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Chrome azurol S (CAS) assays 

 

 

Figure S1: The catechol is essential for the binding of obafluorin (1) to Fe3+. Chrome 
azurol S (CAS) assay monitoring the binding of Fe3+ by 1 and the analogues 2-HBA-obafluorin 
(2), 3-HBA-obafluorin (3) and BA-obafluorin (4), alongside 2,3-dihydroxybenzoic acid (2,3-
DHBA), 2-hydroxybenzoic acid (2-HBA), 3-hydroxybenzoic acid (3-HBA) and benzoic acid 
(BA) controls. A colour change of blue to orange is indicative of Fe3+ binding. 1 Modification of 
the catechol group in 2, 3 and 4 abolishes Fe3+ binding and 1 shows significantly stronger Fe3+ 
binding than 2,3-DHBA, consistent with the stabilisation of the ortho-phenolate by hydrogen 
bonding of the 1 amide proton. 2 Concentrations of test materials is shown above each column 
of wells. The concentration of all other components including Fe3+ is constant.  
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Figure S2: Ring-open 1 analogues bind Fe3+. CAS assay demonstrating ring-open 1 
analogues β-lactone hydrolysed obafluorin (5) and methanolysed obafluorin (6), display 
similar Fe3+ binding to 1. Concentrations of test substances are shown in μg/mL, with a 
concentration of 1000 μg/mL equivalent to 2793, 2659 and 2563 μM for 1, 5 and 6 respectively. 
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HRMS Metal Binding 

 

 

Figure S3: 1 forms a selective interaction with Fe3+ detectable by HRMS. 1 was incubated 
with a range of metal ions and the resultant adducts were monitored by ESI-HRMS on a 
Synapt G2-Si mass spectrometer. Only in the presence of Fe3+ was the [M+H]+ peak fully 
depleted and the shift to 411.9980 m/z demonstrates the formation of a [M-2H+Fe3+]+ species. 
The additional peak at 453.0243 m/z is consistent with the 1-Fe3+ species with an additional 
acetonitrile (ACN) ligand. In the presence of Mn2+, a peak consistent with [M-H+Mn2+]+ was 
observed, along with some residual [M+H]+ species. When a mixture of all metal ions tested 
was added, [M-2H+Fe3+]+ was the major peak. The combined data demonstrate that 1 forms 
a strong, selective interaction with Fe3+. 
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Figure S4: Analogues 2-4 do not bind Fe3+ by HRMS. 2-4 were incubated with Fe3+ and the 
resultant adducts were monitored by ESI-HRMS on a Synapt G2-Si mass spectrometer. No 
binding to Fe3+ was observed and the [M+H]+ ions are the major peaks in the presence of Fe3+, 
in contrast to 1 (Figure S3).   
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Job plots to determine iron complex stoichiometry 

 

 

Figure S5: 1 binds Fe3+ with a 1:1 stoichiometry. Job plots for measuring iron complex 
stoichiometry via UV-visible spectroscopy were carried out with (A) salicylic acid (2-HBA) as 
a positive control and (B) 1. The λmax of the salicylic acid-Fe3+ complex was monitored at 535 
nm and the λmax of the 1-Fe3+ complex was determined to be 690 nm in the DMSO:H2O solvent 
system employed.3 Job plots4 show maximum absorbance at λmax of the respective complexes 
at mole fraction 0.5, indicating a 1:1 ratio of 1:Fe3+, in common with the salicylic acid control. 
The experiments were performed in triplicate and error bars are shown but are too small to be 
visible. C) Image of 96-well plate with increasing 1/SA:Fe3+ ratio from column 1-9 showing 
changes in colouration over this range. SA, salicylic acid (positive control), DMSO only 
(negative control) and 1 in triplicate.  
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4-(2-pyridylazo)-resorcinol (PAR) assays 

 

Figure S6: The catechol moiety of 1 shows weak Zn2+ binding in vitro. Images of PAR 
assay monitoring the Zn2+ binding ability of 1-7, and 2,3-dihydroxybenzoic acid (2,3-DHBA), 
2-hydroxybenzoic acid (2-HBA), 3-hydroxybenzoic acid (3-HBA), benzoic acid (BA), N-acetyl-
threonine (N-Ac-Thr) and N,N,N′,N′-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN). 
Concentrations are in μM. NC (negative control) = 10% DMSO in Zn(PAR)2 solution. PC 
(positive control) = 10% DMSO in PAR only solution. The concentration of test substances 
(M) are shown above each column of wells. The concentration of all other components 
including Zn2+ were constant. 
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Figure S7: The catechol moiety of 1 shows weak Zn2+ binding in vitro. Absorbance 
spectra of 1-6 and β-lactone hydrolysed BA-obafluorin (7), 2,3-dihydroxybenzoic acid (2,3-
DHBA), 2-hydroxybenzoic acid (2-HBA), 3-hydroxybenzoic acid (3-HBA), benzoic acid (BA), 
N-acetyl-threonine (N-Ac-Thr) and N,N,N′,N′-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine 
(TPEN) against Zn(PAR)2. PAR (yellow; λmax 410 nm) and Zn2+ forms Zn(PAR)2 (red; λmax 
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495 nm). Titrations of 0.5-25 equivalents of substrate against Zn(PAR)2 (grey gradient) were 
carried out, with Zn2+ binding indicated by a decrease in Zn(PAR)2 and increase in the free 
PAR as it is displaced from the complex. 5 Whilst the TPEN Zn2+ binding positive control 
showed complete displacement of PAR at molar ratios >1, all 1 and BA analogues showed 
no or very modest decreases in Zn(PAR)2 and only at the highest molar ratios, indicative of 
weak or negligible Zn2+ binding. We were surprised to observe a decrease in Zn(PAR)2 for 
the BA control, suggesting that the carboxylic acid group was able to bind Zn2+ and thus 
explaining the similar absorbance spectra for 2,3-DHBA, 2-HBA, 3-HBA and BA. To account 
for potential interference by free carboxylic acids, compound 7 was included, and 
comparison of the spectra for 4 and 7 demonstrates a slight contribution to Zn2+ binding by 
the carboxylic acid released in β-lactone hydrolysis. Likewise, N-Ac-Thr was included as an 
analogue of the hydrolysed β-lactone lacking the aromatic groups to demonstrate the 
contribution from the β-hydroxy acid. Comparison of compounds with intact β-lactones 
showed that for 1 but not 2-4 there is a modest decrease in Zn(PAR)2 and slight increase in 
free PAR, suggestive of some weak Zn2+ binding via the catechol. 
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Minimum inhibitory concentrations (MIC) bioassays 

 

Figure S8: Modification of the 1-catechol abolishes antibacterial activity against 
methicillin-resistant S. aureus (MRSA). Spot-on-lawn bioassay of 1, 2, 3 and 4 dissolved in 
acetonitrile (ACN) against MRSA, with zones of clearing indicating growth inhibition. Numbers 
indicate concentration of 1, 2, 3 or 4 in μg/mL. Minimum inhibitory concentrations are 1: 2 
μg/mL; 2 and 3: 1 mg/mL; 4: > 1 mg/mL. ACN and apramycin (Apra) (50 μg/mL) were used as 
negative and positive controls respectively. Part of this image was previously published in 
Scott, Batey et al. 2019, Supplementary Figure 1.6 
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Figure S9: Modification of the 1-catechol abolishes antibacterial activity against B. 
subtilis. Spot-on-lawn bioassay of 1, 2, 3 and 4 dissolved in acetonitrile (ACN) against B. 
subtilis, with zones of clearing indicating growth inhibition. Numbers indicate concentration of 
1, 2, 3 or 4 in μg/mL.  Minimum inhibitory concentrations are 1: 4 μg/mL; 2 and 3: 1 mg/mL; 4: 
> 1 mg/mL. ACN and kanamycin (Kan) (50 μg/mL) were used as negative and positive controls 
respectively. Part of this image was previously published in Scott, Batey et al 2019, 
Supplementary Figure 1.6 
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Figure S10: Modification of the 1-catechol abolishes antibacterial activity against E. coli 
25922. Spot-on-lawn bioassay of 1, 2, 3 and 4 dissolved in acetonitrile (ACN) against E. coli 
ATCC25922, with zones of clearing indicating growth inhibition. Numbers indicate 
concentration of 1, 2, 3 or 4 in μg/mL.  Minimum inhibitory concentrations are 1: 256 μg/mL; 
2, 3 and 4: > 1 mg/mL. Acetonitrile (ACN) and kanamycin (Kan) (50 μg/mL) were used as 
negative and positive controls respectively. Part of this image was previously published in 
Scott, Batey et al 2019, Supplementary Figure 1.6 
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Figure S11: Modification of the 1-catechol abolishes antibacterial activity against E. coli 
NR698. Spot-on-lawn bioassay of 1, 2, 3 and 4 dissolved in acetonitrile (ACN) against E. coli 
NR698, with zones of clearing indicating growth inhibition. Numbers indicate concentration of 
1, 2, 3 or 4 in μg/mL.  Minimum inhibitory concentrations are 1: 4 μg/mL; 2, 3 and 4: > 1 mg/mL. 
ACN and kanamycin (Kan) (50 μg/mL) were used as negative and positive controls 
respectively. Part of this image was previously published in Scott, Batey et al 2019, 
Supplementary Figure 1.6 
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Figure S12: Modification of the 1-catechol abolishes antifungal activity against S. 
cerevisiae. Spot-on-lawn bioassay of 1, 2, 3 and 4 with S. cerevisiae, with zones of clearing 
indicating growth inhibition. Numbers indicate concentration of 1, 2, 3 or 4 in μg/mL. Minimum 
inhibitory concentrations are 1: 1 mg/mL; 2, 3 and 4: > 1 mg/mL. Acetonitrile (ACN) and 
aureobasidin A (Au) (0.2 μg/mL) were used as negative and positive controls respectively. 
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Figure S13: Ring-open 1-analogues lack antibacterial activity. Spot-on-lawn bioassays of ring-open analogues 5, 6 and 7 dissolved in 
acetonitrile (ACN) against MRSA, with zones of clearing indicating growth inhibition. Numbers indicate concentration of 5, 6 and 7 in μg/mL. ACN 
was used as a negative control and apramycin (Apra) (50 μg/mL) and obafluorin (Oba) (64 μg/mL) were used as positive controls. 
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PfThrRS aminoacylation assays 

 

Figure S14: The catechol moiety of 1 is required for inhibition of PfThrRS. Progress curves for PfThrRS in the presence of varying (0–25 
μM) concentrations of 2 (A), 3 (B) and 4 (C). Reactions (n = 3) included enzyme at 10 nM, which was preincubated with compound for 10 min 
prior to the addition of saturating concentrations of tRNA, threonine, and ATP. Compounds 2 and 3 fully inhibited PfThrRS only at 10000 nM and 
5000 nM respectively, in comparison to 10 nM for 1 (Figure 5), whereas compound 4 showed no significant inhibition of PfThrRS up to 25000 
nM. The linear portions of the progress curves were fit to a linear equation to derive initial rates. Error bars represent the standard error for each 
time point. Dose response curves for PfThrRS with compound 2 (D), 3 (E) and 4 (F) were calculated from the data in (A), (B) and (C) respectively 
by plotting the fractional velocity (v/v0) at each measured inhibitor concentration against log [compound]. IC50 values for compounds 2 and 3 are 
1600 ± 300 nM and 2500 ± 800 nM, respectively. PfThrRS was not inhibited by compound 4. Details of the fitting routines are presented in the 
Methods. CPM = counts per min. 
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Bioassays with modified iron concentrations  

 

 

Figure S15: The presence of additional Fe3+ increases the bioactivity of 1 against Gram-
negative strains. Spot-on-lawn bioassays of 1 against A) E. coli 25922 in the absence and 
presence of Fe3+ (2 mM). B) P. aeruginosa PA01 in the absence and presence of Fe3+ (1.5 
mM). Concentrations of Fe3+ are the maximum tolerated by each organism before inhibition of 
growth was observed. Numbers indicate concentrations of 1 (in μg/mL). Acetonitrile (ACN) 
was used as a negative control and carbenicillin (Carb; 1000 μg/mL) or tetracycline (Tc; 1000 
μg/mL), were used as the positive controls for E. coli 25922 or P. aeruginosa respectively. 
MICs are altered from 256 to ≤ 1 μg/mL and 128 to ≤ 1 μg/mL for E. coli 25922 and P. 
aeruginosa PA01 respectively.  
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Figure S16: The presence of additional Fe3+ decreases the MIC of 1 against MRSA. Spot-
on-lawn bioassay of 1 against MRSA with added Fe3+ (2 mM). Comparison with Figure S8 
shows a reduction in the MIC from 2 to 0.25 μg/mL. Numbers indicate concentrations of 1 (in 
μg/mL) dissolved in acetonitrile (ACN).  
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Figure S17: No active uptake of 1 via TonB-dependent transporters. Spot-on-lawn bioassays of 1 against E. coli BW25113 WT and the TonB 
dependent transporter (TBDT) knock-out mutants, Δ3 = ΔfhuAΔfecAΔcirA and Δ6 = ΔfhuAΔfecAΔcirAΔfepAΔfhuEΔfiu. The minimum inhibitory 
concentration (MIC) of 256 μg/mL for the WT and mutant strains is unchanged in the presence of the Fe3+ chelator bipy (150 μM), demonstrating 
there is no active uptake of 1 via TBDTs. E. coli BW25113 Δ6 was unable to grow in iron deplete conditions. As for E. coli 25922 (Figure S16) 
the MIC is reduced to ≤ 1 μg/mL in the presence of Fe3+ (2 mM). 
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Table S1: Changes to antibacterial activity of antibiotics with additional Fe3+. The lowest 
concentrations (μg/mL) of a range of antibiotics which gave an inhibition zone against S. 
aureus and E. coli 25922 in bioassay conditions, with and without additional Fe3+ (2 mM). 

 

 

 

 

 

 

 

 

Antibiotic 
S. aureus  E. coli 25922 

- Fe3+  + Fe3+ - Fe3+ + Fe3+ 

Carbenicillin 50 50 1000 1000 

Kanamycin 50 500 50 250 

Streptomycin 50 500 50 100 

Nitrofurantoin 500 250 500 100 

Chloramphenicol 1000 250 1000 500 

Apramycin 50 1000 50 1000 
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Hydrolysis of analogues 2-4 in the absence and presence of Fe3+ 

 

-Fe3+ +Fe3+ 

 

 

 

Figure S18: Fe3+ does not have a protective effect against hydrolysis of analogues 2-4. UV 
chromatograms at 270 nm recorded 30 min after the mixing of solutions of A) 2 (1mM) in HEPES buffer (100 
mM) at pH 6.0 and 8.0, B) 2 (1 mM) in HEPES buffer (100 mM) with added Fe3+ (1 mM) at pH 6.0 and 8.0; 
C) 3 (1mM) in HEPES buffer (100 mM) at pH 6.0 and 8.0, D) 3 (1 mM) in HEPES buffer (100 mM) with added 
Fe3+ (1 mM) at pH 6.0 and 8.0; E) 4 (1mM) in HEPES buffer (100 mM) at pH 6.0 and 8.0, F) 4 (1 mM) in 
HEPES buffer (100 mM) with added Fe3+ (1 mM) at pH 6.0 and 8.0. The red lines indicate the intact obafluorin 
analogue (2-4 respectively) and the green lines indicate the hydrolysed analogue. The side products III and 
IV are proposed to be adducts of HEPES and the obafluorin analogue, and V is proposed to be a dimer of 3 
(Figure S19).
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Figure S19: Proposed structures of side products seen in HPLC analysis of hydrolysis 
experiments. The side products I, III and IV are proposed to be adducts from the nucleophilic 
attack of 1 and its analogues (2 and 3) by HEPES buffer, and II and V are proposed to be a 
dimers of 1 and 3 respectively. We propose dimerization of 1 via 3-OH to give II because the 
calculated pKa of 2-OH and 3-OH are 8.3 and 11.9 respectively.* The higher pKa of 3-OH 
means it is a stronger conjugate base, and thus we'd expect higher electron density on this 
oxygen, making it the better nucleophile.

 
* Marvin was used for calculating the pKa values, Marvin 19.3.0, Chemaxon (https://www.chemaxon.com)  
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Tabulated NMR and spectra 

NMR spectra were recorded on a Bruker AVANCE III 400 MHz spectrometer at 298 K. 
Chemical shifts are reported in parts per million (ppm) relative to the solvent residual peak of 
acetone (1H: 2.05 ppm, quintet; 13C: 29.92 ppm, septet). 

 

Obafluorin (1) 
 

 

 

Table S2: Resonances assignment in 1H and 13C NMR spectra of 1 in acetone-d6 at 298 K. 

Position 
δH (no. of protons, 
multiplicity, J in Hz) 

δc COSY HMBC 

1 9.05 (1H, d, 4.84) 114.8   
2  150.7   
3  147.4   
4 7.37 (1H, d, 7.5) 118.2 5 2, 6, 7 
5 6.84 (1H, dd, 7.5 & 7.9) 119.8 4, 6 1, 3 
6 7.05 (1H, d, 7.9) 120.4 5 2, 3, 4 
7  171.4   
8 9.05 (1H, d, 4.7) - 9  
9 6.05-6.02 (1H, m)  59.9 8, 11 10 
10  168.8   
11 5.24-5.19 (1H, m) 78.3 9, 12 10 

12 
3.54 (1H, dd, 14.7 & 9.2) 
3.41 (1H, dd, 14.7 & 4.4) 

36.1 9, 11 9, 12, 13, 14 

13  145.5   
14 7.60 (2H, d, 8.5) 131.2 15 12, 14, 15, 16 
15 8.16 (2H, d, 8.5) 124.4 14 13, 15, 16 
16  147.9   

2-OH 11.93 (1H, s)   2, 3, 6 
3-OH 8.16 (1H, m)    
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Figure S20: 1H NMR of 1 in acetone-d6 at 298 K. 
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Figure S21: 13C NMR of 1 in acetone-d6 at 298 K. 
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Figure S22: HSQC-edited NMR of 1 in acetone-d6 at 298 K. 
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Figure S23: COSY NMR of 1 in acetone-d6 at 298 K. 
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Figure S24: HMBC NMR  of 1 in acetone-d6 at 298 K.
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2-HBA-obafluorin (2) 
 

 

 

Table S3: Resonances assignment in 1H and 13C NMR spectra of 2 in acetone-d6 at 298 K. 

Position 
δH (no. of protons, 
multiplicity, J in Hz) 

δc COSY HMBC 

1  114.8   
2  162.2   
3 6.92-6.92 (1H, m)* 118.9 4, 5, 6 1, 2 (weak), 5 
4 7.52-7.46 (1H, m) 135.8 3, 5 2, 6 
5 6.92-6.92 (1H, m)* 120.0 3, 4, 6 1, 3, 6 (weak) 
6 7.90-7.86 (1H, m) 128.3 3, 5 2, 4, 7 
7  170.9   
8 9.07 (1H, d, 8.2)    
9 6.07-6.02 (1H, m) 59.8 8, 11 7, 10, 11 
10  168.9   
11 5.26-5.19 (1H, m) 78.4 9, 12 10 

12 
3.54 (1H, dd, 14.8 & 9.3) 
3.40 (1H, dd, 14.8 & 4.7) 

36.2 11, 12 9, 11, 13, 14 

13  145.6   
14 7.60 (2H, d, 8.8) 131.2 15 12, 14, 16 
15 8.16 (2H, d, 8.8) 124.4 14 13, 15, 16 
16  148.0   

2-OH 11.78 (1H, s)    
 

*H-3 and H-5 are under the same signal. 
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Figure S25: 1H NMR of 2 in acetone-d6 at 298 K. 
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Figure S26: 13C NMR for 2 in acetone-d6 at 298 K. 
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Figure S27: COSY NMR of 2 in acetone-d6 at 298 K. 
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Figure S28: HSQC-edited NMR of 2 in acetone-d6 at 298 K. 
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Figure S29: HMBC NMR of 2 in acetone-d6 at 298 K.  



 

35 

3-HBA-obafluorin (3) 
 

 

 

Table S4: Resonances assignment in 1H and 13C NMR spectra of 3 in acetone-d6 at 298 K. 

Position 
δH (no. of protons, multiplicity, J 

in Hz) 
δc COSY HMBC 

1  135.7   
2 7.42-7.39 (1H, m)** 115.4 4, 5, 6 3, 4, 6, 7 
3  158.6   
4 7.06 (1H, ddd, 8.1 & 2.5 & 1.1) 120.0 2, 5, 6 2, 6 
5 7.33 (1H, dd, 8.1 & 8.1) 130.7 2, 4, 6 1, 3 
6 7.42-7.39 (1H, m)** 119.3 2, 4, 5 2, 3, 4, 7  
7  167.6   
8 8.70-8.65 (1H, m)*  9  
9 6.00-5.96 (1H, m) 60.4 8, 11 7, 10 
10  169.5   
11 5.19-5.12 (1H, m) 78.5 9, 12 10 

12 
3.52 (1H, dd, 14.9 & 9.2) 
3.38 (1H, dd, 14.9 & 4.6) 

36.2 11, 12 9, 12, 13, 14 

13  145.9   
14 7.60 (2H, d, 8.8) 131.3 15 12, 13, 14, 15 
15 8.17 (2H, d, 8.8) 124.5 14 13, 15, 16 
16  148.0   

3-OH 8.70-8.65 (1H, m)*    
 

* H-8 and 3-OH are both under the same signal 

** H-6 and H-2 are both under the same signal 
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Figure S30: 1H NMR of 3 in acetone-d6 at 298 K. 
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Figure S31: 13C NMR of 3 in acetone-d6 at 298 K.  
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Figure S32: COSY NMR of 3 in acetone-d6 at 298 K. 
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Figure S33: HSQC-edited NMR of 3 in acetone-d6 at 298 K. 
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Figure S34: HMBC of 3 in acetone-d6 at 298 K.
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BA-obafluorin (4) 
 

 

 

Table S5: Resonances assignment in 1H and 13C NMR spectra of 4 in acetone-d6 at 298 K. 

Position 
δH (no. of protons, 
multiplicity, J in Hz) 

δc 
COSY 
1H-1H 

HMBC 
1H-13C 

1  134.2   
2/6 7.95 (2H, d, 7.3 Hz) 128.4 3/5 2/6, 4, 7 
3/5 7.52 (2H, dd, 7.3, 7.6) 129.5 2/6, 4 1, 3/5 
4 7.62-7.58 (1H, m)* 133.0 3/5 2/6, 14 
7  167.6   
8 8.75 (1H, d, 8.1)  9  
9 6.03-5.96 (1H, m) 60.3 8, 11 7, 10, 11 
10  169.4  10 
11 5.20-5.15 (1H, m) 78.5 9, 12  

12 
3.53 (1H, dd, 15.0 & 9.4) 
3.38 (1H, dd, 15.0 & 4.5) 

36.2 11, 12 9, 11, 13, 14 

13  145.9   
14 7.60 (2H, d, 8.7) 131.3 15 12, 16 
15 8.17 (2H, d, 8.7) 124.4 14 13, 15, 16 
16  148.0   

 

*under the signal for H-14
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Figure S35: 1H NMR of 4 in acetone-d6 at 298 K. 
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Figure S36: 13C NMR of 4 in acetone-d6 at 298 K. 



 

44 

 

Figure S37: COSY NMR for 4 in acetone-d6 at 298 K. 
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Figure S38: HSQC-edited NMR of 4 in acetone-d6 at 298 K. 
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Figure S39: HMBC NMR of 4 in acetone-d6 at 298 K.  
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Hydrolysed obafluorin (5) 
 

 

 

Table S6: Resonances assignment in 1H and 13C NMR spectra of 5 in acetone-d6 at 298 K. 

Position 
δH (no. of protons, 
multiplicity, J in Hz) 

δc COSY HMBC 

1  115.5   
2  150.6   
3  147.4   
4 7.44-7.40 (1H, m) 118.4 5 2, 6, 7 
5 6.83-6.78 (1H, m( 119.5 4, 6 1, 3, 6 
6 7.05-7.02 (1H, m) 119.9 5 2, 3, 4 
7  171.4   
8 7.92-7.86 (1H, m)*  9 2, 3, 6 
9 4.86 (1H, dd, 8.9 & 2.4) 57.2 8 10 
10 CO2H: 11.27 (1H, bs) 171.7   

11 4.68-4.61 (1H, m) 73.0 
11-OH 

(weak), 12 
 

12 
3.16 (1H, dd, 13.6 & 5.1) 
3.06 (1H, dd, 13.6 & 8.5) 

41.3 11, 12 9, 11, 13, 14 

13  147.8   
14 7.63 (2H, d, 8.6) 131.7 15 12, 14, 15, 16 
15 8.18 (2H, d, 8.6) 124.2 14 15, 16 
16  147.8   

2-OH 12.25 (1H, s)    
3-OH 7.92-7.86 (1H, m)*    
11-OH 4.79-4.74 (1H, m)  11 (weak) 11 

 

*H-8 and 3-OH are under the same signal. 

Note that there was some formic acid from purification in the sample used for 13C and HMBC 
(δH 8.10 and δC 162.4).7 
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Figure S40: 1H NMR of 5 in acetone-d6 at 298 K. 
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Figure S41: 13C NMR of 5 in acetone-d6 at 298 K. 
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Figure S42: COSY NMR of 5 in acetone-d6 at 298 K.  
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Figure S43: HSQC-edited NMR for 5 in acetone-d6 at 298 K. 
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Figure S44: HMBC NMR for 5 in acetone-d6 at 298 K.
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Methanolysed obafluorin (6) 
 

 

 

Table S7: Resonances assignment in 1H and 13C NMR spectra of 6 in acetone-d6 at 298 K. 

Position 
δH (no. of protons, 
multiplicity, J in Hz) 

δc COSY HMBC 

1  115.6   
2  150.5   
3  147.4   
4 7.43 (1H, dd, 8.2 & 1.4) 118.5 5 2, 6, 7 
5 6.81 (1H, dd, 8.2 & 7.9) 119.5 4, 6 1, 3, 6 
6 7.04 (1H, dd, 7.9 & 1.0 120.0 5 2, 3, 4 
7  171.3   
8 7.98 (1H, d, 8.6)  9  
9 4.86 (1H, dd, 8.6 & 2.6) 57.5 8 10, 11 (weak) 
10  171.3   
11 4.62-4.56 (1H, m) 72.9 11-OH, 12  

12 
3.14 (1H, dd, 13.8 & 5.1) 
3.04 (1H, dd, 13.8 & 8.4) 

41.4 11, 12 9, 11, 13, 14 

13  147.7   
14 7.61 (2H, d, 8.6) 131.7 15 12, 13, 14, 15 
15 8.17 (2H, d, 8.8) 124.2 14 15, 16 
16  147.7   
17 3.72 (3H, s) 52.8  10 

2-OH 12.14 (1H, s)    
3-OH 7.92 (1H, s)   2, 3, 5 
11-OH 4.82-4.74 (1H, m)   11 9, 11, 12,  
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Figure S45: 1H NMR for 6 in acetone-d6 at 298 K. 
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Figure S46: 13C NMR for 6 in acetone-d6 at 298 K. 
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Figure S47: COSY NMR for 6 in acetone-d6 at 298 K. 
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Figure S48: HSQC-edited NMR for 6 in acetone-d6 at 298 K. 
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Figure S49: HMBC NMR for 6 in acetone-d6 at 298 K.



 

59 

Hydrolysed BA-obafluorin (7) 
 

 

 

Table S8: Resonances assignment in 1H and 13C NMR spectra of 7 in acetone-d6 at 298 
K. 

Position 
δH (no. of protons, 
multiplicity, J in Hz) 

δc COSY HMBC 

1  132.4   
2/6 7.98 (2H, dd, 8.4 & 1.4) 128.3 3/5 2/6, 4, 7 
3/5 7.56-7.49 (2H, m)* 129.4 2/6 1, 3/5 
4 7.60-7.55 (1H, m)* 132.5  2/6 
7  168.0   
8 7.56-7.51 (1H, m)*  9  
9 4.85 (1H, dd, 8.9 & 2.5) 57.5 8, 11 7 (weak), 10, 11 
10  172.3   
11 4.62-4.58 (1H, m) 73.3 9, 12  

12 
3.14 (1H, dd, 13.7 & 5.1) 
3.03 (1H, dd, 13.7 & 8.3) 

41.4 11, 12 9, 11, 13, 14 

13  148.1   
14 7.62 (2H, d, 8.8) 131.7 15 14, 15, 16 
15 8.17 (2H, d, 8.8) 124.1 14 13, 15 
16  147.7   

10-OH NS    
11-OH NS    

 

*H-3/5, H-4 and H-8 make up a multiplet from 7.60-7.49 ppm. More accurate chemical 
shift ranges were found from HSQC-edited (H-3/5 and H-4) and COSY (H-8) NMR. 
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Figure S50: 1H NMR for 7 in acetone-d6 at 298 K. 
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Figure S51: 13C NMR for 7 in acetone-d6 at 298 K. 
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Figure S52: COSY NMR for 7 in acetone-d6 at 298 K. 
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Figure S53: HSQC-edited NMR for 7 in acetone-d6 at 298 K. 
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Figure S54: HMBC NMR for 7 in acetone-d6 at 298 K.
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