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Abstract 29 

In drug resistant temporal lobe epilepsy, automated tools for seizure onset zone (SOZ) localization using brief 30 

interictal recordings would supplement presurgical evaluations and improve care. Thus, we sought to localize 31 

SOZs by training a multi-channel convolutional neural network on stereo-EEG (SEEG) cortico-cortical evoked 32 

potentials. We performed single pulse electrical stimulation with 10 drug resistant temporal lobe epilepsy 33 

patients implanted with SEEG. Using the 500,000 unique post-stimulation SEEG epochs, we trained a multi-34 

channel one-dimensional convolutional neural network to determine whether an SOZ was stimulated. SOZs 35 

were classified with a mean leave-one-patient-out testing sensitivity of 78.1% and specificity of 74.6%. To 36 

achieve maximum accuracy, the model requires a 0-350 ms post stimulation time period. Post-hoc analysis 37 

revealed that the model accurately classified unilateral vs bilateral mesial temporal lobe seizure onset, and 38 

neocortical SOZs. This is the first demonstration, to our knowledge, that a deep learning framework can be 39 

used to accurately classify SOZs using cortico-cortical evoked potentials. Our findings suggest accurate 40 

classification of SOZs relies on a complex temporal evolution of evoked potentials within 350 ms of stimulation. 41 

Validation in a larger dataset could provide a practical clinical tool for the presurgical evaluation of drug 42 

resistant epilepsy.  43 
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Introduction 58 

Epilepsy affects over 50 million people worldwide, with temporal lobe epilepsy (TLE) being the most common 59 

focal epilepsy.1 Approximately 30-40% of TLE patients continue to have debilitating seizures despite maximal 60 

therapy with anti-seizure medications.2 Drug resistant patients may undergo presurgical evaluation ahead of 61 

resection, ablation, or neurostimulation therapies. A major goal of presurgical workup is to find the areas of the 62 

brain responsible for seizure generation, i.e. the seizure onset zones (SOZs). However, precise localization of 63 

SOZs can be challenging with non-invasive modalities such as scalp electroencephalography (EEG), MRI, and 64 

PET. Therefore, invasive intracranial monitoring with stereo-EEG (SEEG) is often pursued to provide direct 65 

electrographic recordings of seizures to localize SOZs. Monitoring after SEEG implantation often requires long 66 

hospital stays of days to weeks to record multiple ictal events.3 Thus, it has been proposed that inter-ictal 67 

single-pulse electrical stimulation (SPES) of the SEEG contacts to elicit cortico-cortical evoked potentials 68 

(CCEP) can help localize SOZs more efficiently.4-6  69 

A challenge of interpreting CCEPs using SEEG is that the foundational work in this field was done using 70 

subdural electrode grids that measured consistent electrographic phenomena after stimulation, e.g. N1 (10-50 71 

ms) and N2 (50-300 ms) responses.4 However, N1 and N2 wave polarity and morphology are defined based 72 

on the consistent electrode orientation of subdural electrode grids relative to the cortical surface, and thus 73 

orthogonal to cortical pyramidal neurons. In contrast, SEEG has less consistent orientation relative to cortical 74 

structures, and translation of N1 and N2 terminology for subcortical gray matter is even more challenging due 75 

to heterogenous cytoarchitecture.7 Thus, it is difficult to predict the pattern of CCEP wave morphology for any 76 

given SEEG contact. Accordingly, most groups rely on coarse metrics for CCEPs in SEEG such as root-mean-77 

squared power.6,8 However, these metrics may miss important electrographic features that could help 78 

characterize the epileptogenic network. We propose that a multi-channel one-dimensional convolutional neural 79 

network (CNN) is well-suited for recognizing variable evoked wave morphology from multiple SEEG contacts 80 

simultaneously. This could be a useful tool to delineate whether a given set of CCEPs resulted from an SOZ or 81 

non-SOZ being stimulated. Further, by probing various time windows post-stimulation, we can systematically 82 

determine which post-stimulation time periods contain the most important classifying features.     83 
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Methods 85 

Participants and single-pulse electrical stimulation 86 

We collected over 500,000 post-stimulation 900 ms SEEG epochs from 10 patients with drug resistant TLE 87 

who underwent presurgical evaluation (Table 1). Clinical data were collected through chart review, and seizure 88 

outcomes were assigned using the Engel scale.9 This study received Institutional Review Board approval and 89 

informed subject consents were obtained. We conducted single pulse electrical stimulation (SPES) with every 90 

adjacent bipolar pair of contacts in gray matter for each patient. We used a 10 second, 1 Hz, 300 microsecond, 91 

biphasic pulse at 3.0 milliamps with a recording sampling rate of 512 Hz.  92 

Preprocessing and SOZ labeling 93 

We filtered raw SEEG data using Matlab’s filtfilt function (MathWorks inc., Natick, MA, USA) with Butterworth 94 

filter passbands of 1-59, 61-119 and 121-150 Hz. We then parsed the data into 900 ms epochs following each 95 

1 Hz stimulation. This resulted in over 500,000 preprocessed epochs for training our model. SOZs were 96 

defined as regions containing any contacts involved in ictal onset of one or more seizures after epileptologist 97 

interpretation of all ictal data. Using custom SEEG planning software, CRAnial Vault Explorer (CRAVE), we 98 

automatically localized every contact for each patient and created a table of all inter-contact Euclidean 99 

distances.10   100 

Deep learning  101 

Using post-stimulation EEG epochs, we trained a one-dimensional multi-channel multi-scale CNN (Fig. 1A). To 102 

accomplish this, we modified the Multi-Scale-1D-ResNet developed by Fei Wang 103 

(https://github.com/geekfeiw/Multi-Scale-1D-ResNet) to input 40 SEEG channels simultaneously. To avoid 104 

stimulation artifact and implantation bias, the epochs were distance thresholded to exclude any SEEG 105 

channels within 20 mm of the stimulation pair.11 For each training pass, we randomized the subset of 40 106 

channels chosen from a patient’s entire available channels. We utilized a weighted binary cross entropy loss 107 

function and stopped training after five model epochs. We implemented a leave-one-patient-out testing 108 

strategy across all patients. We first tested the ability of the trained model to classify SOZs using the entire 0-109 

900 ms window. Next, we tested the model with only a non-overlapping 50 ms sliding window over the post-110 
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stimulation period. We also trained the model on three separate randomized region labels to serve as a 111 

control.   112 

Post-hoc testing:  113 

We conducted post-hoc testing to determine 1) which post-stimulation time period is best for SOZ 114 

classification, 2) can the model classify unilateral vs. bilateral mesial temporal onset, and 3) can the model 115 

accurately classify neocortical temporal SOZs? We accomplished (1) by nulling the data outside the desired 116 

time window before training. For (2), we calculated the accuracy of left and right mesial temporal SOZ 117 

classification for patients with bilateral mesial temporal seizures (n=4) vs. patients with a) unilateral mesial 118 

temporal seizures on ictal SEEG, b) a bilateral SEEG implant, and c) seizure-free surgical outcomes (n=3). To 119 

accomplish (3), we calculated the accuracy of neocortical temporal SOZ classification in all patients. 120 

Statistical methods 121 

We calculated the sensitivity and specificity for the leave-one-patient-out testing across all 10 patients for the 122 

various time window analyses. We also report the Youden index (sensitivity + specificity – 100) to summarize 123 

the usefulness of the model at a given time window; Youden index values above 50 are generally considered 124 

to be a very useful model for classification, and values close to 0 are considered useless even if sensitivity or 125 

specificity is individually high.12 We compared Youden indexes with paired t-tests using Bonferroni-Holm 126 

multiple comparison correction.   127 

Data availability 128 

Data and computer code are available upon reasonable request.  129 

 130 

 131 

 132 

 133 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 9, 2022. ; https://doi.org/10.1101/2022.02.28.481828doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.481828


Results 134 

CNN trained on long-range CCEPs accurately classifies SOZs 135 

As outlined in Fig. 1B, the CNN trained on the entire 900 ms post-stimulation period correctly classified the 136 

stimulation pair as SOZ with a mean leave-one-patient-out testing sensitivity of 78.1% (95% confidence interval 137 

[CI] 67.8 to 88.4%) and specificity of 74.6% (95%CI 68.7 to 80.5%), resulting in an average Youden index of 138 

52.7 (95%CI 43.7 to 61.8). In comparison, when the model was trained using regions randomly labeled as SOZ 139 

or non-SOZ, the average Youden index was significantly decreased to 16.5 (95%CI 9.62 to 23.4, t-test 140 

p=4.88e-6). Furthermore, the model achieved significantly improved Youden indexes when training on 50 ms 141 

sliding windows ranging from 0-350 ms compared to the same windows with random labels (Fig. 1C). 142 

Interestingly, the specificity and sensitivity of the model peaked during different periods in the initial 350 ms 143 

post-stimulation – the sensitivity peaked for the time window that spans 100 to 150 ms, while the specificity 144 

peaked for the 0-50 ms time window. This suggests that delayed responses are most sensitive for classifying 145 

SOZs, whereas early responses are most specific for classifying SOZs.  146 

Important features are temporally distributed within the initial post-stimulation window 147 

We performed post-hoc analyses to assess which early post-stimulation window was most effective at 148 

classifying if an SOZ was stimulated (Fig. 1D). Using a time window of 0-350 ms we observed a leave-one-149 

patient-out average testing sensitivity of 74.0% (95%CI 63.3 to 84.7%) and specificity of 78.5% (95%CI 75.9 to 150 

81.1%) with an average Youden index of 52.5 (95%CI 42.1 to 62.9) – very similar to when the model was 151 

trained on the entire 0-900 ms. When we divided the 0-350 ms period into 0-175 ms and 175-350 ms, the 152 

leave-one-patient-out testing Youden index dropped significantly, suggesting both early and late portions of 153 

this time window contribute to model performance. 154 

The model can classify unilateral vs. bilateral onset mesial temporal lobe epilepsy, and can detect neocortical 155 

temporal SOZs    156 

We observed that the bilateral onset patients had left mesial temporal structures correctly classified as SOZs 157 

for 68.9% (95% CI 58.7 to 79.1%) of the CCEP epochs, and right mesial temporal structure epochs classified 158 

as SOZs for 67.9% (95%CI 45.4 to 90.4%) (Fig. 1E). For unilateral patients, the model correctly classified 159 
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mesial temporal structures ipsilateral to the seizure onset hemisphere as SOZs for 91.5% (95%CI 89.7 to 160 

93.3%) of the epochs with a low false positive rate of 35.1% (95%CI 16.7 to 53.5%) for non-SOZs on the 161 

contralateral side. This sub analysis provides evidence that the model was not simply classifying all mesial 162 

temporal structures as SOZs, but rather provides accurate classification for unilateral vs. bilateral mesial 163 

temporal onset patients. Furthermore, the model correctly classified neocortical temporal SOZs at a rate of 164 

64.4% (95%CI 44.3 to 84.5%), and misclassified neocortical temporal non-SOZs at only 26.0% (95%CI 19.7 to 165 

32.3%) (Fig. 1F). 166 

Discussion 167 

We have demonstrated that a CNN trained entirely on SEEG-derived CCEPs farther than 20 mm from the site 168 

of stimulation can classify an SOZ with high sensitivity and specificity in TLE. A strength of this approach is that 169 

the model accurately classified SOZs despite the variable morphology of CCEPs during stimulation of SEEG 170 

electrodes. Further, the most important post-stimulation features for classification are contained within 0-350 171 

ms. This is not surprising considering that most previous findings using RMS have centered around N1 and N2 172 

responses within 300 ms.4,13,14 However, separating this window into smaller segments significantly reduces 173 

model accuracy. This suggests that there is a complex pattern of CCEPs occurring at various periods post-174 

stimulation that must be considered in an ensemble to accurately classify the stimulation of ictogenic tissue – 175 

this observation could be due to varied phenotypes of evoked responses.15 Additionally, through our sub 176 

analyses, we conclude that this model was not classifying all mesial temporal structures as SOZs and can 177 

accurately distinguish unilateral vs bilateral mesial temporal onset. Finally, the model can also accurately 178 

classify neocortical temporal SOZs.  179 

Limitations and future work 180 

Although 500,000 non-overlapping SEEG epochs were used to train the CNN, training and testing datasets 181 

were divided at the patient level. Thus, our relatively small sample size of 10 patients limits our assessment of 182 

generalizability and motivated our conservative strategy of leave-one-patient-out testing across the entire 183 

cohort. Also, mean follow-up was 15.4 months, and future seizure recurrences may decrease the confidence in 184 

clinical SOZ localization and change labels for the CNN. We also did not include any focal extratemporal-lobe 185 
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epilepsy patients and thus cannot comment on the extension of these techniques to that population. Our future 186 

work is aimed at addressing these limitations by collaborating with other institutions that collect these rare 187 

datasets. We also hope to test this model on patients with surgical outcomes of Engel 2-4. Perhaps, previously 188 

unidentified SOZs, including bilateral seizure onset, could be elucidated in Engel 2-4 patients with a model 189 

trained on Engel 1 patients.  190 

Conclusions 191 

This work serves as the first demonstration, to our knowledge, that a one-dimensional multi-channel multi-192 

scale CNN can learn highly non-linear features of SEEG-derived CCEPs occurring across multiple SEEG 193 

channels simultaneously to classify when an SOZ is stimulated. Furthermore, we demonstrated the importance 194 

of utilizing the entire 0-350 ms time window for classification. We hope that future work will consider using 195 

deep learning as a tool to explore the complex CCEPs generated with SEEG. 196 

 197 
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Figure Legends 272 

Figure 1: Deep learning on distant SEEG CCEPs can accurately classify SOZs. A) We conducted single-273 

pulse electrical stimulation on all gray matter bipolar pairs of contacts for 10 patients undergoing SEEG – this 274 

resulted in over 500,000 post-stimulation epochs from the recording channels. To avoid stimulation artifact and 275 

biases relating to contact implantation density due to clinical hypotheses, we excluded recordings from 276 

contacts that were within 20 mm of the stimulation site. We then trained a convolutional neural network (CNN) 277 

to classify if a clinically defined seizure onset zone (SOZ) or non-seizure onset zone (non-SOZ) was 278 

stimulated. B) We first trained the model using the entire 0-900 ms post-stimulation window. This resulted in a 279 

sensitivity of 78.1% and specificity of 74.6% with a significantly improved Youden index compared to training 280 

the model on random labels. C) For 50 ms sliding windows, the model performed better than random labels for 281 

the 0-350 ms post-stimulation 50 ms intervals. Paired t-tests with Bonferroni-Holm multiple comparison 282 

correction were conducted between the Youden index (blue), and the random-label Youden index (gray). Note: 283 

values on the x-axis represent ending time of the 50 ms window. D) Using only the 0-350 ms window resulted 284 

in a model accuracy comparable to using the 0-900 ms window. However, dividing this window into 0-175 ms 285 

or 175-350 ms resulted in a significant reduction in Youden indexes. E) The model was not simply classifying 286 

all mesial temporal structures as SOZs. For bilateral patients, the model classified left and right mesial 287 

temporal structures as SOZs with comparable confidence around 70%. For unilateral patients, the model 288 

correctly classified ipsilateral mesial temporal structures as SOZs at a rate of 91.5% and contralateral (i.e. non-289 

SOZs) at a low rate of 35.1% - suggesting that the model can accurately classify unilateral vs. bilateral seizure 290 

onset. F) The model was also able to correctly classify neocortical temporal SOZs 64.4% of the time with a low 291 

false positive rate of 26.0%. White dot in violin plots is median, horizontal bar is mean.  292 
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Table 1: Patient demographics 

 

 

 

 

 

 

 

Subject 
ID 

Age Sex 
Racial 

identity 

Epilepsy 
duration, 

years 

Preoperative 
seizure 

frequency, 
per month 

FBTC MRI Findings 

Number of 
contact 

pairs 
stimulated 

Surgery 
Surgical 
outcome 

Postsurgical 
duration, 
months 

Pat1 51 F White 20 3.5 No Normal 69 B/L RNS >50 % reduction 25 

Pat2 39 F White 15 60.5 Yes Normal 69 B/L RNS <50 % reduction 21 

Pat3 30 F 
Two or 
more 

14 9.5 Yes Normal 42 R SAH Engel 1d 21 

Pat4 58 F Black 8 1.0 Yes Normal 45 R SAH Engel 1a 13 

Pat5 24 F Asian 7 10.0 No Normal 72 B/L RNS <50 % reduction 12 

Pat6 41 M White 18 1.0 No L MTS 71 L SAH Engel 1a* 10 

Pat7 28 M Black 14 1.0 Yes 
L temporal 

encephalocele 
63 L ATL Engel 1a* 10 

Pat8 23 F White 14 32.0 Yes Normal 48 B/L RNS >50 % reduction 13 

Pat9 23 F White 7 12.0 No Normal 53 R ATL Engel 1a 15 

Pat10 23 M White 18 1.0 Yes Normal 65 R ATL Engel 1a 14 

R right; L left; B/L bilateral; FBTC focal to bilateral tonic-clonic seizures; RNS responsive neurostimulation; SAH selective amygdalohippocampectomy; ATL anterior temporal 
lobectomy; MTS mesial temporal sclerosis; <>50% reduction refers to reduction in monthly seizure frequency compared to preoperative baseline. *Outcome consistent with Engel 
1a if persists >1yr. 
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