Medical, Prodol Meditec, Venner Medical, Kingsystems, Medtronic, Ambu, VBM,

Page 15 of 21

1 2

BMJ Open

3 4 5 6 7 8 9 10	337	Radiometer, Sentec, and Fisher & Paykel. A.K. reports receipt of grants or contracts from Potrero
	338	Medical, Rehabtronics and The 37 company outside the submitted work and participation on a Data
	339	Safety Monitoring Board of Advisory Board in Directedsystems, Potrero Medical and BioAgel
	340	Laboratories. J.M. reports voluntary participation as a panellist in the updated WHO Guidelines on
	341	high vs low FiO2 in 2018 and voluntary co-investigator in the PENGUIN trial of high versus low FiO2
11 12	342	for SSI prevention in abdominal surgery in low- and middle-income settings with GlobalSurg
13	343	Collaborative. M.G.W.D. reports participation on a Data Safety Monitoring Board or Advisory Board
14 15	344	for the following trials: DANCE, SPHINX, ICONIC, SAFE, PACER, LEARNS, RECAP, and BIOPEX2. C.F.
16 17 18 19 20	345	reports receipt fees for lectures and educational events from Getinge and Medtronic outside the
	346	submitted work. C.S. reports receipts of institutional grants from NICHD outside the submitted work.
	347	M.A.B. reports receipt of institutional grants from KCI/3M, Johnson & Johnson, New Compliance, BD
21 22	348	Bard, Gore, Telabio, GDM, Medtronic, and Smith & Nephew outside the submitted work, and
23	349	participation on the Data Monitoring Committee of the EXTEND trial. M.W.H. reports receipt of
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	350	institutional grants from ZonMw outside the submitted work, consulting institutional fees from IDD
	351	Pharma outside the submitted work, institutional payment or honoraria for lectures, presentations,
	352	speakers bureaus, manuscript writing or educational events from CSL Behring outside the submitted
	353	work, and has a leadership role in DGAI, ISAP and IARS (Anaesthesia and Analgesia). The other
	354	authors declare no conflict of interest.
	355	Funding
	222	
	356	Funding
39	357	This work was supported by the Amsterdams Universiteitsfonds grant (4069) to R. H. Hulskes.
39 40 41		This work was supported by the Amsterdams Universiteitsfonds grant (4069) to R. H. Hulskes.
40 41 42	358	
40 41 42 43 44		This work was supported by the Amsterdams Universiteitsfonds grant (4069) to R. H. Hulskes. Contributions
40 41 42 43	358	
40 41 42 43 44 45 46 47	358 359	Contributions
40 41 42 43 44 45 46 47 48 49	358 359 360	Contributions MH and MB are the guarantors of the study. SJ conceived the study. SJ and RH drafted the study
40 41 42 43 44 45 46 47 48 49 50 51	358 359 360 361	Contributions MH and MB are the guarantors of the study. SJ conceived the study. SJ and RH drafted the study protocol. All authors provided expertise from their respective area of interest, contributed to the
40 41 42 43 44 45 46 47 48 49 50 51 52 53	358 359 360 361 362	Contributions MH and MB are the guarantors of the study. SJ conceived the study. SJ and RH drafted the study protocol. All authors provided expertise from their respective area of interest, contributed to the study protocol, provided critical feedback, and approved the final manuscript. JM and BA provided
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	358 359 360 361 362 363	Contributions MH and MB are the guarantors of the study. SJ conceived the study. SJ and RH drafted the study protocol. All authors provided expertise from their respective area of interest, contributed to the study protocol, provided critical feedback, and approved the final manuscript. JM and BA provided
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	358 359 360 361 362 363 364 365	Contributions MH and MB are the guarantors of the study. SJ conceived the study. SJ and RH drafted the study protocol. All authors provided expertise from their respective area of interest, contributed to the study protocol, provided critical feedback, and approved the final manuscript. JM and BA provided independent advice on behalf of their respective organisations.
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	358 359 360 361 362 363 364	Contributions MH and MB are the guarantors of the study. SJ conceived the study. SJ and RH drafted the study protocol. All authors provided expertise from their respective area of interest, contributed to the study protocol, provided critical feedback, and approved the final manuscript. JM and BA provided independent advice on behalf of their respective organisations.
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	358 359 360 361 362 363 364 365	Contributions MH and MB are the guarantors of the study. SJ conceived the study. SJ and RH drafted the study protocol. All authors provided expertise from their respective area of interest, contributed to the study protocol, provided critical feedback, and approved the final manuscript. JM and BA provided independent advice on behalf of their respective organisations.

368 Data sharing

369 Data will be made available upon reasonable request and review and approval of all collaborators.

tor peer terier only

1		
2		
3	370	References
4	274	A Marill CC Educada ID Dambara M/ Daldava ZC Duravsti C Kainan MAA at al Multistata asiat
5 6	371	1. Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-
7	372	prevalence survey of health care-associated infections. The New England journal of medicine.
8	373	2014;370(13):1198-208.
9	374	2. de Lissovoy G, Fraeman K, Hutchins V, Murphy D, Song D, Vaughn BB. Surgical site infection:
10	375	incidence and impact on hospital utilization and treatment costs. American journal of infection
11	376	control. 2009;37(5):387-97.
12	377	3. Control ECfDPa. Point prevalence survey of healthcareassociated
13	378	infections and antimicrobial use in European acute care hospitals. Stockholm: ECDC; 2013.
14 15	379	4. ECDC. Surveillance of surgical site infections in Europe 2010–2011. Stockholm: ECDC; 2013.
16	380	5. Leaper DJ, van Goor H, Reilly J, Petrosillo N, Geiss HK, Torres AJ, et al. Surgical site infection -
17	381	a European perspective of incidence and economic burden. Int Wound J. 2004;1(4):247-73.
18	382	6. Koek MBG, van der Kooi TII, Stigter FCA, de Boer PT, de Gier B, Hopmans TEM, et al. Burden
19	383	of surgical site infections in the Netherlands: cost analyses and disability-adjusted life years. J Hosp
20	384 385	Infect. 2019;103(3):293-302. 7. Allegranzi B, Bischoff P, de Jonge S, Kubilay NZ, Zayed B, Gomes SM, et al. New WHO
21	386	recommendations on preoperative measures for surgical site infection prevention: an evidence-
22 23	387	based global perspective. Lancet Infect Dis. 2016;16(12):e276-e87.
23 24	388	8. Allegranzi B, Zayed B, Bischoff P, Kubilay NZ, de Jonge S, de Vries F, et al. New WHO
25	389	recommendations on intraoperative and postoperative measures for surgical site infection
26	390	prevention: an evidence-based global perspective. Lancet Infect Dis. 2016;16(12):e288-e303.
27	390 391	9. Berrios-Torres SI, Umscheid CA, Bratzler DW, Leas B, Stone EC, Kelz RR, et al. Centers for
28	391	Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA
29	393	Surg. 2017.
30	393 394	10. Hedenstierna G, Perchiazzi G, Meyhoff CS, Larsson A. Who Can Make Sense of the WHO
31 32	394 395	Guidelines to Prevent Surgical Site Infection? Anesthesiology. 2017;126(5):771-3.
32 33	395	11. Volk T, Peters J, Sessler DI. The WHO recommendation for 80% perioperative oxygen is
34	390 397	poorly justified. Anaesthesist. 2017;66(4):227-9.
35	398	12. Wenk M, Van Aken H, Zarbock A. The New World Health Organization Recommendations on
36	399	Perioperative Administration of Oxygen to Prevent Surgical Site Infections: A Dangerous Reductionist
37	400	Approach? Anesth Analg. 2017;125(2):682-7.
38	401	13. Meyhoff CS, Fonnes S, Wetterslev J, Jorgensen LN, Rasmussen LS. WHO Guidelines to prevent
39	402	surgical site infections. Lancet Infect Dis. 2017;17(3):261-2.
40 41	403	14. Mellin-Olsen J, McDougall RJ, Cheng D. WHO Guidelines to prevent surgical site infections.
41	404	Lancet Infect Dis. 2017;17(3):260-1.
43	405	15. Berrios-Torres SI, Umscheid CA, Bratzler DW, Leas B, Stone EC, Kelz RR, et al. Centers for
44	406	Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA
45	407	Surg. 2017;152(8):784-91.
46	408	16. Solomkin J, Egger M, de Jonge S, Latif A, Loke YK, Berenholtz S, et al. World Health
47	409	Organization Responds to Concerns about Surgical Site Infection Prevention Recommendations.
48 49	410	Anesthesiology. 2018;128(1):221-2.
49 50	411	17. Akca O, Ball L, Belda FJ, Biro P, Cortegiani A, Eden A, et al. WHO Needs High FIO2? Turk J
51	412	Anaesthesiol Reanim. 2017;45(4):181-92.
52	413	18. Weenink RP, de Jonge SW, Preckel B, Hollmann MW. PRO: Routine hyperoxygenation in adult
53	414	surgical patients whose tracheas are intubated. Anaesthesia. 2020;75(10):1293-6.
54	415	19. Sperna Weiland NH, Berger MM, Helmerhorst HJF. CON: Routine hyperoxygenation in adult
55	416	surgical patients whose tracheas are intubated. Anaesthesia. 2020;75(10):1297-300.
56 57	417	20. Weenink RP, de Jonge SW, van Hulst RA, Wingelaar TT, van Ooij PAM, Immink RV, et al.
57	418	Perioperative Hyperoxyphobia: Justified or Not? Benefits and Harms of Hyperoxia during Surgery. J
59	419	Clin Med. 2020;9(3).
60		

2 3 420 21. Mattishent K, Thavarajah M, Sinha A, Peel A, Egger M, Solomkin J, et al. Safety of 80% vs 30-4 421 35% fraction of inspired oxygen in patients undergoing surgery: a systematic review and meta-5 422 analysis. Br J Anaesth. 2019;122(3):311-24. 6 423 de Jonge S, Egger M, Latif A, Loke YK, Berenholtz S, Boermeester M, et al. Effectiveness of 22. 7 424 80% vs 30-35% fraction of inspired oxygen in patients undergoing surgery: an updated systematic 8 425 review and meta-analysis. Br J Anaesth. 2019;122(3):325-34. 9 426 23. Global Guidelines for the Prevention of Surgical Site Infection, (2018). 10 Staehr-Rye AK, Meyhoff CS, Scheffenbichler FT, Vidal Melo MF, Gätke MR, Walsh JL, et al. 11 427 24. 12 428 High intraoperative inspiratory oxygen fraction and risk of major respiratory complications. BJA: 13 429 British Journal of Anaesthesia. 2017;119(1):140-9. 14 430 25. Greif R, Akça O, Horn EP, Kurz A, Sessler DI. Supplemental perioperative oxygen to reduce the 15 431 incidence of surgical-wound infection. New England journal of medicine. 2000;342(3):161-7. 16 432 26. Kurz A, Kopyeva T, Suliman I, Podolyak A, You J, Lewis B, et al. Supplemental oxygen and 17 433 surgical-site infections: an alternating intervention controlled trial. Br J Anaesth. 2018;120(1):117-26. 18 434 Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of 19 27. 20 435 surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature 21 436 Group. The New England journal of medicine. 1996;334(19):1209-15. 22 437 Atkinson TM, Giraud GD, Togioka BM, Jones DB, Cigarroa JE. Cardiovascular and Ventilatory 28. 23 438 Consequences of Laparoscopic Surgery. Circulation. 2017;135(7):700-10. 24 439 29. Doherty M, Buggy DJ. Intraoperative fluids: how much is too much? Br J Anaesth. 25 440 2012;109(1):69-79. 26 441 30. Sessler DI. Perioperative thermoregulation and heat balance. Lancet. 2016;387(10038):2655-27 442 64. 28 29 443 31. Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale, 30 444 conduct, and reporting. BMJ. 2010;340:c221. 31 445 Stewart LA, Clarke M, Rovers M, Riley RD, Simmonds M, Stewart G, et al. Preferred Reporting 32. 32 446 Items for Systematic Review and Meta-Analyses of individual participant data: the PRISMA-IPD 33 447 Statement. JAMA. 2015;313(16):1657-65. 34 448 33. Oxman AD, Clarke MJ, Stewart LA. From science to practice. Meta-analyses using individual 35 449 patient data are needed. JAMA. 1995;274(10):845-6. 36 450 Stewart LA, Parmar MK. Meta-analysis of the literature or of individual patient data: is there 34. 37 451 a difference? Lancet. 1993;341(8842):418-22. 38 Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting 39 452 35. 40 453 items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and 41 454 explanation. BMJ. 2015;350:g7647. 42 455 36. Garner JS. CDC guideline for prevention of surgical wound infections, 1985. Supersedes 43 456 guideline for prevention of surgical wound infections published in 1982. (Originally published in 44 457 November 1985). Revised. Infect Control. 1986;7(3):193-200. 45 458 37. Culver DH, Horan TC, Gaynes RP, Martone WJ, Jarvis WR, Emori TG, et al. Surgical wound 46 459 infection rates by wound class, operative procedure, and patient risk index. National Nosocomial 47 48 460 Infections Surveillance System. Am J Med. 1991;91(3B):152S-7S. 49 461 38. van Walraven C, Musselman R. The Surgical Site Infection Risk Score (SSIRS): A Model to 50 462 Predict the Risk of Surgical Site Infections. PLoS One. 2013;8(6):e67167. 51 INTEGRATED ADDENDUM TO ICH E6(R1): GUIDELINE FOR GOOD CLINICAL PRACTICE 463 39. 52 464 E6(R2), (2016). 53 465 40. Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for Prevention of Surgical 54 466 Site Infection, 1999. Centers for Disease Control and Prevention (CDC) Hospital Infection Control 55 467 Practices Advisory Committee. American journal of infection control. 1999;27:97-132. 56 Rahbari NN, Weitz J, Hohenberger W, Heald RJ, Moran B, Ulrich A, et al. Definition and 468 41. 57 58 469 grading of anastomotic leakage following anterior resection of the rectum: a proposal by the 59 470 International Study Group of Rectal Cancer. Surgery. 2010;147(3):339-51. 60

42. Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:I4898. 43. Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J Clin Epidemiol. 2008;61(10):991-6. 44. Riley RD, Legha A, Jackson D, Morris TP, Ensor J, Snell KIE, et al. One-stage individual participant data meta-analysis models for continuous and binary outcomes: Comparison of treatment coding options and estimation methods. Statistics in Medicine. 2020;39(19):2536-55. 45. VanderWeele TJ. Principles of confounder selection. Eur J Epidemiol. 2019;34(3):211-9. 46. VanderWeele TJ, Shpitser I. A new criterion for confounder selection. Biometrics. 2011;67(4):1406-13. Haley RW, Culver DH, Morgan WM, White JW, Emori TG, Hooton TM. Identifying patients at 47. high risk of surgical wound infection. A simple multivariate index of patient susceptibility and wound contamination. Am J Epidemiol. 1985;121(2):206-15. Korol E, Johnston K, Waser N, Sifakis F, Jafri HS, Lo M, et al. A systematic review of risk 48. factors associated with surgical site infections among surgical patients. PLoS One. 2013;8(12):e83743. 49. Thissen D, Steinberg L, Kuang D. Quick and Easy Implementation of the Benjamini-Hochberg Procedure for Controlling the False Positive Rate in Multiple Comparisons. Journal of Educational and Behavioral Statistics. 2002;27(1):77-83. 50. Pryor KO, Fahey TJ, 3rd, Lien CA, Goldstein PA. Surgical site infection and the routine use of perioperative hyperoxia in a general surgical population: a randomized controlled trial. JAMA. 2004;291(1):79-87. Belda FJ, Aguilera L, Garcia de la Asuncion J, Alberti J, Vicente R, Ferrandiz L, et al. 51. Supplemental perioperative oxygen and the risk of surgical wound infection: a randomized controlled trial. JAMA. 2005;294(16):2035-42. 52. Meyhoff CS, Wetterslev J, Jorgensen LN, Henneberg SW, Hogdall C, Lundvall L, et al. Effect of high perioperative oxygen fraction on surgical site infection and pulmonary complications after abdominal surgery: the PROXI randomized clinical trial. JAMA. 2009;302(14):1543-50. Bickel A, Gurevits M, Vamos R, Ivry S, Eitan A. Perioperative hyperoxygenation and wound 53. site infection following surgery for acute appendicitis: a randomized, prospective, controlled trial. Arch Surg. 2011;146(4):464-70. 54. Duggal N, Poddatoori V, Noroozkhani S, Siddik-Ahmad RI, Caughey AB. Perioperative oxygen supplementation and surgical site infection after cesarean delivery: a randomized trial. Obstet Gynecol. 2013;122(1):79-84. 55. Gardella C, Goltra LB, Laschansky E, Drolette L, Magaret A, Chadwick HS, et al. High-concentration supplemental perioperative oxygen to reduce the incidence of postcesarean surgical site infection: a randomized controlled trial. Obstet Gynecol. 2008;112(3):545-52. Mayzler O, Weksler N, Domchik S, Klein M, Mizrahi S, Gurman GM. Does supplemental 56. perioperative oxygen administration reduce the incidence of wound infection in elective colorectal surgery? Minerva Anestesiol. 2005;71(1-2):21-5. Myles PS, Leslie K, Chan MT, Forbes A, Paech MJ, Peyton P, et al. Avoidance of nitrous oxide 57. for patients undergoing major surgery: a randomized controlled trial. Anesthesiology. 2007;107(2):221-31. Stall A, Paryavi E, Gupta R, Zadnik M, Hui E, O'Toole RV. Perioperative supplemental oxygen 58. to reduce surgical site infection after open fixation of high-risk fractures: a randomized controlled pilot trial. J Trauma Acute Care Surg. 2013;75(4):657-63. 59. Scifres CM, Leighton BL, Fogertey PJ, Macones GA, Stamilio DM. Supplemental oxygen for the prevention of postcesarean infectious morbidity: a randomized controlled trial. Am J Obstet Gynecol. 2011;205(3):267 e1-9. 60. Williams NL, Glover MM, Crisp C, Acton AL, McKenna DS. Randomized controlled trial of the effect of 30% versus 80% fraction of inspired oxygen on cesarean delivery surgical site infection. Am J Perinatol. 2013;30(9):781-6.

Page 20 of 21

BMJ Open

1 2		
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	523 524 525 526 527 528 529 530 531 532 533 533	 Thibon P, Borgey F, Boutreux S, Hanouz JL, Le Coutour X, Parienti JJ. Effect of perioperative oxygen supplementation on 30-day surgical site infection rate in abdominal, gynecologic, and breast surgery: the ISO2 randomized controlled trial. Anesthesiology. 2012;117(3):504-11. Langan D, Higgins JPT, Jackson D, Bowden J, Veroniki AA, Kontopantelis E, et al. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. Res Synth Methods. 2019;10(1):83-98. Schünemann H, Brożek J, Guyatt G, Oxman A. Handbook for grading the quality of evidence and the strength of recommendations using the GRADE approach (updated October 2013). GRADE Working Group, 2013. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924-6.
17 18 19 20 21 22 23 24 25 26 27 28 29 30	535	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45		
43 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60		

60

Section and topic	Item No	Checklist item	Reported on page
ADMINISTRATIV	E INFO	ORMATION	
Title:			
Identification	1a	Identify the report as a protocol of a systematic review	1
Update	1b	If the protocol is for an update of a previous systematic review, identify as such	NA
Registration	2	If registered, provide the name of the registry (such as PROSPERO) and registration number	2
Authors:			
Contact	3a	Provide name, institutional affiliation, e-mail address of all protocol authors; provide physical mailing address of corresponding author	1
Contributions	3b	Describe contributions of protocol authors and identify the guarantor of the review	13
Amendments	4	If the protocol represents an amendment of a previously completed or published protocol, identify as such and list changes; otherwise, state plan for documenting important protocol amendments	6
Support:			
Sources	5a	Indicate sources of financial or other support for the review	13
Sponsor	5b	Provide name for the review funder and/or sponsor	13
Role of sponsor or funder	5c	Describe roles of funder(s), sponsor(s), and/or institution(s), if any, in developing the protocol	13
INTRODUCTION			
Rationale	6	Describe the rationale for the review in the context of what is already known	4-5
Objectives	7	Provide an explicit statement of the question(s) the review will address with reference to participants, interventions, comparators, and outcomes (PICO)	4
METHODS			
Eligibility criteria	8	Specify the study characteristics (such as PICO, study design, setting, time frame) and report characteristics (such as years considered, language, publication status) to be used as criteria for eligibility for the review	7
Information sources	9	Describe all intended information sources (such as electronic databases, contact with study authors, trial registers or other grey literature sources) with planned dates of coverage	7
	10	Present draft of search strategy to be used for at least one electronic database, including planned limits, such that it could be repeated	Supplement

Study records:			
Data management	11a	Describe the mechanism(s) that will be used to manage records and data throughout the review	8
Selection	11b	State the process that will be used for selecting studies (such as two independent reviewers) through each phase of the review (that is, screening, eligibility and inclusion in meta-analysis)	7
Data collection 11c Describe planned method of extracting data from reports (such as piloting forms, done independently, in duplicat		Describe planned method of extracting data from reports (such as piloting forms, done independently, in duplicate), processes for obtaining and confirming data from investigators	8
Data items	- any		
Outcomes and prioritization	13	List and define all outcomes for which data will be sought, including prioritization of main and additional outcomes, with rationale	9
Risk of bias in14Describe anticipated methods for assessing risk of bias of individual studies, including whether this will be done at the outcome or study level, or both; state how this information will be used in data synthesis		9-10	
Data synthesis	15a	Describe criteria under which study data will be quantitatively synthesised	11
	15b	If data are appropriate for quantitative synthesis, describe planned summary measures, methods of handling data and methods of combining data from studies, including any planned exploration of consistency (such as I^2 , Kendall's τ)	12
	15c	Describe any proposed additional analyses (such as sensitivity or subgroup analyses, meta-regression)	12
	15d	If quantitative synthesis is not appropriate, describe the type of summary planned	NA
Meta-bias(es)	16	Specify any planned assessment of meta-bias(es) (such as publication bias across studies, selective reporting within studies)	10
Confidence in 17 Describe how the strength of the body of evidence will be assessed (such as GRADE) cumulative evidence		12-13	

* It is strongly recommended that this checklist be read in conjunction with the PRISMA-P Explanation and Elaboration (cite when available) for important clarification on the items. Amendments to a review protocol should be tracked and dated. The copyright for PRISMA-P (including checklist) is held by the PRISMA-P Group and is distributed under a Creative Commons Attribution Licence 4.0.

From: Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart L, PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015 Jan 2;349(jan02 1):g7647.

BMJ Open

The benefits and harms of perioperative high fraction inspired oxygen for surgical site infection prevention: a protocol for a systematic review and meta-analysis of individual patient data of randomised controlled trials

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-067243.R1
Article Type:	Protocol
Date Submitted by the Author:	11-Apr-2023
Complete List of Authors:	de Jonge, Stijn; Amsterdam UMC Locatie AMC, Surgery; Amsterdam UMC Locatie AMC, Anaesthesiology Hulskes, Rick; Amsterdam UMC Locatie AMC, Anaesthesiology; Amsterdam UMC Locatie AMC, Surgery Zokaei Nikoo, Maedeh; Cleveland Clinic Foundation, Outcomes research Weenink, Robert ; Amsterdam UMC Locatie AMC, Anaesthesiology Meyhoff, Christian; Copenhagen University Hospital, Anaesthesia and Intensive Care Leslie, Kate; The Royal Melbourne Hospital, Anaesthesia Myles, Paul; Monash University, Anaesthesia and Perioperative Medicine Forbes, Andrew; Monash University, Epidemiology and Preventive Medicine Greif, Robert ; Inselspital Universitys, Epidemiology and Preventive Medicine Greif, Robert ; Inselspital University, Anaesthesiology & Critical Care Medicine Kurz, Andrea; Cleveland Clinic, General Anesthesiology & Critical Care Medicine Kurz, Andrea; Cleveland Clinic, General Anesthesiology Sessler, Daniel; Cleveland Clinic, Martin, Janet; University of Western Ontario, Anaesthesiology & Perioperative Medicine and Department of Epidemiology & Biostatistics Djikgraaf, Marcel; Amsterdam UMC Locatie AMC, Epidemiology and Data Science Pryor, Kane; Weill Cornell Medical College, Anesthesiology Belda, F. Javier; Hospital Clinico Universitario, Anaesthesiology and Cirtical Care Gurman, Gabriel; Ben-Gurion University of the Negev, Anaesthesiology and Critical Care Medicine Scifres, Christina; Indiana University School of Medicine, McKenna, David; Wright State University, Obstetrics and Gynaecology Chan, MTV; The Chinese University of Hong Kong, Anesthesia and Intensive Care Thibon, Pascal; Centre d'appui pour la prevention des infections associees aux soins d'Ile-de-France Mellin-Olsen, Jannicke; World Federation of Societies of Anesthesiologists Allegranzi, B; World Health Organization Boermeester, Marja; Amsterdam UMC Locatie AMC, Surgery

Primary Subject Heading : Anaesthesia Secondary Subject Heading: Surgery	
Keywords: ANAESTHETICS, WOUND MAN DISEASES, SURGERY	GEMENT, Infection control < INFECTIOUS

SCHOLARONE[™] Manuscripts

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

TITLE PAGE The benefits and harms of perioperative high fraction inspired oxygen for surgical site infection prevention: a protocol for a systematic review and meta-analysis of individual patient data of randomised controlled trials S. W. de Jonge^{1a,b,2*}, R. H. Hulskes^{1a,2}, M. Zokaei Nikoo¹¹, R. P. Weenink², C. S. Meyhoff³, K. Leslie⁴, P. S. Myles⁵, A. Forbes⁶, R. Greif^{7,8}, O. Akça⁹, A. Kurz¹⁰, D. I. Sessler¹¹, J. Martin¹², M. G. Dijkgraaf^{13a,b}, K. O. Pryor¹⁴, F. J. Belda¹⁵, C. Ferrando^{16a,16b}, G. M. Gurman¹⁷, C. Scifres¹⁸, D. S. McKenna¹⁹, M. T. V. Chan²⁰, P. Thibon²¹, J. Mellin-Olsen²², B. A. Allegranzi²³, M. A. Boermeester^{1a, b}, M. W. Hollmann² ^{1a} Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ^{1b} Gastroenterology Endocrinology & Metabolism, Amsterdam, the Netherlands, Amsterdam, The Netherlands ² Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ³ Department of Anaesthesia and Intensive Care, Copenhagen University Hospital – Bispebjerg and Frederiksberg, Copenhagen, Denmark ⁴ Department of Critical Care, Melbourne Medical School, University of Melbourne, Australia ⁵ Department of Anaesthesiology and Perioperative Medicine, Alfred Hospital and Monash University, Melbourne, Australia ⁶ Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia ⁷ Department of Anaesthesiology and Pain Medicine, Bern University Hospital, University of Bern, Bern, Switzerland ⁸ School of Medicine, Sigmund Freud University Vienna, Vienna, Austria ⁹ Department of Anaesthesiology & Critical Care Medicine, Johns Hopkins University, Maryland, United States of America ¹⁰ Department of Anaesthesiology and department of Outcomes Research, Cleveland Clinic Cleveland Ohio, Ohio, United States of America ¹¹ Department of Outcomes Research, Cleveland Clinic Cleveland Ohio, Ohio, United States of America ¹² Department of Anaesthesiology & Perioperative Medicine and Department of Epidemiology & Biostatistics, University of Western Ontario. Canada ^{13a} Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Amsterdam, The Netherlands ^{13b} Amsterdam Public Health, Methodology, Amsterdam, The Netherlands ¹⁴ Department of Anaesthesiology, Weil Medical College of Cornell University, New York City, New York, United States of America ¹⁵ Department of Surgery and Department of Anaesthesia Critical Care, Hospital Clinico Universitario De Valencia, Valencia, Spain ^{16a} Department of Anaesthesiology and Critical Care, Hospital Clínic I Provincial, Barcelona, Spain ^{16b} CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain ¹⁷ Department of Anaesthesiology and Critical Care Medicine, Ben Gurion University of the Negev, Beer Sheva, Israel ¹⁸ Department of Obstetrics and Gynaecology, Indiana University School of Medicine, Indianapolis, United States of America ¹⁹ Department of Obstetrics and Gynaecology, Wright State University and Miami Valley Hospital, Ohio, United States of America ²⁰ Department of Anaesthesia and Intensive Care, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China ²¹ Centre d'appui pour la Prévention des Infections Associées aux Soins, CPias Normandie, Centre Hospitalo-Universitaire, Caen, Normandy, France ²² World Federation of Societies of Anaesthesiologists ²³ World Health Organization, Service Delivery and Safety, Infection Prevention and Control Global Unit *Corresponding author Corresponding author: S. W. de Jonge, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands, email: s.w.dejonge@amsterdamumc.nl, telephone number 0031 (0)20 566 9111. Word count: 2921 (excluding title page, abstract, article summary, tables, ethics and dissemination, and references)

2	4.0	
4		
5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 24 25 27 28 9 30 12 33 45 36 7 8 9 0 12 23 24 25 27 28 9 30 12 33 45 36 7 8 9 0 41 23 44 5 6 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	46 47	Keywords: general anaesthesia; hyperoxia; postoperative outcome; surgical site infection; surgical wound infection
60		

48 ABSTRACT

Introduction: The use of high fraction of inspired oxygen (FiO₂) intraoperatively for the prevention of surgical site infection (SSI) remains controversial. Promising results of early randomized controlled trials (RCT) have been replicated with varying success and subsequent meta-analysis are equivocal. Recent advancements in perioperative care, including the increased use of laparoscopic surgery and pneumoperitoneum and shifts in fluid and temperature management, can affect peripheral oxygen delivery and may explain the inconsistency in reproducibility. However, the published data provides insufficient detail on the participant level to test these hypotheses. The purpose of this individual participant data meta-analysis is to assess the described benefits and harms of intraoperative high FiO_2 compared to regular (0.21-0.40) FiO_2 and its potential effect modifiers.

59 Methods and analysis:

Two reviewers will search medical databases and online trial registries, including MEDLINE, EMBASE, CENTRAL, CINHAL, and clinicaltrial.gov, for randomised and quasi randomised controlled trials comparing the effect of intraoperative high FiO2 (0.60-1.00) to regular FiO2 (0.21-0.40) on SSI within 90 days after surgery in adult patients. Secondary outcome will be all-cause mortality within the longest available follow-up. Investigators of the identified trials will be invited to collaborate. Data will be analysed with the one step approach using the generalised linear mixed model framework and the statistical model appropriate for the type of outcome being analysed (logistic and cox regression respectively), with a random treatment effect term to account for the clustering of patients within studies. The certainty of evidence will be assessed using GRADE methodology. Pre-specified subgroup analyses include use of mechanical ventilation, nitrous oxide, preoperative antibiotic prophylaxis, temperature (<35°C), fluid supplementation (<15ml/kg/hr) and procedure duration (>2.5h).

Figure 2. For the second second

75 Trial Registration Number: PROSPERO CRD42018090261

 5 6 77 Strengths and limitations of this study 7 8 78 Individual participant data meta-analysis (IPD MA) of (quasi-)randomised controlled t 	
 provides the best possible analysis of the available data on the participant level, perm the investigation of potential effect modifiers. IPD MA requires the collaboration of all investigators that have published data on the relevant topic and leads to a broad consensus on the outcome and interpretation of t analysis IPD MA depends on the quality of data that is made available by the authors of the or studies. 	rmitting he f the

86 INTRODUCTION

Surgical site infection (SSI) is one of the most common healthcare-associated infections and leads to morbidity, mortality, and longer hospital stay.(1-4) The attributable costs can be more than €14.000 per SSI, and European totals are estimated to range from €1.5 to €19 billion per year.(5, 6) In 2016-2017, both the World Health Organization (WHO) and the Centres of Disease Control and Prevention (CDC) independently released evidence-based guidelines on the prevention of SSI that included a recommendation in favour of the administration of high fraction of inspired (FiO₂) for patients undergoing surgery under general anaesthesia.(7-9) This has led to a debate between opponents and proponents of the use of high FiO₂ in several editorials and correspondences across medical speciality literature.(10-20) Concerns were raised on the safety of the use of high FiO_2 as well as on the conflicting study results with some in support of the use of high FiO₂ to reduce SSI and some not.(10-20) Finally, studies by of one of the authors that contributed to the body of evidence were retracted because of unreproducible statistics.

In response to these concerns, the WHO conducted an independent systematic review on the safety of high intraoperative FiO₂ and updated the systematic review on its effectiveness, excluding the disputed trials.(21, 22) No evidence of harm to discourage the use of high FiO_2 was found, yet the evidence of an effect of SSI had become weaker, and the recommendation was adjusted accordingly.(23) Despite various studies and recommendations, there is still no consensus on the safety and effectiveness of using high FiO₂ during surgery with regard to SSI, all-cause mortality and other adverse events in adult patients. This leads to practice variation that inevitably exposes patients to suboptimal care.(24) There is a need for better understanding and consensus on this issue.

Since the early promising results, perioperative care has changed considerably. Open abdominal surgery has been largely replaced by laparoscopic surgery, fluid management has moved from liberal to restrictive, to advanced goal directed regimens and active perioperative warming has become a mainstay.(25-27) All these changes have considerable consequences for hemodynamic, microcirculation, and eventually peripheral oxygen delivery. (28-30) These changes may explain the inconsistency in reproducibility, but the available data provides insufficient detail on the participant level to test the potential of high FiO₂. Meta-analysis of individual participant data uses the raw individual-level data from the original study for synthesis and overcomes this limitation.(31, 32) IPD MA enables analysis of uniform outcomes with more statistical power and assessment of potential effect modifiers.(33, 34) Importantly, IPD MA requires collaboration with all published researchers on the topic leading to a broad consensus on the outcome of data analysis and interpretation.

BMJ Open

2		
3 4	119	The purpose of this IPD MA is to assess the potential benefits and harms of intraoperative high (0.60-
5	120	1.00) FiO ₂ compared to traditional (0.21-0.40) FiO ₂ and its effect modifiers in adult patients
6 7	121	undergoing surgery with SSI being the primary outcome. This IPD MA is initiated by the University of
8	122	Amsterdam / Amsterdam University Medical Center, and encouraged by the WHO and the World
9 10	123	Federation of Societies of Anaesthesiologists (WFSA) to provide patients and practitioners with the
11 12	124	best possible evidence and guidance on this disputed area and will give clearance of the disputed
13	125	hypothesis that high FiO ₂ reduces the incidence of SSI.
14 15		
16 17		
18		
19 20		
21		
22 23		
24		
25 26		
27		
28		
29 30		
31		
32 33		
34		
35 36		
30 37		
38		
39 40		
41		
42 43		
43 44		
45		
46 47		
48		
49 50		
51		
52		
53 54		
55		

126 METHODS AND ANALYSIS

Protocol and registration

This study protocol is registered with the International Prospective Register of Systematic Reviews
(PROSPERO) on 7 March 2018 and was last updated on 15 July 2022 (registration number
CRD42018090261). The study protocol is designed and written to adhere to the Preferred Reporting
Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P)(35) and the Preferred
Reporting Items for Systematic Review Meta-Analysis of individual patient data (IPD) (PRISMAIPD).(32)

135 Patient and Public Involvement Statement

This project is encouraged by the World Health Organization (WHO), and the World Federation of
Societies of Anesthesiologists (WFSA) to provide patients and practitioners with the best possible
evidence and guidance on this disputed area. WHO and WFSA have provided external independent
review and advice on research direction and aim.

142 Governance

This study is an initiative of the Amsterdam University Medical Centre, encouraged by the WHO and the WFSA. Both organisations recognise the urgent need for this research and provide external independent review and advice. The writing committee consists of the study coordinator, two reviewers, a lead methodologist, and a principal investigator from both the surgery and the anaesthesiology department of the Amsterdam University Medical Centre and two external content matter experts. The writing committee is entirely independent of the initial trials and has full responsibility for all methodological decisions. A broader steering committee with representatives of the collaborating trial groups identified during the project will be invited to comment on and co-author the final protocol and IPD MA report. By sharing their IPD, collaborators will obtain one co-authorship on the IPD MA report and one additional co-authorship if data of more than 300 participants is shared. For transparency and against intellectual bias, a record will be kept of all comments. Any important amendments to the protocol will be recorded in PROSPERO record and discussed in the methods section of the final report.

58 156

60 157 Eligibility criteria

Page 9 of 22

BMJ Open

We will include all randomised and quasi-randomised controlled trials comparing the effect of intraoperative high FiO₂ (0.60-1.0) to traditional FiO₂ (0.21-0.40) in patients undergoing surgery. Definitions for high and low FiO_2 were determined by literature review and consensus among the IPDMA collaborators. (21, 22) These trials may include patients of any age undergoing surgery except for neonates, regardless publication, language, or year of conduct and should include at least data on age, sex, mean FiO₂ administered, method of oxygen administration, SSI, mortality, or other serious adverse events. Any outcome found to be recorded in these trials will be included in the analysis. Studies without random or quasi-random treatment allocation, animal studies, and studies outside of the intraoperative period will be excluded. Identifying studies – information sources The initial search conducted for the WHO guideline will be updated by a professional information specialist.(21, 22) Medical databases will be searched, including MEDLINE, EMBASE, CENTRAL, CINHAL, and the WHO regional databases. Online trial registries will be searched to identify potential unpublished evidence or any ongoing trials. The search will not be limited by language or date of publication. A final update will be conducted before the final round of revisions preceding submission for publication. The reference list of all included studies will be hand searched for any additional

relevant trials not already identified through database searching. All corresponding authors of

relevant clinical trials will be contacted to review the list of identified studies for the omission of
 netentially relevant studies missed by the second.

177 potentially relevant studies missed by the search.

179 Study selection process

Two reviewers will independently assess articles retrieved by the search against the eligibility criteria. After screening the title and abstract, the full text of potentially eligible papers will be retrieved and assessed. When no full paper exists, or trial eligibility is in doubt, the study authors will be contacted to provide further information. Any discrepancies in study selection will be resolved through consensus and discussion with a senior author. All studies that pass title and abstract screening but were not eligible for inclusion will be listed with the reasons for exclusion.

54 186

187 Study collaboration invitation

Authors of eligible studies will be contacted and invited to collaborate on the IPD MA. An email
invitation will be sent to the corresponding authors outlining the IPMDA goals. If no reply is received

within two weeks, a second email request will be sent to the corresponding and first author. If no
response is received again, we will try to contact all authors by email and telephone. IPD data will be
considered unavailable if numerous times (at least five) no reply is received if authors no longer have
access to the study data or consent to collaboration.

11 194

13 195 Data collection process

The collaborating investigators will be requested to sign a data transfer agreement describing the ownership and storage of the IPD before IPD is shared. Whenever possible, data collection, interview on the protocol, and formal handoff on the data codebook will be done electronically via email, videoconference, or a suitable alternative. Whenever requested by the original investigator, a researcher will visit the investigators for a physical data transfer, in-person interview, and data codebook handoff. IPD will be de-identified by the suppling collaborator. The IPD de-identification code will not be shared. IPD will be transferred using one of the following secure methods: SurfFilesender, a secure password protected data transfer service, (36) end-to-end encrypted and password protected using email or send by courier on a physical storage media. Once transferred, IPD will be stored securely on the local server of the Amsterdam UMC where appropriate data and privacy policies will be maintained, as well as procedures and associated physical, technical and administrative safeguards to assure that the IPD are accessed only by authorized personnel. In the unlikely event that individual patient data will not be made available, the reason will be recorded. The aggregate data of the study will be used in a sensitivity analysis. Aggregate data collection will be performed as appropriate for a regular meta-analysis by two independent reviewers according to a predefined data extraction sheet and overseen by a senior author to settle potential discrepancies. The University of Amsterdam's Clinical Research Unit will facilitate secure data storage.

45 213

214 Data items

⁴⁹ 215 Data items will include all data recorded by the initial trial investigators including, but not limited to
⁵⁰ 216 the items listed in table 1 and table 2. SSI within 90 days after surgery according to the authors
⁵² 217 discretion will be the primary outcome, all-cause mortality within the longest available follow up will
⁵⁴ 218 be the secondary outcome. All other outcomes are exploratory.

Table 1. Baseline and procedure characteristics			
Baseline	Sex, age, BMI (kg/m ²), ASA physical status score, smoking status, peripheral		
	vascular disease, diabetes, (metastatic) cancer, congestive heart disease,		
	(pulmonary) hypertension, chronic obstructive pulmonary disease,		

	immunosuppressant use, peripheral oxygen saturation (%), glucose (mg/dL),			
	indication for surgery, emergency procedure			
Preoperative	Use of preoperative antibiotic prophylaxis (dose and agent), timing of			
reoperative	preoperative antibiotic prophylaxis, use of mechanical bowel preparation,			
	haemoglobin (g/dL), use of antibiotic bowel preparation, cytostatic			
	chemotherapy, radiotherapy, Use of preoperative skin preparation prophylaxis			
	(dose and agent), Timing of preoperative skin preparation prophylaxis			
Intraoperative	Surgical procedure(s), organ involvement, contamination (CDC wound			
maaperative	classification(37)), laparoscopic surgery, mean arterial pressure (MAP) (mmHg),			
	haemoglobin (g/dL), heart rate (beats/min), hemodynamic monitoring method,			
	hemodynamic management algorithm, crystalloid infusion (ml), colloid Infusion			
	(ml), red-cell transfusion (units), duration of surgery (min), duration of			
	anaesthesia (min), mean core temperature (°C)*, lowest core temperature (°C)*.			
	mean net fluid supplementation (ml/kg/hr), arterial oxygen saturation (%),			
	peripheral oxygen saturation (%), subcutaneous oxygen tension (mm Hg), muscle oxygen tension (mm Hg), partial pressure of arterial oxygen (mmHg), mean FiO ₂			
	(%), mean PEEP (cmH ₂ O), ventilator flow (L/min), peak airway pressure (mmHg),			
	plateau pressure (mmHg), tidal Volume (ml/kg predicted body weight),			
	respiratory frequency, vasopressor agent, vasopressor agent used (mg), glucose			
	(mg/dL), use of general anaesthesia, use of spinal or epidural anaesthesia, use or			
	mechanical ventilation, use of nitrous oxide, total blood loss (ml), fluids (ml), end			
	tidal CO ₂			
Postoperative	Use of postoperative antibiotics (dose and agent), postoperative antibiotic			
,	duration (days), cytostatic chemotherapy, radiotherapy, haemoglobin (g/dL), VAS			
	pain score, use of postoperative oxygen suppletion (duration, method and FiO_2),			
	haemoglobin (g/dL), peripheral oxygen saturation (%), partial pressure of arterial			
	oxygen (mmHg), subcutaneous oxygen tension (mmHg), muscle oxygen tension			
	(mmHg), glucose (mg/dL), NNIS score(38), SSI risk score(39), Use of drains			
Oxygen	Total duration and concentration of oxygen exposure during the			
Administration	pre/intra/postoperative period (timing of initiation, concentration, duration),			
& Monitoring	oxygen supply and mode of administration (Intubation, use and type of face			
Ū.	mask, nasal prongs), carrier gas (N_2 , N_2 0, medical or room air), protocol-defined			
	target or range of partial pressure of arterial oxygen (mmHg) or peripheral			
	oxygen saturation (%)			
* Direct measu	irement or its approximation by peripheral measurement			
Table 2. Outcon	ne data and effect measure specification			
Primary	 SSI within 90 days after surgery by the author's discretion 			
<u> </u>				

44	
45	Table 2. Outcome da
46	
47	Primary
48	Secondary
49	Exploratory
50	Exploratory
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
	10
	-

-

_

-

-

-

_

practice(40)

(days)

days after surgery

All-cause mortality within the longest available follow-up

Serious adverse events defined by the ICH guidelines for good clinical

Respiratory insufficiency: defined as the need for respiratory assistance

provided as ventilator therapy or non-invasive ventilation within 90

Unplanned ICU admission (not part of routine postoperative care)

SSI monitored according to the CDC criteria and specified as either

Survival within the longest available follow-up

superficial, deep, organ/space(41)

2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	220
17	
19	221
20	221
21	
22	222
23	223
24	224
25	224
26 27	225
27	226
29	220
30	227
31	228
32	228
33	229
34	230
35 36	250
37	231
38	
39	232
40	
41	233
42	
43	234
44 45	
45 46	235
47	236
48	
49	237
50	238
51	220
52 53	239
53 54	240
55	744
56	241
57	242
58	243
59	243

	 Hospital readmissions within 90 days after surgery
	 Anastomotic leakage as defined by the international study group of rectal cancer(42)
	 Total duration of hospitalization, including readmissions related to the initial hospitalization
	 Any cardiovascular complication at any time after surgery
	 Any pulmonary complications at any time after surgery
	- Stroke at any time after surgery
	 New or recurrent cancer diagnosis at any time after surgery
	 Any further clinically relevant outcome reported in the IPD
* When patients are r	eoperated within follow up for reasons other than surgical site infection
these cases will be ex	cluded from the analysis based on loss to follow up.

221 **Missing data**

222 When variables are missing at the participant level and the missing at random assumption is 223 plausible, multiple imputations by chained equations may be applied in each trial separately before 224 proceeding with the analysis. Variables that miss systematically i.e., unknown for the entire study or 225 are deemed missing non-randomly after discussion in the writing committee, will not be imputated. 226 When this concerns variables included in pre-defined analysis, studies systematically missing this 227 variable will be excluded from that analysis. When this concerns variables not included in pre-defined 228 analysis, these variables will be dropped from the main outcome analysis as potential confounding 229 variables. The set of available variables for the main analysis will thus be determined by the data set 230 with the least available variables. Variables from richer sets will remain available for exploratory 231 analysis among data sets with the variable available.

233 **Individual Participant Data integrity**

234 We will check IPD for potential missing, invalid, or out-of-range values, inconsistencies, and 235 discrepancies with the aggregate publication. When identified, we will seek to resolve the issues with 236 the trial investigators to improve data quality and ensure that trials are represented accurately. In 237 addition, any modelling assumptions made in the initial analysis will be evaluated (i.e., missing at 238 random in the case of multiple imputation or non-informative censoring and proportional hazards in 239 the case of time to event data). In the case of any concerns on IPD integrity further prove of 240 execution of the trial and substantiation of the results may be requested such as prove of 241 institutional review board approval or original case record forms. If concerns cannot be resolved with 242 the trial investigators, the data of the concerning study will not be included in the primary analysis 243 and the reason for exclusion will be explicitly stated.

2		
3 4	244	
5 6	245	Risk of bias
7 8	246	Two reviewers will independently assess the quality of the included studies using the Cochrane risk-
9 10	247	of-bias tool for randomised trials (Rob 2).(43) Studies will be judged as "low risk", "some concerns",
11	248	or "high risk of bias". Publication bias will be assessed using a contour enhanced funnel plot.(44)
12 13	249	Additionally, the IPD will be used to directly check process parameters of some of the bias domains.
14 15	250	Randomization and allocation concealment will be assessed by checking baseline imbalances.
16	251	Incomplete outcome data will be assessed by checking the IPD to ensure all randomized patients are
17 18	252	included. All available clinically relevant outcomes in the IPD will be reported in the IPD MA. For time
19 20	253	to event outcomes such as mortality, pattern and extent of follow up will be checked. When needed,
21 22	254	additional follow up with original authors will be conducted to rectify any imbalances as far as
23	255	possible.
24 25	256	Synthesis methods
26 27	250	
28	257	Synthesis methods
29 30	258	All outcomes will be analysed according to the intention to treat principle and using a one-step
31 32	259	approach for IPD MA. In the one-step approach, IPD will be modelled from all studies simultaneously
33 34	260	using the generalised linear mixed model framework and the statistical model appropriate for the
35	261	type of outcome being analysed (i.e., logistic regression for binary outcome data, linear regression
36 37	262	for continuous outcome data, and Cox-regression for time to event data). A random treatment effect
38 39	263	term will be added to the model and all other parameters (intercepts, prognostic factor effects and
40	264	residual variances) will be stratified by trial to account for the clustering of patients within studies.
41 42	265	Maximum likelihood with quadrature will be used as estimation method and study-specific centering
43 44	266	of the variables.(45) Variables potentially affecting the outcome that, despite randomisation, show
45	267	baseline imbalances across treatment arms will be considered for adjustment based on the criteria
46 47	268	for confounder selection by VanderWeele and Shpitser.(46-49) Procedure duration is considered an
48 49	269	important proxy for the complexity of the procedure and will also be considered for adjustment
50	270	despite being measured during the exposure.(48, 49) We assume that the FiO_2 used does not affect
51 52	271	procedure duration. Benjamini-Hochberg correction will be used to account for multiple testing for
53 54	272	the primary and secondary outcomes when appropriate.(50)
55 56	273	
57 58 59 60	274	Exploration of variation in effects
00		

To explore the causes of heterogeneity and identify factors modifying the effects of high intraoperative FiO₂, we will perform pre-specified subgroup analyses by extending the one-step meta-analysis framework to include treatment-covariate interaction terms. Subgroups will be defined according to mean core temperature (<35°C), mean net fluid supplementation (<15ml/kg/hr), use of mechanical ventilation, use of nitrous oxide, use of preoperative antibiotic prophylaxis, and procedure duration (>2.5h). All subgroup variables have been proposed as effect modifiers in previous studies and have a plausible biological substantiation.(51-62) Cut-offs are driven by previously reported data. (51-62) Treatment-covariate interaction terms p < 0.05 will be considered statistically significant. Dose-response variation will be explored by total O₂ exposure duration for each primary outcome. All exploratory analysis will be interpreted with caution considering the limited power and potential of type 1 error when multiple interactions are tested.

287 Additional analysis

 A sensitivity analysis will be conducted to test the impact of excluding trials using N₂O as a carrier gas on the pooled effect estimate. Further, the choice of SSI definition will be evaluated in a sensitivity analysis applying the CDC definition as the primary outcome. In the case of exclusion of trials due to concerns on IPD integrity, a sensitivity analysis will be conducted to test the impact of including the concerning data on the pooled effect estimate. When multiple imputation is performed, a complete case analysis will also be conducted. In studies with sufficiently detailed data on the intervention, all analyses will also be conducted according to the per-protocol principle after adjustment for confounding factors due to incomplete adherence to the assigned treatments or use of off-protocol concomitant therapies according to the variable selection principles described for the primary analysis. Per protocol treatment will be defined as an FiO₂ of 0.80 ± 0.05 for at least 75% of the ventilation time in the intervention group, and an FiO_2 smaller than 0.40 with a margin of 0.05, for 75% in the control group. Patients requiring more oxygen for medical reasons, for example to maintain adequate saturation, after initial ventilation with an FiO_2 of 0.45 are exempted and not considered a protocol deviation. A sensitivity analysis will be conducted according to the two-step approach. All studies will be reanalysed separately, similarly to the one-step approach but without the term for trial clustering. The new aggregate data of each study will then be synthesised in a second step synthesising an overall estimate using maximum likelihood method followed by the Hartung-Knapp Sidik-Jonkman correction assuming random effects.(63) Between-study variance will be evaluated using τ^2 ; in addition, the Chi² test for heterogeneity will be performed with p <0.100 considered statistically significant. In the unlikely event that IPD will not be made available,

1 2		
3	308	aggregate study data will be included in the analyses during step two. Any unforeseen challenge
4 5	309	during the analysis or choice that leads to discussion in the steering group that cannot be resolved by
6 7	310	consensus will also be subjected to sensitivity analysis. To assess robustness of the time to event
8	311	outcomes a survival curve will be compared to the univariable version of the Cox proportional
9 10	312	hazards regression analysis.
11 12 13	313	
14 15 16	314	Certainty of the cumulative estimate
17	315	The Grading of Recommendations Assessment Development and Evaluation (GRADE) working group
18 19	316	methodology will be used to assess the overall quality of evidence for the following domains: risk of
20 21	317	bias, unexplained inconsistency, indirectness, imprecision, publication bias, and magnitude of effect.
22	318	Additional domains may be considered where appropriate. Optimal information size, defined as the
23 24	319	number of participants needed for a single adequately powered trial, was calculated assuming a
25 26	320	type-1 error ($lpha$) of 0.05, a type 2 error (eta) of 0.2 and a relative risk reduction of 0.25.(64) If a
27	321	confidence interval failed to exclude appreciable benefit or harm, defined as a relative risk reduction
28 29	322	or increase of 0.25, the quality of evidence will be downgraded regardless of the optimal information
30 31	323	size.(64) The overall certainty will be classified using four levels: high, moderate, low, and very
32	324	low.(65)
33 34	325	low.(65) Software
35 36	525	
37	326	Software
38 39 40	327	Results will be processed using R 4.0.4.
41 42	328	
43 44 45	329	ETHICS AND DISSEMINATION
46 47	330	Ethical approval
48 49	331	Because this concerns a study on existing de-identified patient data, the medical research involving
50	332	human subjects act does not apply and no formal medical ethics review is required.
51 52 53	333	
54 55 56	334	Dissemination
57	335	This protocol and the results of this study will be submitted to a peer-reviewed medical journal
58 59 60	336	regardless of the outcome. The protocol will be submitted before the data is gathered and analysed.
		14

2 3	337	
4 5 6	338	Competing interests
7 8	339	S.W.J. reports receipt of grants from Photonics in Healthcare, Integra LifeSciences, and Ethicon
9	340	outside the submitted. P.S.M. reports receipt of grants or contracts from the Australian National
10 11	341	Health and Medical Research Council (NHMRC), Practitioner Fellowship and Projects Grants, payment
12 13	342	of expert testimony from Avant Medical Indemnity, and participation on a Data Safety Monitoring
14	343	Board of Advisory Board for the SNAP, TOPIC-2 and BONANZA trials. A.F. reports receipt of
15 16	344	institutional grants from the Australian Research Council Discovery Project and National Health and
17 18	345	Medical Research Council Ideas outside the submitted work and participation on a Data Safety
19	346	Monitoring Board or Advisory Board for the Australian Kidney Trials Research Network (INCH-HD,
20 21	347	IMPEDE, TEQCH-PD, PHOSPHATE, BEST Fluids, N3RO trial, CKD-FIX, IMPROVE-FIX). R.G. reports
22 23	348	participation on Steering Committee for the IntuBot Innosuisse Projekt and has a leadership role as
24 25	349	ERC Director of Guidelines and ILCOR, and ILCOR Task Force Chair on Education, Implementation and
26	350	Team, and Treasurer of European Airway Management society, and reports receipt without any
27 28	351	payment of airway equipment for the research of the following: Intersurgical, Karl Storz, Verathon
29 30	352	Inc, Aircraft Medical, Prodol Meditec, Venner Medical, Kingsystems, Medtronic, Ambu, VBM,
31	353	Radiometer, Sentec, and Fisher & Paykel. A.K. reports receipt of grants or contracts from Potrero
32 33	354	Medical, Rehabtronics and The 37company outside the submitted work and participation on a Data
34 35	355	Safety Monitoring Board of Advisory Board in Directedsystems, Potrero Medical and BioAgel
36	356	Laboratories. J.M. reports voluntary participation as a panellist in the updated WHO Guidelines on
37 38	357	high vs low FiO2 in 2018 and voluntary co-investigator in the PENGUIN trial of high versus low FiO2
39 40	358	for SSI prevention in abdominal surgery in low- and middle-income settings with GlobalSurg
41	359	Collaborative. M.G.W.D. reports participation on a Data Safety Monitoring Board or Advisory Board
42 43	360	for the following trials: DANCE, SPHINX, ICONIC, SAFE, PACER, LEARNS, RECAP, and BIOPEX2. C.F.
44 45	361	reports receipt fees for lectures and educational events from Getinge and Medtronic outside the
46	362	submitted work. C.S. reports receipts of institutional grants from NICHD outside the submitted work.
47 48	363	M.A.B. reports receipt of institutional grants from KCI/3M, Johnson & Johnson, New Compliance, BD
49 50	364	Bard, Gore, Telabio, GDM, Medtronic, and Smith & Nephew outside the submitted work, and
51	365	participation on the Data Monitoring Committee of the EXTEND trial. M.W.H. reports receipt of
52 53	366	institutional grants from ZonMw outside the submitted work, consulting institutional fees from IDD
54 55	367	Pharma outside the submitted work, institutional payment or honoraria for lectures, presentations,
56	368	speakers bureaus, manuscript writing or educational events from CSL Behring outside the submitted
57 58	369	work, and has a leadership role in DGAI, ISAP and IARS (Anaesthesia and Analgesia). The other
59 60	370	authors declare no conflict of interest.

1		
2 3	371	
4 5		
6	372	Funding
7 8 9	373	This work was supported by the Amsterdams Universiteitsfonds grant (4069) to R. H. Hulskes.
10 11	374	
12 13	375	Contributions
14 15	376	SJ conceived the study. SJ, MH, MB and RH secured funding for the study. SJ, MH, MB, MD, and RH
16 17	377	designed the study, drafted the study protocol and provided statistical expertise. RH and MZ
18	378	provided input for the literature search and will coordinate the assembly of the data and perform the
19 20	379	screening, inclusion and assessment of risk of bias. RW, CM, KL, PM, AF, RG, OA, AK, DS, JM, KP, JB,
21	380	CF, GG, CS, DM, MC, PT, JO and BA provided substantial contributions to the study design, provided
22 23	381	critical feedback and approved the final version of the study protocol. All authors compliant with
24 25	382	their responsibilities according to the research protocol, meet authorship criteria as defined by the
26	383	international committee of medical journal editors.
27 28	505	
29 30	384	
31	385	Acknowledgements
32 33		· L .
34 35	386	The authors thank Faridi Jamaludin as professional information specialist for the search.
36	387	
37 38		2
39	388	Data sharing
40 41 42	389	Data will be made available upon reasonable request and review and approval of all collaborators.
43		
44 45		
46		
47 48		
49 50		
50 51		
52 53		
54		
55 56		
57		
58 59		
60		

References 1. Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-prevalence survey of health care-associated infections. The New England journal of medicine. 2014;370(13):1198-208. de Lissovoy G, Fraeman K, Hutchins V, Murphy D, Song D, Vaughn BB. Surgical site infection: 2. incidence and impact on hospital utilization and treatment costs. American journal of infection control. 2009;37(5):387-97. Control ECfDPa. Point prevalence survey of healthcareassociated 3. infections and antimicrobial use in European acute care hospitals. Stockholm: ECDC; 2013. 4. ECDC. Surveillance of surgical site infections in Europe 2010–2011. Stockholm: ECDC; 2013. 5. Leaper DJ, van Goor H, Reilly J, Petrosillo N, Geiss HK, Torres AJ, et al. Surgical site infection -a European perspective of incidence and economic burden. Int Wound J. 2004;1(4):247-73. Koek MBG, van der Kooi TII, Stigter FCA, de Boer PT, de Gier B, Hopmans TEM, et al. Burden 6. of surgical site infections in the Netherlands: cost analyses and disability-adjusted life years. J Hosp Infect. 2019;103(3):293-302. 7. Allegranzi B, Bischoff P, de Jonge S, Kubilay NZ, Zayed B, Gomes SM, et al. New WHO recommendations on preoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis. 2016;16(12):e276-e87. 8. Allegranzi B, Zayed B, Bischoff P, Kubilay NZ, de Jonge S, de Vries F, et al. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis. 2016;16(12):e288-e303. Berrios-Torres SI, Umscheid CA, Bratzler DW, Leas B, Stone EC, Kelz RR, et al. Centers for 9. Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg. 2017. 10. Hedenstierna G, Perchiazzi G, Meyhoff CS, Larsson A. Who Can Make Sense of the WHO Guidelines to Prevent Surgical Site Infection? Anesthesiology. 2017;126(5):771-3. 11. Volk T, Peters J, Sessler DI. The WHO recommendation for 80% perioperative oxygen is poorly justified. Anaesthesist. 2017;66(4):227-9. 12. Wenk M, Van Aken H, Zarbock A. The New World Health Organization Recommendations on Perioperative Administration of Oxygen to Prevent Surgical Site Infections: A Dangerous Reductionist Approach? Anesth Analg. 2017;125(2):682-7. 13. Meyhoff CS, Fonnes S, Wetterslev J, Jorgensen LN, Rasmussen LS. WHO Guidelines to prevent surgical site infections. Lancet Infect Dis. 2017;17(3):261-2. Mellin-Olsen J, McDougall RJ, Cheng D. WHO Guidelines to prevent surgical site infections. 14. Lancet Infect Dis. 2017;17(3):260-1. Berrios-Torres SI, Umscheid CA, Bratzler DW, Leas B, Stone EC, Kelz RR, et al. Centers for 15. Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg. 2017;152(8):784-91. 16. Solomkin J, Egger M, de Jonge S, Latif A, Loke YK, Berenholtz S, et al. World Health Organization Responds to Concerns about Surgical Site Infection Prevention Recommendations. Anesthesiology. 2018;128(1):221-2. Akca O, Ball L, Belda FJ, Biro P, Cortegiani A, Eden A, et al. WHO Needs High FIO2? Turk J 17. Anaesthesiol Reanim. 2017;45(4):181-92. Weenink RP, de Jonge SW, Preckel B, Hollmann MW. PRO: Routine hyperoxygenation in adult 18. surgical patients whose tracheas are intubated. Anaesthesia. 2020;75(10):1293-6. 19. Sperna Weiland NH, Berger MM, Helmerhorst HJF. CON: Routine hyperoxygenation in adult surgical patients whose tracheas are intubated. Anaesthesia. 2020;75(10):1297-300. Weenink RP, de Jonge SW, van Hulst RA, Wingelaar TT, van Ooij PAM, Immink RV, et al. 20. Perioperative Hyperoxyphobia: Justified or Not? Benefits and Harms of Hyperoxia during Surgery. J Clin Med. 2020;9(3).

BMJ Open

2		
3	440	21. Mattishent K, Thavarajah M, Sinha A, Peel A, Egger M, Solomkin J, et al. Safety of 80% vs 30-
4	441	35% fraction of inspired oxygen in patients undergoing surgery: a systematic review and meta-
5	442	analysis. Br J Anaesth. 2019;122(3):311-24.
6	443	22. de Jonge S, Egger M, Latif A, Loke YK, Berenholtz S, Boermeester M, et al. Effectiveness of
7	444	80% vs 30-35% fraction of inspired oxygen in patients undergoing surgery: an updated systematic
8 9	445	review and meta-analysis. Br J Anaesth. 2019;122(3):325-34.
9 10	446	23. Global Guidelines for the Prevention of Surgical Site Infection, (2018).
11	447	24. Staehr-Rye AK, Meyhoff CS, Scheffenbichler FT, Vidal Melo MF, Gätke MR, Walsh JL, et al.
12	448	High intraoperative inspiratory oxygen fraction and risk of major respiratory complications. BJA:
13	448 449	British Journal of Anaesthesia. 2017;119(1):140-9.
14	449	25. Greif R, Akça O, Horn EP, Kurz A, Sessler DI. Supplemental perioperative oxygen to reduce the
15	450 451	incidence of surgical-wound infection. New England journal of medicine. 2000;342(3):161-7.
16		
17	452	
18	453	surgical-site infections: an alternating intervention controlled trial. Br J Anaesth. 2018;120(1):117-26.
19	454	27. Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of
20	455	surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature
21 22	456	Group. The New England journal of medicine. 1996;334(19):1209-15.
22	457	28. Atkinson TM, Giraud GD, Togioka BM, Jones DB, Cigarroa JE. Cardiovascular and Ventilatory
24	458	Consequences of Laparoscopic Surgery. Circulation. 2017;135(7):700-10.
25	459	29. Doherty M, Buggy DJ. Intraoperative fluids: how much is too much? Br J Anaesth.
26	460	2012;109(1):69-79.
27	461	30. Sessler DI. Perioperative thermoregulation and heat balance. Lancet. 2016;387(10038):2655-
28	462	64.
29	463	31. Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale,
30	464	conduct, and reporting. BMJ. 2010;340:c221.
31	465	32. Stewart LA, Clarke M, Rovers M, Riley RD, Simmonds M, Stewart G, et al. Preferred Reporting
32	466	Items for Systematic Review and Meta-Analyses of individual participant data: the PRISMA-IPD
33 34	467	Statement. JAMA. 2015;313(16):1657-65.
35	468	33. Oxman AD, Clarke MJ, Stewart LA. From science to practice. Meta-analyses using individual
36	469	patient data are needed. JAMA. 1995;274(10):845-6.
37	470	34. Stewart LA, Parmar MK. Meta-analysis of the literature or of individual patient data: is there
38	471	a difference? Lancet. 1993;341(8842):418-22.
39	472	35. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting
40	473	items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and
41	474	explanation. BMJ. 2015;350:g7647.
42	475	36. SurfFilesender [SURFfilesender arose from the Filesender project (www.filesender.org). We
43	476	developed SURFfilesender to meet the needs of Dutch education and research institutions. With this
44 45	477	web application you can send any large file easily and securely.]. Available from:
46	478	https://filesender.surf.nl.
47	479	37. Garner JS. CDC guideline for prevention of surgical wound infections, 1985. Supersedes
48	480	guideline for prevention of surgical wound infections published in 1982. (Originally published in
49	481	November 1985). Revised. Infect Control. 1986;7(3):193-200.
50	482	38. Culver DH, Horan TC, Gaynes RP, Martone WJ, Jarvis WR, Emori TG, et al. Surgical wound
51	483	infection rates by wound class, operative procedure, and patient risk index. National Nosocomial
52	484	Infections Surveillance System. Am J Med. 1991;91(3B):152S-7S.
53	485	39. van Walraven C, Musselman R. The Surgical Site Infection Risk Score (SSIRS): A Model to
54	486	Predict the Risk of Surgical Site Infections. PLoS One. 2013;8(6):e67167.
55 56	487	40. INTEGRATED ADDENDUM TO ICH E6(R1): GUIDELINE FOR GOOD CLINICAL PRACTICE
56 57	,	
58	488	E6(R2), (2016).
59		
60		

Page 20 of 22

41. Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for Prevention of Surgical Site Infection, 1999. Centers for Disease Control and Prevention (CDC) Hospital Infection Control Practices Advisory Committee. American journal of infection control. 1999;27:97-132. Rahbari NN, Weitz J, Hohenberger W, Heald RJ, Moran B, Ulrich A, et al. Definition and 42. grading of anastomotic leakage following anterior resection of the rectum: a proposal by the International Study Group of Rectal Cancer. Surgery. 2010;147(3):339-51. 43. Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:14898. 44. Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J Clin Epidemiol. 2008;61(10):991-6. 45. Riley RD, Legha A, Jackson D, Morris TP, Ensor J, Snell KIE, et al. One-stage individual participant data meta-analysis models for continuous and binary outcomes: Comparison of treatment coding options and estimation methods. Statistics in Medicine. 2020;39(19):2536-55. 46. VanderWeele TJ. Principles of confounder selection. Eur J Epidemiol. 2019;34(3):211-9. 47. VanderWeele TJ, Shpitser I. A new criterion for confounder selection. Biometrics. 2011;67(4):1406-13. Haley RW, Culver DH, Morgan WM, White JW, Emori TG, Hooton TM. Identifying patients at 48. high risk of surgical wound infection. A simple multivariate index of patient susceptibility and wound contamination. Am J Epidemiol. 1985;121(2):206-15. 49. Korol E, Johnston K, Waser N, Sifakis F, Jafri HS, Lo M, et al. A systematic review of risk factors associated with surgical site infections among surgical patients. PLoS One. 2013;8(12):e83743. Thissen D, Steinberg L, Kuang D. Quick and Easy Implementation of the Benjamini-Hochberg 50. Procedure for Controlling the False Positive Rate in Multiple Comparisons. Journal of Educational and Behavioral Statistics. 2002;27(1):77-83. Pryor KO, Fahey TJ, 3rd, Lien CA, Goldstein PA. Surgical site infection and the routine use of 51. perioperative hyperoxia in a general surgical population: a randomized controlled trial. JAMA. 2004;291(1):79-87. Belda FJ, Aguilera L, Garcia de la Asuncion J, Alberti J, Vicente R, Ferrandiz L, et al. 52. Supplemental perioperative oxygen and the risk of surgical wound infection: a randomized controlled trial. JAMA. 2005;294(16):2035-42. 53. Meyhoff CS, Wetterslev J, Jorgensen LN, Henneberg SW, Hogdall C, Lundvall L, et al. Effect of high perioperative oxygen fraction on surgical site infection and pulmonary complications after abdominal surgery: the PROXI randomized clinical trial. JAMA. 2009;302(14):1543-50. 54. Bickel A, Gurevits M, Vamos R, Ivry S, Eitan A. Perioperative hyperoxygenation and wound site infection following surgery for acute appendicitis: a randomized, prospective, controlled trial. Arch Surg. 2011;146(4):464-70. Duggal N, Poddatoori V, Noroozkhani S, Siddik-Ahmad RI, Caughey AB. Perioperative oxygen 55. supplementation and surgical site infection after cesarean delivery: a randomized trial. Obstet Gynecol. 2013;122(1):79-84. 56. Gardella C, Goltra LB, Laschansky E, Drolette L, Magaret A, Chadwick HS, et al. High-concentration supplemental perioperative oxygen to reduce the incidence of postcesarean surgical site infection: a randomized controlled trial. Obstet Gynecol. 2008;112(3):545-52. 57. Mayzler O, Weksler N, Domchik S, Klein M, Mizrahi S, Gurman GM. Does supplemental perioperative oxygen administration reduce the incidence of wound infection in elective colorectal surgery? Minerva Anestesiol. 2005;71(1-2):21-5. 58. Myles PS, Leslie K, Chan MT, Forbes A, Paech MJ, Peyton P, et al. Avoidance of nitrous oxide for patients undergoing major surgery: a randomized controlled trial. Anesthesiology. 2007;107(2):221-31. 59. Stall A, Paryavi E, Gupta R, Zadnik M, Hui E, O'Toole RV. Perioperative supplemental oxygen to reduce surgical site infection after open fixation of high-risk fractures: a randomized controlled pilot trial. J Trauma Acute Care Surg. 2013;75(4):657-63.

1		
2		
3	541	60. Scifres CM, Leighton BL, Fogertey PJ, Macones GA, Stamilio DM. Supplemental oxygen for the
4	542	prevention of postcesarean infectious morbidity: a randomized controlled trial. Am J Obstet Gynecol.
5	543	2011;205(3):267 e1-9.
6 7	544	61. Williams NL, Glover MM, Crisp C, Acton AL, McKenna DS. Randomized controlled trial of the
7 8	545	effect of 30% versus 80% fraction of inspired oxygen on cesarean delivery surgical site infection. Am J
o 9	546	Perinatol. 2013;30(9):781-6.
) 10	547	62. Thibon P, Borgey F, Boutreux S, Hanouz JL, Le Coutour X, Parienti JJ. Effect of perioperative
11	548	oxygen supplementation on 30-day surgical site infection rate in abdominal, gynecologic, and breast
12	549	surgery: the ISO2 randomized controlled trial. Anesthesiology. 2012;117(3):504-11.
13	550	63. Langan D, Higgins JPT, Jackson D, Bowden J, Veroniki AA, Kontopantelis E, et al. A comparison
14	551	of heterogeneity variance estimators in simulated random-effects meta-analyses. Res Synth
15	552	Methods. 2019;10(1):83-98.
16		
17	553	64. Schünemann H, Brożek J, Guyatt G, Oxman A. Handbook for grading the quality of evidence
18	554	and the strength of recommendations using the GRADE approach (updated October 2013). GRADE
19	555	Working Group, 2013.
20	556	65. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an
21 22	557	emerging consensus on rating quality of evidence and strength of recommendations. BMJ.
22	558	2008;336(7650):924-6.
24	559	
25		
26		
27		
28		
29		
30		
31		
32 33		
33 34		
35		emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924-6.
36		
37		
38		
39		
40		
41		
42		
43 44		
44 45		
46		
47		
48		
49		
50		
51		
52		
53 54		
54 55		
56		
57		
58		

Section and topic	Item No	Checklist item	Reported on page
ADMINISTRATIVI	E INFO	DRMATION	
Title:			
Identification	1a	Identify the report as a protocol of a systematic review	1
Update	1b	If the protocol is for an update of a previous systematic review, identify as such	NA
Registration	2	If registered, provide the name of the registry (such as PROSPERO) and registration number	2
Authors:			
Contact	3a	Provide name, institutional affiliation, e-mail address of all protocol authors; provide physical mailing address of corresponding author	1
Contributions	3b	Describe contributions of protocol authors and identify the guarantor of the review	13
Amendments	4	If the protocol represents an amendment of a previously completed or published protocol, identify as such and list changes; otherwise, state plan for documenting important protocol amendments	6
Support:			
Sources	5a	Indicate sources of financial or other support for the review	13
Sponsor	5b	Provide name for the review funder and/or sponsor	13
Role of sponsor or funder	5c	Describe roles of funder(s), sponsor(s), and/or institution(s), if any, in developing the protocol	13
INTRODUCTION			
Rationale	6	Describe the rationale for the review in the context of what is already known	4-5
Objectives	7	Provide an explicit statement of the question(s) the review will address with reference to participants, interventions, comparators, and outcomes (PICO)	4
METHODS			
Eligibility criteria	8	Specify the study characteristics (such as PICO, study design, setting, time frame) and report characteristics (such as years considered, language, publication status) to be used as criteria for eligibility for the review	7
Information sources	9	Describe all intended information sources (such as electronic databases, contact with study authors, trial registers or other grey literature sources) with planned dates of coverage	7
Search strategy	10	Present draft of search strategy to be used for at least one electronic database, including planned limits, such that it could be repeated	Supplement0

PRISMA-P (Preferred Reporting Items for Systematic review and Meta-Analysis Protocols) 2015 checklist: recommended items to address in a systematic review protocol*

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Study records:			
Data management	11a	Describe the mechanism(s) that will be used to manage records and data throughout the review	8
Selection	11b	State the process that will be used for selecting studies (such as two independent reviewers) through each phase of the	7
process		review (that is, screening, eligibility and inclusion in meta-analysis)	
Data collection process	11c anv	Describe planned method of extracting data from reports (such as piloting forms, done independently, in duplicate), processes for obtaining and confirming data from investigators	8
Data items	12	List and define all variables for which data will be sought (such as PICO items, funding sources), any pre-planned data assumptions and simplifications	8-9
Outcomes and prioritization	13	List and define all outcomes for which data will be sought, including prioritization of main and additional outcomes, with rationale	9
Risk of bias in individual studies	14	Describe anticipated methods for assessing risk of bias of individual studies, including whether this will be done at the outcome or study level, or both; state how this information will be used in data synthesis	9-10
Data synthesis	15a	Describe criteria under which study data will be quantitatively synthesised	11
	15b	If data are appropriate for quantitative synthesis, describe planned summary measures, methods of handling data and methods of combining data from studies, including any planned exploration of consistency (such as I^2 , Kendall's τ)	12
	15c	Describe any proposed additional analyses (such as sensitivity or subgroup analyses, meta-regression)	12
	15d	If quantitative synthesis is not appropriate, describe the type of summary planned	NA
Meta-bias(es)	16	Specify any planned assessment of meta-bias(es) (such as publication bias across studies, selective reporting within studies)	10
Confidence in cumulative evidence	17	Describe how the strength of the body of evidence will be assessed (such as GRADE)	12-1

* It is strongly recommended that this checklist be read in conjunction with the PRISMA-P Explanation and Elaboration (cite when available) for important clarification on the items. Amendments to a review protocol should be tracked and dated. The copyright for PRISMA-P (including checklist) is held by the PRISMA-P Group and is distributed under a Creative Commons Attribution Licence 4.0.

From: Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart L, PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015 Jan 2;349(jan02 1):g7647.

BMJ Open

The benefits and harms of perioperative high fraction inspired oxygen for surgical site infection prevention: a protocol for a systematic review and meta-analysis of individual patient data of randomised controlled trials

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-067243.R2
Article Type:	Protocol
Date Submitted by the Author:	30-Jun-2023
Complete List of Authors:	de Jonge, Stijn; Amsterdam UMC Locatie AMC, Surgery; Amsterdam UMC Locatie AMC, Anaesthesiology Hulskes, Rick; Amsterdam UMC Locatie AMC, Anaesthesiology; Amsterdam UMC Locatie AMC, Surgery Zokaei Nikoo, Maedeh; Cleveland Clinic Foundation, Outcomes research Weenink, Robert ; Amsterdam UMC Locatie AMC, Anaesthesiology Meyhoff, Christian; Copenhagen University Hospital, Anaesthesia and Intensive Care Leslie, Kate; The Royal Melbourne Hospital, Anaesthesia Myles, Paul; Monash University, Anaesthesia and Perioperative Medicine Forbes, Andrew; Monash University, Epidemiology and Preventive Medicine Greif, Robert ; Inselspital University, Epidemiology and Preventive Medicine Greif, Robert ; Inselspital University, Anaesthesiology & Critical Care Medicine Kurz, Andrea; Cleveland Clinic, General Anesthesiology Sessler, Daniel; Cleveland Clinic, Martin, Janet; University of Western Ontario, Anaesthesiology & Perioperative Medicine and Department of Epidemiology & Biostatistics Dijkgraaf, Marcel; Amsterdam UMC Locatie AMC, Epidemiology and Data Science Pryor, Kane; Weill Cornell Medical College, Anesthesiology Belda, F. Javier; Hospital Clinico Universitario, Anaesthesiology and Critical Care Gurman, Gabriel; Ben-Gurion University of the Negev, Anaesthesiology and Critical Care Gurman, Gabriel; Ben-Gurion University of Hong Kong, Anesthesiology and Critical Care Medicine Scifres, Christina; Indiana University of Hong Kong, Anesthesiology Chan, MTV; The Chinese University of Hong Kong, Anesthesia and Intensive Care Thibon, Pascal; Centre d'appui pour la prevention des infections associees aux soins d'Ile-de-France Mellin-Olsen, Jannicke; World Federation of Societies of Anesthesiologists Allegranzi, B; World Health Organization Boermeester, Marja; Amsterdam UMC Locatie AMC, Surgery

Primary Subject Heading : Anaesthesia Secondary Subject Heading: Surgery	
Keywords: ANAESTHETICS, WOUND MAN DISEASES, SURGERY	GEMENT, Infection control < INFECTIOUS

SCHOLARONE[™] Manuscripts

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

TITLE PAGE The benefits and harms of perioperative high fraction inspired oxygen for surgical site infection prevention: a protocol for a systematic review and meta-analysis of individual patient data of randomised controlled trials S. W. de Jonge^{1a,b,2*}, R. H. Hulskes^{1a,2}, M. Zokaei Nikoo¹¹, R. P. Weenink², C. S. Meyhoff³, K. Leslie⁴, P. S. Myles⁵, A. Forbes⁶, R. Greif^{7,8}, O. Akça⁹, A. Kurz¹⁰, D. I. Sessler¹¹, J. Martin¹², M. G. Dijkgraaf^{13a,b}, K. O. Pryor¹⁴, F. J. Belda¹⁵, C. Ferrando^{16a,16b}, G. M. Gurman¹⁷, C. Scifres¹⁸, D. S. McKenna¹⁹, M. T. V. Chan²⁰, P. Thibon²¹, J. Mellin-Olsen²², B. A. Allegranzi²³, M. A. Boermeester^{1a, b}, M. W. Hollmann² ^{1a} Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ^{1b} Gastroenterology Endocrinology & Metabolism, Amsterdam, the Netherlands, Amsterdam, The Netherlands ² Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ³ Department of Anaesthesia and Intensive Care, Copenhagen University Hospital – Bispebjerg and Frederiksberg, Copenhagen, Denmark ⁴ Department of Critical Care, Melbourne Medical School, University of Melbourne, Australia ⁵ Department of Anaesthesiology and Perioperative Medicine, Alfred Hospital and Monash University, Melbourne, Australia ⁶ Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia ⁷ Department of Anaesthesiology and Pain Medicine, Bern University Hospital, University of Bern, Bern, Switzerland ⁸ School of Medicine, Sigmund Freud University Vienna, Vienna, Austria ⁹ Department of Anaesthesiology & Critical Care Medicine, Johns Hopkins University, Maryland, United States of America ¹⁰ Department of Anaesthesiology and department of Outcomes Research, Cleveland Clinic Cleveland Ohio, Ohio, United States of America ¹¹ Department of Outcomes Research, Cleveland Clinic Cleveland Ohio, Ohio, United States of America ¹² Department of Anaesthesiology & Perioperative Medicine and Department of Epidemiology & Biostatistics, University of Western Ontario. Canada ^{13a} Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Amsterdam, The Netherlands ^{13b} Amsterdam Public Health, Methodology, Amsterdam, The Netherlands ¹⁴ Department of Anaesthesiology, Weil Medical College of Cornell University, New York City, New York, United States of America ¹⁵ Department of Surgery and Department of Anaesthesia Critical Care, Hospital Clinico Universitario De Valencia, Valencia, Spain ^{16a} Department of Anaesthesiology and Critical Care, Hospital Clínic I Provincial, Barcelona, Spain ^{16b} CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain ¹⁷ Department of Anaesthesiology and Critical Care Medicine, Ben Gurion University of the Negev, Beer Sheva, Israel ¹⁸ Department of Obstetrics and Gynaecology, Indiana University School of Medicine, Indianapolis, United States of America ¹⁹ Department of Obstetrics and Gynaecology, Wright State University and Miami Valley Hospital, Ohio, United States of America ²⁰ Department of Anaesthesia and Intensive Care, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China ²¹ Centre d'appui pour la Prévention des Infections Associées aux Soins, CPias Normandie, Centre Hospitalo-Universitaire, Caen, Normandy, France ²² World Federation of Societies of Anaesthesiologists ²³ World Health Organization, Service Delivery and Safety, Infection Prevention and Control Global Unit *Corresponding author Corresponding author: S. W. de Jonge, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands, email: s.w.dejonge@amsterdamumc.nl, telephone number 0031 (0)20 566 9111. Word count: 2923 (excluding title page, abstract, article summary, tables, ethics and dissemination, and references)

2	4.0	
4		
5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 24 25 27 28 9 30 12 33 45 36 7 8 9 0 12 23 24 25 27 28 9 30 12 33 45 36 7 8 9 0 41 23 44 5 6 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	46 47	Keywords: general anaesthesia; hyperoxia; postoperative outcome; surgical site infection; surgical wound infection
60		

48 ABSTRACT

Introduction: The use of high fraction of inspired oxygen (FiO₂) intraoperatively for the prevention of surgical site infection (SSI) remains controversial. Promising results of early randomized controlled trials (RCT) have been replicated with varying success and subsequent meta-analysis are equivocal. Recent advancements in perioperative care, including the increased use of laparoscopic surgery and pneumoperitoneum and shifts in fluid and temperature management, can affect peripheral oxygen delivery and may explain the inconsistency in reproducibility. However, the published data provides insufficient detail on the participant level to test these hypotheses. The purpose of this individual participant data meta-analysis is to assess the described benefits and harms of intraoperative high FiO_2 compared to regular (0.21-0.40) FiO_2 and its potential effect modifiers.

59 Methods and analysis:

Two reviewers will search medical databases and online trial registries, including MEDLINE, Embase, CENTRAL, CINAHL, ClinicalTrials.gov, and WHO regional databases, for randomised and quasi randomised controlled trials comparing the effect of intraoperative high FiO2 (0.60-1.00) to regular FiO2 (0.21-0.40) on SSI within 90 days after surgery in adult patients. Secondary outcome will be all-cause mortality within the longest available follow-up. Investigators of the identified trials will be invited to collaborate. Data will be analysed with the one step approach using the generalised linear mixed model framework and the statistical model appropriate for the type of outcome being analysed (logistic and cox regression respectively), with a random treatment effect term to account for the clustering of patients within studies. The bias will be assessed using the RoB2 and the certainty of evidence using GRADE methodology. Pre-specified subgroup analyses include use of mechanical ventilation, nitrous oxide, preoperative antibiotic prophylaxis, temperature (<35°C), fluid supplementation (<15ml/kg/hr) and procedure duration (>2.5h).

72 Ethics and dissemination: Ethics approval is not required. Investigators will de-identify individual
73 participant data before it is shared. The results will be submitted to a peer-review journal.

75 Trial Registration Number: PROSPERO CRD42018090261

3 76 ARTICLE SUMMARY 4	
5677 Strengths and limitations	of this study
677Strengths and limitations778789910799911801213138114151582168381analysis	of this study ant data meta-analysis (IPD MA) of (quasi-)randomised controlled trials possible analysis of the available data on the participant level, permitting if potential effect modifiers. the collaboration of all investigators that have published data on the leads to a broad consensus on the outcome and interpretation of the on the quality of data that is made available by the authors of the original

86 INTRODUCTION

Surgical site infection (SSI) is one of the most common healthcare-associated infections and leads to morbidity, mortality, and longer hospital stay.(1-4) The attributable costs can be more than €14.000 per SSI, and European totals are estimated to range from €1.5 to €19 billion per year.(5, 6) In 2016-2017, both the World Health Organization (WHO) and the Centres of Disease Control and Prevention (CDC) independently released evidence-based guidelines on the prevention of SSI that included a recommendation in favour of the administration of high fraction of inspired (FiO₂) for patients undergoing surgery under general anaesthesia.(7-9) This has led to a debate between opponents and proponents of the use of high FiO₂ in several editorials and correspondences across medical speciality literature.(10-20) Concerns were raised on the safety of the use of high FiO_2 as well as on the conflicting study results with some in support of the use of high FiO₂ to reduce SSI and some not.(10-20) Finally, studies by of one of the authors that contributed to the body of evidence were retracted because of unreproducible statistics.

In response to these concerns, the WHO conducted an independent systematic review on the safety of high intraoperative FiO₂ and updated the systematic review on its effectiveness, excluding the disputed trials.(21, 22) No evidence of harm to discourage the use of high FiO_2 was found, yet the evidence of an effect of SSI had become weaker, and the recommendation was adjusted accordingly.(23) Despite various studies and recommendations, there is still no consensus on the safety and effectiveness of using high FiO₂ during surgery with regard to SSI, all-cause mortality and other adverse events in adult patients. This leads to practice variation that inevitably exposes patients to suboptimal care.(24) There is a need for better understanding and consensus on this issue.

Since the early promising results, perioperative care has changed considerably. Open abdominal surgery has been largely replaced by laparoscopic surgery, fluid management has moved from liberal to restrictive, to advanced goal directed regimens and active perioperative warming has become a mainstay.(25-27) All these changes have considerable consequences for hemodynamic, microcirculation, and eventually peripheral oxygen delivery. (28-30) These changes may explain the inconsistency in reproducibility, but the available data provides insufficient detail on the participant level to test the potential of high FiO₂. Meta-analysis of individual participant data uses the raw individual-level data from the original study for synthesis and overcomes this limitation.(31, 32) IPD MA enables analysis of uniform outcomes with more statistical power and assessment of potential effect modifiers.(33, 34) Importantly, IPD MA requires collaboration with all published researchers on the topic leading to a broad consensus on the outcome of data analysis and interpretation.

BMJ Open

1 2		
3 4	119	The purpose of this IPD MA is to assess the potential benefits and harms of intraoperative high (0.60-
5	120	1.00) FiO ₂ compared to traditional (0.21-0.40) FiO ₂ and its effect modifiers in adult patients
6 7	121	undergoing surgery with SSI being the primary outcome. This IPD MA is initiated by the University of
8	122	Amsterdam / Amsterdam University Medical Center, and encouraged by the WHO and the World
9 10	123	Federation of Societies of Anaesthesiologists (WFSA) to provide patients and practitioners with the
11 12	124	best possible evidence and guidance on this disputed area and will give clearance of the disputed
13	125	hypothesis that high FiO ₂ reduces the incidence of SSI.
14 15		
16 17		
18		
19 20		
21 22		
22		
24		
25 26		
27		
28 29		
30		
31 32		
32 33		
34		
35 36		
37		
38 39		
39 40		
41		
42 43		
44		
45 46		
47		
48 49		
49 50		
51		
52 53		
54		
55		

126 METHODS AND ANALYSIS

Protocol and registration

This study protocol is registered with the International Prospective Register of Systematic Reviews
(PROSPERO) on 7 March 2018 and was last updated on 15 July 2022 (registration number
CRD42018090261). The study protocol is designed and written to adhere to the Preferred Reporting
Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P)(35) and the Preferred
Reporting Items for Systematic Review Meta-Analysis of individual patient data (IPD) (PRISMAIPD).(32)

135 Patient and Public Involvement Statement

This project is encouraged by the World Health Organization (WHO), and the World Federation of
Societies of Anesthesiologists (WFSA) to provide patients and practitioners with the best possible
evidence and guidance on this disputed area. WHO and WFSA have provided external independent
review and advice on research direction and aim.

142 Governance

This study is an initiative of the Amsterdam University Medical Centre, encouraged by the WHO and the WFSA. Both organisations recognise the urgent need for this research and provide external independent review and advice. The writing committee consists of the study coordinator, two reviewers, a lead methodologist, and a principal investigator from both the surgery and the anaesthesiology department of the Amsterdam University Medical Centre and two external content matter experts. The writing committee is entirely independent of the initial trials and has full responsibility for all methodological decisions. A broader steering committee with representatives of the collaborating trial groups identified during the project will be invited to comment on and co-author the final protocol and IPD MA report. By sharing their IPD, collaborators will obtain one co-authorship on the IPD MA report and one additional co-authorship if data of more than 300 participants is shared. For transparency and against intellectual bias, a record will be kept of all comments. Any important amendments to the protocol will be recorded in PROSPERO record and discussed in the methods section of the final report.

58 156

60 157 Eligibility criteria

Page 9 of 22

BMJ Open

We will include all randomised and quasi-randomised controlled trials comparing the effect of intraoperative high FiO_2 (0.60-1.0) to traditional FiO_2 (0.21-0.40) in patients undergoing surgery. Definitions for high and low FiO_2 were determined by literature review and consensus among the IPDMA collaborators. (21, 22) These trials may include patients of any age undergoing surgery except for neonates, regardless publication, language, or year of conduct and should include at least data on age, sex, mean FiO₂ administered, method of oxygen administration, SSI, mortality, or other serious adverse events. Any outcome found to be recorded in these trials will be included in the analysis. Studies without random or quasi-random treatment allocation, animal studies, and studies outside of the intraoperative period will be excluded. Identifying studies – information sources The initial search conducted for the WHO guideline will be updated by a professional information specialist.(21, 22) Medical databases will be searched, including MEDLINE, Embase, CENTRAL, CINAHL, ClinicalTrials.gov, and the WHO regional databases. Online trial registries will be searched to identify potential unpublished evidence or any ongoing trials. The search will not be limited by

language or date of publication. A final update will be conducted before the final round of revisions

preceding submission for publication. The reference list of all included studies will be hand searched

for any additional relevant trials not already identified through database searching. All corresponding

authors of relevant clinical trials will be contacted to review the list of identified studies for the

omission of potentially relevant studies missed by the search.

Study selection process

Two reviewers will independently assess articles retrieved by the search against the eligibility criteria. After screening the title and abstract using Rayyan, the full text of potentially eligible papers will be retrieved and assessed.(36) When no full paper exists, or trial eligibility is in doubt, the study authors will be contacted to provide further information. Any discrepancies in study selection will be resolved through consensus and discussion with a senior author. All studies that pass title and abstract screening but were not eligible for inclusion will be listed with the reasons for exclusion.

Study collaboration invitation

Authors of eligible studies will be contacted and invited to collaborate on the IPD MA. An email invitation will be sent to the corresponding authors outlining the IPMDA goals. If no reply is received

within two weeks, a second email request will be sent to the corresponding and first author. If no
response is received again, we will try to contact all authors by email and telephone. IPD data will be
considered unavailable if numerous times (at least five) no reply is received if authors no longer have
access to the study data or consent to collaboration.

11 194

13 195 Data collection process

The collaborating investigators will be requested to sign a data transfer agreement describing the ownership and storage of the IPD before IPD is shared. Whenever possible, data collection, interview on the protocol, and formal handoff on the data codebook will be done electronically via email, videoconference, or a suitable alternative. Whenever requested by the original investigator, a researcher will visit the investigators for a physical data transfer, in-person interview, and data codebook handoff. IPD will be de-identified by the suppling collaborator. The IPD de-identification code will not be shared. IPD will be transferred using one of the following secure methods: SurfFilesender, a secure password protected data transfer service, (37) end-to-end encrypted and password protected using email or send by courier on a physical storage media. Once transferred, IPD will be stored securely on the local server of the Amsterdam UMC where appropriate data and privacy policies will be maintained, as well as procedures and associated physical, technical and administrative safeguards to assure that the IPD are accessed only by authorized personnel. In the unlikely event that individual patient data will not be made available, the reason will be recorded. The aggregate data of the study will be used in a sensitivity analysis. Aggregate data collection will be performed as appropriate for a regular meta-analysis by two independent reviewers according to a predefined data extraction sheet and overseen by a senior author to settle potential discrepancies. The University of Amsterdam's Clinical Research Unit will facilitate secure data storage.

45 213

214 Data items

⁴⁹ 215 Data items will include all data recorded by the initial trial investigators including, but not limited to
⁵⁰ 216 the items listed in table 1 and table 2. SSI within 90 days after surgery according to the authors
⁵² 217 discretion will be the primary outcome, all-cause mortality within the longest available follow up will
⁵⁴ 218 be the secondary outcome. All other outcomes are exploratory.

Table 1. Baseline and procedure characteristics		
Baseline	Sex, age, BMI (kg/m ²), ASA physical status score, smoking status, peripheral	
	vascular disease, diabetes, (metastatic) cancer, congestive heart disease,	
	(pulmonary) hypertension, chronic obstructive pulmonary disease,	

	immunosuppressant use, peripheral oxygen saturation (%), glucose (mg/dL),
	indication for surgery, emergency procedure
Preoperative	Use of preoperative antibiotic prophylaxis (dose and agent), timing of
	preoperative antibiotic prophylaxis, use of mechanical bowel preparation,
	haemoglobin (g/dL), use of antibiotic bowel preparation, cytostatic
	chemotherapy, radiotherapy, Use of preoperative skin preparation prophylaxis
	(dose and agent), Timing of preoperative skin preparation prophylaxis.
Intraoperative	Surgical procedure(s), organ involvement, contamination (CDC wound
	classification(38)), laparoscopic surgery, mean arterial pressure (MAP) (mmHg),
	haemoglobin (g/dL), heart rate (beats/min), hemodynamic monitoring method,
	hemodynamic management algorithm, crystalloid infusion (ml), colloid Infusion
	(ml), red-cell transfusion (units), duration of surgery (min), duration of
	anaesthesia (min), mean core temperature (°C)*, lowest core temperature (°C)*
	duration hypothermia (<35°C), mean net fluid supplementation (ml/kg/hr),
	arterial oxygen saturation (%), peripheral oxygen saturation (%), subcutaneous
	oxygen tension (mm Hg), muscle oxygen tension (mm Hg), partial pressure of
	arterial oxygen (mmHg), mean FiO_2 (%), mean PEEP (cmH ₂ O), ventilator flow
	(L/min), peak airway pressure (mmHg), plateau pressure (mmHg), tidal Volume
	(ml/kg predicted body weight), respiratory frequency, vasopressor agent,
	vasopressor agent used (mg), glucose (mg/dL), use of general anaesthesia, use of
	spinal or epidural anaesthesia, use of mechanical ventilation, use of nitrous
	oxide, total blood loss (ml), fluids (ml), end tidal CO_2
Postoperative	Use of postoperative antibiotics (dose and agent), postoperative antibiotic
	duration (days), cytostatic chemotherapy, radiotherapy, haemoglobin (g/dL), VA
	pain score, use of postoperative oxygen suppletion (duration, method and FiO ₂)
	haemoglobin (g/dL), peripheral oxygen saturation (%), partial pressure of arteria
	oxygen (mmHg), subcutaneous oxygen tension (mmHg), muscle oxygen tension
	(mmHg), glucose (mg/dL), NNIS score(39), SSI risk score(40), Use of drains
Oxygen	Total duration and concentration of oxygen exposure during the
Administration	pre/intra/postoperative period (timing of initiation, concentration, duration),
& Monitoring	oxygen supply and mode of administration (Intubation, use and type of face
a memering	mask, nasal prongs), carrier gas $(N_2, N_20, medical or room air), protocol-defined$
	target or range of partial pressure of arterial oxygen (mmHg) or peripheral
	oxygen saturation (%)
* Direct measu	rement or its approximation by peripheral measurement
Direct medsu	rement of its upproximation by peripheral measurement

Table 2. Outcome data and effect measure specification			
Primary	- SSI within 90 days after surgery by the author's discretion		
Secondary	- All-cause mortality within the longest available follow-up		
Exploratory	- Survival within the longest available follow-up		
	 Serious adverse events defined by the ICH guidelines for good clinical practice(41) 		
	 SSI monitored according to the CDC criteria and specified as either superficial, deep, organ/space(42) 		
	 Respiratory insufficiency: defined as the need for respiratory assistance provided as ventilator therapy or non-invasive ventilation within 90 days after surgery 		
	 Unplanned ICU admission (not part of routine postoperative care) (days) 		

2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	220
17	
19	221
20	221
21	
22	222
23	223
24	224
25	224
26 27	225
27	226
29	220
30	227
31	228
32	228
33	229
34	230
35 36	250
37	231
38	
39	232
40	
41	233
42	
43	234
44 45	
45 46	235
47	236
48	
49	237
50	238
51	220
52 53	239
53 54	240
55	744
56	241
57	242
58	243
59	243

	 Hospital readmissions within 90 days after surgery
	 Anastomotic leakage as defined by the international study group of rectal cancer(43)
	 Total duration of hospitalization, including readmissions related to the initial hospitalization
	 Any cardiovascular complication at any time after surgery
	 Any pulmonary complications at any time after surgery
	 Stroke at any time after surgery
	 New or recurrent cancer diagnosis at any time after surgery
	 Any further clinically relevant outcome reported in the IPD
* When patients are r	eoperated within follow up for reasons other than surgical site infection
these cases will be ex	cluded from the analysis based on loss to follow up.

221 **Missing data**

222 When variables are missing at the participant level and the missing at random assumption is 223 plausible, multiple imputations by chained equations may be applied in each trial separately before 224 proceeding with the analysis. Variables that miss systematically i.e., unknown for the entire study or 225 are deemed missing non-randomly after discussion in the writing committee, will not be imputated. 226 When this concerns variables included in pre-defined analysis, studies systematically missing this 227 variable will be excluded from that analysis. When this concerns variables not included in pre-defined 228 analysis, these variables will be dropped from the main outcome analysis as potential confounding 229 variables. The set of available variables for the main analysis will thus be determined by the data set 230 with the least available variables. Variables from richer sets will remain available for exploratory 231 analysis among data sets with the variable available.

60

233 **Individual Participant Data integrity**

234 We will check IPD for potential missing, invalid, or out-of-range values, inconsistencies, and 235 discrepancies with the aggregate publication. When identified, we will seek to resolve the issues with 236 the trial investigators to improve data quality and ensure that trials are represented accurately. In 237 addition, any modelling assumptions made in the initial analysis will be evaluated (i.e., missing at 238 random in the case of multiple imputation or non-informative censoring and proportional hazards in 239 the case of time to event data). In the case of any concerns on IPD integrity further prove of 240 execution of the trial and substantiation of the results may be requested such as prove of 241 institutional review board approval or original case record forms. If concerns cannot be resolved with 242 the trial investigators, the data of the concerning study will not be included in the primary analysis 243 and the reason for exclusion will be explicitly stated.

2 3	244	
4	244	
5 6	245	Risk of bias
7 8	246	Two reviewers will independently assess the quality of the included studies using the Cochrane risk-
9 10	247	of-bias tool for randomised trials (RoB2).(44) Studies will be judged as "low risk", "some concerns", or
11	248	"high risk of bias". Publication bias will be assessed using a contour enhanced funnel plot.(45)
12 13	249	Additionally, the IPD will be used to directly check process parameters of some of the bias domains.
14 15	250	Randomization and allocation concealment will be assessed by checking baseline imbalances.
16	251	Incomplete outcome data will be assessed by checking the IPD to ensure all randomized patients are
17 18	252	included. All available clinically relevant outcomes in the IPD will be reported in the IPD MA. For time
19 20	253	to event outcomes such as mortality, pattern and extent of follow up will be checked. When needed,
21 22	254	additional follow up with original authors will be conducted to rectify any imbalances as far as
23	255	possible.
24 25	256	possible. Synthesis methods
26 27	250	
28	257	Synthesis methods
29 30	258	All outcomes will be analysed according to the intention to treat principle and using a one-step
31 32	259	approach for IPD MA. In the one-step approach, IPD will be modelled from all studies simultaneously
33 34	260	using the generalised linear mixed model framework and the statistical model appropriate for the
35	261	type of outcome being analysed (i.e., logistic regression for binary outcome data, linear regression
36 37	262	for continuous outcome data, and Cox-regression for time to event data). A random treatment effect
38 39	263	term will be added to the model and all other parameters (intercepts, prognostic factor effects and
40	264	residual variances) will be stratified by trial to account for the clustering of patients within studies.
41 42	265	Maximum likelihood with quadrature will be used as estimation method and study-specific centering
43 44	266	of the variables.(46) Variables potentially affecting the outcome that, despite randomisation, show
45	267	baseline imbalances across treatment arms will be considered for adjustment based on the criteria
46 47	268	for confounder selection by VanderWeele and Shpitser.(47-50) Procedure duration is considered an
48 49	269	important proxy for the complexity of the procedure and will also be considered for adjustment
50 51	270	despite being measured during the exposure.(49, 50) We assume that the FiO $_2$ used does not affect
52	271	procedure duration. Benjamini-Hochberg correction will be used to account for multiple testing for
53 54	272	the primary and secondary outcomes when appropriate.(51)
55 56	273	
57 58	→▼ ▲	Furthernation of unviction in offects
59	274	Exploration of variation in effects
60		

To explore the causes of heterogeneity and identify factors modifying the effects of high intraoperative FiO₂, we will perform pre-specified subgroup analyses by extending the one-step meta-analysis framework to include treatment-covariate interaction terms. Subgroups will be defined according to mean core temperature (<35°C), mean net fluid supplementation (<15ml/kg/hr), use of mechanical ventilation, use of nitrous oxide, use of preoperative antibiotic prophylaxis, and procedure duration (>2.5h). All subgroup variables have been proposed as effect modifiers in previous studies and have a plausible biological substantiation. (52-63) Cut-offs are driven by previously reported data. (52-63) Treatment-covariate interaction terms p < 0.05 will be considered statistically significant. Dose-response variation will be explored by total O₂ exposure duration for each primary outcome. All exploratory analysis will be interpreted with caution considering the limited power and potential of type 1 error when multiple interactions are tested.

287 Additional analysis

 A sensitivity analysis will be conducted to test the impact of excluding trials using N₂O as a carrier gas on the pooled effect estimate. Further, the choice of SSI definition will be evaluated in a sensitivity analysis applying the CDC definition as the primary outcome. In the case of exclusion of trials due to concerns on IPD integrity, a sensitivity analysis will be conducted to test the impact of including the concerning data on the pooled effect estimate. When multiple imputation is performed, a complete case analysis will also be conducted. In studies with sufficiently detailed data on the intervention, all analyses will also be conducted according to the per-protocol principle after adjustment for confounding factors due to incomplete adherence to the assigned treatments or use of off-protocol concomitant therapies according to the variable selection principles described for the primary analysis. Per protocol treatment will be defined as an FiO₂ of 0.80 ± 0.05 for at least 75% of the ventilation time in the intervention group, and an FiO_2 smaller than 0.40 with a margin of 0.05, for 75% in the control group. Patients requiring more oxygen for medical reasons, for example to maintain adequate saturation, after initial ventilation with an FiO_2 of 0.45 are exempted and not considered a protocol deviation. A sensitivity analysis will be conducted according to the two-step approach. All studies will be reanalysed separately, similarly to the one-step approach but without the term for trial clustering. The new aggregate data of each study will then be synthesised in a second step synthesising an overall estimate using maximum likelihood method followed by the Hartung-Knapp Sidik-Jonkman correction assuming random effects.(64) Between-study variance will be evaluated using τ^2 ; in addition, the Chi² test for heterogeneity will be performed with p <0.100 considered statistically significant. In the unlikely event that IPD will not be made available,

1 2		
2 3 4 5 6 7	308	aggregate study data will be included in the analyses during step two. Any unforeseen challenge
	309	during the analysis or choice that leads to discussion in the steering group that cannot be resolved by
	310	consensus will also be subjected to sensitivity analysis. To assess robustness of the time to event
8	311	outcomes a survival curve will be compared to the univariable version of the Cox proportional
9 10 11 12 13 14 15 16	312	hazards regression analysis.
	313	
	314	Certainty of the cumulative estimate
17	315	The Grading of Recommendations Assessment Development and Evaluation (GRADE) working group
18 19	316	methodology will be used to assess the overall quality of evidence for the following domains: risk of
20 21	317	bias, unexplained inconsistency, indirectness, imprecision, publication bias, and magnitude of effect.
22	318	Additional domains may be considered where appropriate. Optimal information size, defined as the
23 24	319	number of participants needed for a single adequately powered trial, was calculated assuming a
25 26	320	type-1 error ($lpha$) of 0.05, a type 2 error (eta) of 0.2 and a relative risk reduction of 0.25.(65) If a
27	321	confidence interval failed to exclude appreciable benefit or harm, defined as a relative risk reduction
28 29	322	or increase of 0.25, the quality of evidence will be downgraded regardless of the optimal information
30 31	323	size.(65) The overall certainty will be classified using four levels: high, moderate, low, and very
32	324	low.(66)
33 34	325	low.(66) Software
35 36	525	
37	326	Software
38 39 40	327	Results will be processed using R 4.0.4.
41 42	328	
43 44 45 46 47	329	ETHICS AND DISSEMINATION
	330	Ethical approval
48 49	331	Because this concerns a study on existing de-identified patient data, the medical research involving
49 50 51 52 53 54 55 55 56	332	human subjects act does not apply and no formal medical ethics review is required.
	333	
	334	Dissemination
57	335	This protocol and the results of this study will be submitted to a peer-reviewed medical journal
58 59 60	336	regardless of the outcome. The protocol will be submitted before the data is gathered and analysed.
		14

2 3	337	
4 5 6	338	Competing interests
7 8	339	S.W.J. reports receipt of grants from Photonics in Healthcare, Integra LifeSciences, and Ethicon
9	340	outside the submitted. P.S.M. reports receipt of grants or contracts from the Australian National
10 11	341	Health and Medical Research Council (NHMRC), Practitioner Fellowship and Projects Grants, payment
12 13	342	of expert testimony from Avant Medical Indemnity, and participation on a Data Safety Monitoring
14	343	Board of Advisory Board for the SNAP, TOPIC-2 and BONANZA trials. A.F. reports receipt of
15 16	344	institutional grants from the Australian Research Council Discovery Project and National Health and
17 18	345	Medical Research Council Ideas outside the submitted work and participation on a Data Safety
19	346	Monitoring Board or Advisory Board for the Australian Kidney Trials Research Network (INCH-HD,
20 21	347	IMPEDE, TEQCH-PD, PHOSPHATE, BEST Fluids, N3RO trial, CKD-FIX, IMPROVE-FIX). R.G. reports
22 23	348	participation on Steering Committee for the IntuBot Innosuisse Projekt and has a leadership role as
24 25	349	ERC Director of Guidelines and ILCOR, and ILCOR Task Force Chair on Education, Implementation and
26	350	Team, and Treasurer of European Airway Management society, and reports receipt without any
27 28	351	payment of airway equipment for the research of the following: Intersurgical, Karl Storz, Verathon
29 30	352	Inc, Aircraft Medical, Prodol Meditec, Venner Medical, Kingsystems, Medtronic, Ambu, VBM,
31	353	Radiometer, Sentec, and Fisher & Paykel. A.K. reports receipt of grants or contracts from Potrero
32 33	354	Medical, Rehabtronics and The 37company outside the submitted work and participation on a Data
34 35	355	Safety Monitoring Board of Advisory Board in Directedsystems, Potrero Medical and BioAgel
36	356	Laboratories. J.M. reports voluntary participation as a panellist in the updated WHO Guidelines on
37 38	357	high vs low FiO2 in 2018 and voluntary co-investigator in the PENGUIN trial of high versus low FiO2
39 40	358	for SSI prevention in abdominal surgery in low- and middle-income settings with GlobalSurg
41	359	Collaborative. M.G.W.D. reports participation on a Data Safety Monitoring Board or Advisory Board
42 43	360	for the following trials: DANCE, SPHINX, ICONIC, SAFE, PACER, LEARNS, RECAP, and BIOPEX2. C.F.
44 45	361	reports receipt fees for lectures and educational events from Getinge and Medtronic outside the
46	362	submitted work. C.S. reports receipts of institutional grants from NICHD outside the submitted work.
47 48	363	M.A.B. reports receipt of institutional grants from KCI/3M, Johnson & Johnson, New Compliance, BD
49 50	364	Bard, Gore, Telabio, GDM, Medtronic, and Smith & Nephew outside the submitted work, and
51	365	participation on the Data Monitoring Committee of the EXTEND trial. M.W.H. reports receipt of
52 53	366	institutional grants from ZonMw outside the submitted work, consulting institutional fees from IDD
54 55	367	Pharma outside the submitted work, institutional payment or honoraria for lectures, presentations,
56	368	speakers bureaus, manuscript writing or educational events from CSL Behring outside the submitted
57 58	369	work, and has a leadership role in DGAI, ISAP and IARS (Anaesthesia and Analgesia). The other
59 60	370	authors declare no conflict of interest.

1		
2 3	371	
4 5		
6	372	Funding
7 8 9	373	This work was supported by the Amsterdams Universiteitsfonds grant (4069) to R. H. Hulskes.
10 11	374	
12 13	375	Contributions
14 15	376	SJ conceived the study. SJ, MH, MB and RH secured funding for the study. SJ, MH, MB, MD, and RH
16 17	377	designed the study, drafted the study protocol and provided statistical expertise. RH and MZ
18	378	provided input for the literature search and will coordinate the assembly of the data and perform the
19 20	379	screening, inclusion and assessment of risk of bias. RW, CM, KL, PM, AF, RG, OA, AK, DS, JM, KP, JB,
21	380	CF, GG, CS, DM, MC, PT, JO and BA provided substantial contributions to the study design, provided
22 23	381	critical feedback and approved the final version of the study protocol. All authors compliant with
24 25	382	their responsibilities according to the research protocol, meet authorship criteria as defined by the
26	383	international committee of medical journal editors.
27 28	505	
29 30	384	
31	385	Acknowledgements
32 33		· L .
34 35	386	The authors thank Faridi Jamaludin as professional information specialist for the search.
36	387	
37 38		2
39	388	Data sharing
40 41 42	389	Data will be made available upon reasonable request and review and approval of all collaborators.
43		
44 45		
46		
47 48		
49 50		
50 51		
52 53		
54		
55 56		
57		
58 59		
60		

References 1. Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014;370(13):1198-208. 2. de Lissovoy G, Fraeman K, Hutchins V, Murphy D, Song D, Vaughn BB. Surgical site infection: incidence and impact on hospital utilization and treatment costs. Am J Infect Control. 2009;37(5):387-97. 3. Control ECfDPa. Point prevalence survey of healthcareassociated infections and antimicrobial use in European acute care hospitals. Stockholm: ECDC; 2013. 4. ECDC. Surveillance of surgical site infections in Europe 2010–2011. Stockholm: ECDC; 2013. 5. Leaper DJ, van Goor H, Reilly J, Petrosillo N, Geiss HK, Torres AJ, et al. Surgical site infection -a European perspective of incidence and economic burden. Int Wound J. 2004;1(4):247-73. 6. Koek MBG, van der Kooi TII, Stigter FCA, de Boer PT, de Gier B, Hopmans TEM, et al. Burden of surgical site infections in the Netherlands: cost analyses and disability-adjusted life years. J Hosp Infect. 2019;103(3):293-302. Allegranzi B, Bischoff P, de Jonge S, Kubilay NZ, Zayed B, Gomes SM, et al. New WHO 7. recommendations on preoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis. 2016;16(12):e276-e87. Allegranzi B, Zayed B, Bischoff P, Kubilay NZ, de Jonge S, de Vries F, et al. New WHO 8. recommendations on intraoperative and postoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis. 2016;16(12):e288-e303. Berrios-Torres SI, Umscheid CA, Bratzler DW, Leas B, Stone EC, Kelz RR, et al. Centers for 9. Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg. 2017. Hedenstierna G, Perchiazzi G, Meyhoff CS, Larsson A. Who Can Make Sense of the WHO 10. Guidelines to Prevent Surgical Site Infection? Anesthesiology. 2017;126(5):771-3. 11. Volk T, Peters J, Sessler DI. The WHO recommendation for 80% perioperative oxygen is poorly justified. Anaesthesist. 2017;66(4):227-9. Wenk M, Van Aken H, Zarbock A. The New World Health Organization Recommendations on 12. Perioperative Administration of Oxygen to Prevent Surgical Site Infections: A Dangerous Reductionist Approach? Anesth Analg. 2017;125(2):682-7. Meyhoff CS, Fonnes S, Wetterslev J, Jorgensen LN, Rasmussen LS. WHO Guidelines to prevent 13. surgical site infections. Lancet Infect Dis. 2017;17(3):261-2. Mellin-Olsen J, McDougall RJ, Cheng D. WHO Guidelines to prevent surgical site infections. 14. Lancet Infect Dis. 2017;17(3):260-1. 15. Berrios-Torres SI, Umscheid CA, Bratzler DW, Leas B, Stone EC, Kelz RR, et al. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg. 2017;152(8):784-91. 16. Solomkin J, Egger M, de Jonge S, Latif A, Loke YK, Berenholtz S, et al. World Health Organization Responds to Concerns about Surgical Site Infection Prevention Recommendations. Anesthesiology. 2018;128(1):221-2. 17. Akca O, Ball L, Belda FJ, Biro P, Cortegiani A, Eden A, et al. WHO Needs High FIO2? Turk J Anaesthesiol Reanim. 2017;45(4):181-92. 18. Weenink RP, de Jonge SW, Preckel B, Hollmann MW. PRO: Routine hyperoxygenation in adult surgical patients whose tracheas are intubated. Anaesthesia. 2020;75(10):1293-6. 19. Sperna Weiland NH, Berger MM, Helmerhorst HJF. CON: Routine hyperoxygenation in adult surgical patients whose tracheas are intubated. Anaesthesia. 2020;75(10):1297-300. 20. Weenink RP, de Jonge SW, van Hulst RA, Wingelaar TT, van Ooij PAM, Immink RV, et al. Perioperative Hyperoxyphobia: Justified or Not? Benefits and Harms of Hyperoxia during Surgery. J Clin Med. 2020;9(3).

1		
2		
3	439	21. Mattishent K, Thavarajah M, Sinha A, Peel A, Egger M, Solomkin J, et al. Safety of 80% vs 30-
4 5	440	35% fraction of inspired oxygen in patients undergoing surgery: a systematic review and meta-
6	441	analysis. Br J Anaesth. 2019;122(3):311-24.
7	442	22. de Jonge S, Egger M, Latif A, Loke YK, Berenholtz S, Boermeester M, et al. Effectiveness of
8	443	80% vs 30-35% fraction of inspired oxygen in patients undergoing surgery: an updated systematic
9	444	review and meta-analysis. Br J Anaesth. 2019;122(3):325-34.
10	445	23. Global Guidelines for the Prevention of Surgical Site Infection, (2018).
11	446	24. Staehr-Rye AK, Meyhoff CS, Scheffenbichler FT, Vidal Melo MF, Gätke MR, Walsh JL, et al.
12 13	447	High intraoperative inspiratory oxygen fraction and risk of major respiratory complications. BJA:
14	448	British Journal of Anaesthesia. 2017;119(1):140-9.
15	449	25. Greif R, Akça O, Horn EP, Kurz A, Sessler DI. Supplemental perioperative oxygen to reduce the
16	450	incidence of surgical-wound infection. New England journal of medicine. 2000;342(3):161-7.
17	451	26. Kurz A, Kopyeva T, Suliman I, Podolyak A, You J, Lewis B, et al. Supplemental oxygen and
18	452	surgical-site infections: an alternating intervention controlled trial. Br J Anaesth. 2018;120(1):117-26.
19	453	27. Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of
20 21	454	surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature
21	455	Group. N Engl J Med. 1996;334(19):1209-15.
23	456	28. Atkinson TM, Giraud GD, Togioka BM, Jones DB, Cigarroa JE. Cardiovascular and Ventilatory
24	457	Consequences of Laparoscopic Surgery. Circulation. 2017;135(7):700-10.
25	458 450	29. Doherty M, Buggy DJ. Intraoperative fluids: how much is too much? Br J Anaesth.
26	459 460	2012;109(1):69-79. 30. Sessler DI. Perioperative thermoregulation and heat balance. Lancet. 2016;387(10038):2655-
27	460 461	30. Sessler DI. Perioperative thermoregulation and heat balance. Lancet. 2016;387(10038):2655- 64.
28 29	461	31. Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale,
29 30	462	conduct, and reporting. BMJ. 2010;340:c221.
31	464	32. Stewart LA, Clarke M, Rovers M, Riley RD, Simmonds M, Stewart G, et al. Preferred Reporting
32	465	Items for Systematic Review and Meta-Analyses of individual participant data: the PRISMA-IPD
33	466	Statement. JAMA. 2015;313(16):1657-65.
34	467	33. Oxman AD, Clarke MJ, Stewart LA. From science to practice. Meta-analyses using individual
35	468	patient data are needed. JAMA. 1995;274(10):845-6.
36 37	469	34. Stewart LA, Parmar MK. Meta-analysis of the literature or of individual patient data: is there
38	470	a difference? Lancet. 1993;341(8842):418-22.
39	471	35. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting
40	472	items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and
41	473	explanation. BMJ. 2015;350:g7647.
42	474	36. Rayyana web and mobile app for systematic reviews. Systematic Reviews. 2016;5(1):210.
43	475	37. SurfFilesender [SURFfilesender arose from the Filesender project (<u>www.filesender.org</u>). We
44 45	476	developed SURFfilesender to meet the needs of Dutch education and research institutions. With this
45 46	477	web application you can send any large file easily and securely.]. Available from:
40	478	https://filesender.surf.nl.
48	479	38. Garner JS. CDC guideline for prevention of surgical wound infections, 1985. Supersedes
49	480	guideline for prevention of surgical wound infections published in 1982. (Originally published in
50	481	November 1985). Revised. Infect Control. 1986;7(3):193-200.
51	482	39. Culver DH, Horan TC, Gaynes RP, Martone WJ, Jarvis WR, Emori TG, et al. Surgical wound
52	483	infection rates by wound class, operative procedure, and patient risk index. National Nosocomial
53 54	484	Infections Surveillance System. Am J Med. 1991;91(3B):152S-7S.
54 55	485	40. van Walraven C, Musselman R. The Surgical Site Infection Risk Score (SSIRS): A Model to
56	486	Predict the Risk of Surgical Site Infections. PLoS One. 2013;8(6):e67167.
57	487	41. INTEGRATED ADDENDUM TO ICH E6(R1): GUIDELINE FOR GOOD CLINICAL PRACTICE
58	100	E6(P2) (2016)
59	488	E6(R2), (2016).
60		

42. Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for Prevention of Surgical Site Infection, 1999. Centers for Disease Control and Prevention (CDC) Hospital Infection Control Practices Advisory Committee. Am J Infect Control. 1999;27:97-132. Rahbari NN, Weitz J, Hohenberger W, Heald RJ, Moran B, Ulrich A, et al. Definition and 43. grading of anastomotic leakage following anterior resection of the rectum: a proposal by the International Study Group of Rectal Cancer. Surgery. 2010;147(3):339-51. 44. Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:14898. Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Contour-enhanced meta-analysis 45. funnel plots help distinguish publication bias from other causes of asymmetry. J Clin Epidemiol. 2008;61(10):991-6. 46. Riley RD, Legha A, Jackson D, Morris TP, Ensor J, Snell KIE, et al. One-stage individual participant data meta-analysis models for continuous and binary outcomes: Comparison of treatment coding options and estimation methods. Statistics in Medicine. 2020;39(19):2536-55. VanderWeele TJ. Principles of confounder selection. Eur J Epidemiol. 2019;34(3):211-9. 47. 48. VanderWeele TJ, Shpitser I. A new criterion for confounder selection. Biometrics. 2011;67(4):1406-13. Haley RW, Culver DH, Morgan WM, White JW, Emori TG, Hooton TM. Identifying patients at 49. high risk of surgical wound infection. A simple multivariate index of patient susceptibility and wound contamination. Am J Epidemiol. 1985;121(2):206-15. 50. Korol E, Johnston K, Waser N, Sifakis F, Jafri HS, Lo M, et al. A systematic review of risk factors associated with surgical site infections among surgical patients. PLoS One. 2013;8(12):e83743. Thissen D, Steinberg L, Kuang D. Quick and Easy Implementation of the Benjamini-Hochberg 51. Procedure for Controlling the False Positive Rate in Multiple Comparisons. Journal of Educational and Behavioral Statistics. 2002;27(1):77-83. Pryor KO, Fahey TJ, 3rd, Lien CA, Goldstein PA. Surgical site infection and the routine use of 52. perioperative hyperoxia in a general surgical population: a randomized controlled trial. JAMA. 2004;291(1):79-87. Belda FJ, Aguilera L, Garcia de la Asuncion J, Alberti J, Vicente R, Ferrandiz L, et al. 53. Supplemental perioperative oxygen and the risk of surgical wound infection: a randomized controlled trial. JAMA. 2005;294(16):2035-42. 54. Meyhoff CS, Wetterslev J, Jorgensen LN, Henneberg SW, Hogdall C, Lundvall L, et al. Effect of high perioperative oxygen fraction on surgical site infection and pulmonary complications after abdominal surgery: the PROXI randomized clinical trial. JAMA. 2009;302(14):1543-50. 55. Bickel A, Gurevits M, Vamos R, Ivry S, Eitan A. Perioperative hyperoxygenation and wound site infection following surgery for acute appendicitis: a randomized, prospective, controlled trial. Arch Surg. 2011;146(4):464-70. Duggal N, Poddatoori V, Noroozkhani S, Siddik-Ahmad RI, Caughey AB. Perioperative oxygen 56. supplementation and surgical site infection after cesarean delivery: a randomized trial. Obstet Gynecol. 2013;122(1):79-84. 57. Gardella C, Goltra LB, Laschansky E, Drolette L, Magaret A, Chadwick HS, et al. High-concentration supplemental perioperative oxygen to reduce the incidence of postcesarean surgical site infection: a randomized controlled trial. Obstet Gynecol. 2008;112(3):545-52. 58. Mayzler O, Weksler N, Domchik S, Klein M, Mizrahi S, Gurman GM. Does supplemental perioperative oxygen administration reduce the incidence of wound infection in elective colorectal surgery? Minerva Anestesiol. 2005;71(1-2):21-5. 59. Myles PS, Leslie K, Chan MT, Forbes A, Paech MJ, Peyton P, et al. Avoidance of nitrous oxide for patients undergoing major surgery: a randomized controlled trial. Anesthesiology. 2007;107(2):221-31. 60. Stall A, Paryavi E, Gupta R, Zadnik M, Hui E, O'Toole RV. Perioperative supplemental oxygen to reduce surgical site infection after open fixation of high-risk fractures: a randomized controlled pilot trial. J Trauma Acute Care Surg. 2013;75(4):657-63.

1		
2		
3	541	61. Scifres CM, Leighton BL, Fogertey PJ, Macones GA, Stamilio DM. Supplemental oxygen for the
4	542	prevention of postcesarean infectious morbidity: a randomized controlled trial. Am J Obstet Gynecol.
5	543	2011;205(3):267 e1-9.
6 7	544	62. Williams NL, Glover MM, Crisp C, Acton AL, McKenna DS. Randomized controlled trial of the
8	545	effect of 30% versus 80% fraction of inspired oxygen on cesarean delivery surgical site infection. Am J
9	546	Perinatol. 2013;30(9):781-6.
10	547	63. Thibon P, Borgey F, Boutreux S, Hanouz JL, Le Coutour X, Parienti JJ. Effect of perioperative
11	548	oxygen supplementation on 30-day surgical site infection rate in abdominal, gynecologic, and breast
12	549	surgery: the ISO2 randomized controlled trial. Anesthesiology. 2012;117(3):504-11.
13	550	64. Langan D, Higgins JPT, Jackson D, Bowden J, Veroniki AA, Kontopantelis E, et al. A comparison
14	551	of heterogeneity variance estimators in simulated random-effects meta-analyses. Res Synth
15	552	Methods. 2019;10(1):83-98.
16	553	65. Schünemann H, Brożek J, Guyatt G, Oxman A. Handbook for grading the quality of evidence
17		
18	554	and the strength of recommendations using the GRADE approach (updated October 2013). GRADE
19 20	555	Working Group, 2013.
20 21	556	66. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an
22	557	emerging consensus on rating quality of evidence and strength of recommendations. BMJ.
23	558	2008;336(7650):924-6.
24	559	
25		
26		
27		
28		
29		
30		
31 32		
33		
34		
35		emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924-6.
36		
37		
38		
39		
40		
41 42		
42 43		
44		
45		
46		
47		
48		
49		
50		
51 52		
52 53		
55 54		
55		
56		
57		
58		

Section and topic	Item No	Checklist item	Reported on page
ADMINISTRATIVI	E INFO	DRMATION	
Title:			
Identification	1a	Identify the report as a protocol of a systematic review	1
Update	1b	If the protocol is for an update of a previous systematic review, identify as such	NA
Registration	2	If registered, provide the name of the registry (such as PROSPERO) and registration number	2
Authors:			
Contact	3a	Provide name, institutional affiliation, e-mail address of all protocol authors; provide physical mailing address of corresponding author	1
Contributions	3b	Describe contributions of protocol authors and identify the guarantor of the review	13
Amendments	4	If the protocol represents an amendment of a previously completed or published protocol, identify as such and list changes; otherwise, state plan for documenting important protocol amendments	6
Support:			
Sources	5a	Indicate sources of financial or other support for the review	13
Sponsor	5b	Provide name for the review funder and/or sponsor	13
Role of sponsor or funder	5c	Describe roles of funder(s), sponsor(s), and/or institution(s), if any, in developing the protocol	13
INTRODUCTION			
Rationale	6	Describe the rationale for the review in the context of what is already known	4-5
Objectives	7	Provide an explicit statement of the question(s) the review will address with reference to participants, interventions, comparators, and outcomes (PICO)	4
METHODS			
Eligibility criteria	8	Specify the study characteristics (such as PICO, study design, setting, time frame) and report characteristics (such as years considered, language, publication status) to be used as criteria for eligibility for the review	7
Information sources	9	Describe all intended information sources (such as electronic databases, contact with study authors, trial registers or other grey literature sources) with planned dates of coverage	7
Search strategy	10	Present draft of search strategy to be used for at least one electronic database, including planned limits, such that it could be repeated	Supplement0

PRISMA-P (Preferred Reporting Items for Systematic review and Meta-Analysis Protocols) 2015 checklist: recommended items to address in a systematic review protocol*

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Study records:			
Data management	11a	Describe the mechanism(s) that will be used to manage records and data throughout the review	8
Selection	11b	State the process that will be used for selecting studies (such as two independent reviewers) through each phase of the	7
process		review (that is, screening, eligibility and inclusion in meta-analysis)	
Data collection process	11c anv	Describe planned method of extracting data from reports (such as piloting forms, done independently, in duplicate), processes for obtaining and confirming data from investigators	8
Data items	12	List and define all variables for which data will be sought (such as PICO items, funding sources), any pre-planned data assumptions and simplifications	8-9
Outcomes and prioritization	13	List and define all outcomes for which data will be sought, including prioritization of main and additional outcomes, with rationale	9
Risk of bias in individual studies	14	Describe anticipated methods for assessing risk of bias of individual studies, including whether this will be done at the outcome or study level, or both; state how this information will be used in data synthesis	9-10
Data synthesis	15a	Describe criteria under which study data will be quantitatively synthesised	11
	15b	If data are appropriate for quantitative synthesis, describe planned summary measures, methods of handling data and methods of combining data from studies, including any planned exploration of consistency (such as I^2 , Kendall's τ)	12
	15c	Describe any proposed additional analyses (such as sensitivity or subgroup analyses, meta-regression)	12
	15d	If quantitative synthesis is not appropriate, describe the type of summary planned	NA
Meta-bias(es)	16	Specify any planned assessment of meta-bias(es) (such as publication bias across studies, selective reporting within studies)	10
Confidence in cumulative evidence	17	Describe how the strength of the body of evidence will be assessed (such as GRADE)	12-1

* It is strongly recommended that this checklist be read in conjunction with the PRISMA-P Explanation and Elaboration (cite when available) for important clarification on the items. Amendments to a review protocol should be tracked and dated. The copyright for PRISMA-P (including checklist) is held by the PRISMA-P Group and is distributed under a Creative Commons Attribution Licence 4.0.

From: Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart L, PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015 Jan 2;349(jan02 1):g7647.