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ABSTRACT

Calcium ionophoresis into coenocytic cells of Neurospora
crassa activates the plasma membrane proton pump as measured
by current-voltage analysis. This is direct evidence that intracel-
lular calcium regulates the activity of a key transport enzyme
found in higher plants and fungi.

Calcium is a regulator of plant growth and development,
usually through its role as a second messenger (20). It is
required for maintenance of membrane permeability (4) and
for high-affinity potassium uptake (7), so it is possible that it
affects plant growth and development by regulating the trans-
port properties of the plasma membrane. For example, inhib-
itors of calcium-calmodulin activation (phenothiazine deriv-
atives) affect the electrical transmembrane potential across
the plasma membrane of plant cells (2, 12, 14), which is
generated by an electrogenic proton ATPase (25, 26). How-
ever, phenothiazines are accumulated by plants to high levels
(5) and directly inhibit the plasma membrane proton ATPase
(14), so their effect in vivo may be due to nonspecific actions
rather than inhibition of calcium-calmodulin regulation of
the proton pump. Using internal perfusion, calcium does not
affect the plasma membrane proton ATPase of Nitellopsis or
Chara at concentrations up to 0.1 mM; above this level, it
inhibits their activity (16). The lack of any effect of calcium
at physiological levels in Characean algae does not preclude
possible calcium regulation of transport in other systems.

Calcium does regulate ion channels in the plant vacuolar
membrane (9); the physiological significance of this regulation
is still unclear. Inositol 1,4,5-trisphosphate triggers calcium
release from vacuoles (23) (but not from endoplasmic reticu-
lum [15]), and may act in concert with calcium activation of
channels in vivo. Overall, these data are consistent with a
model of calcium regulation of growth and development via
release from internal stores induced by inositol 1,4,5-tris-
phosphate; but subsequent mechanisms of action and the
universality of calcium regulatory functions are unknown.

To demonstrate that intracellular calcium directly affects
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electrogenic transport at the plasma membrane, I used iono-
phoretic injection of calcium to increase intracellular levels.
The system I used, Neurospora crassa coenocytic cells, was
ideal for such studies because the cells are small and spherical
and lack a large central vacuole. Calcium plays a regulatory
role in N. crassa: calmodulin is found in Neurospora (6),
where it stimulates protein kinase (27) and adenylate cyclase
(19). The membrane potential in Neurospora is generated by
an electrogenic proton pump that is very similar to that found
in higher plants (25). In this report, I present evidence that
calcium stimulates the plasma membrane proton pump in
Neurospora.

MATERIALS AND METHODS

Cells of Neurospora crassa were grown from conidia in
Vogel’s minimal medium (28) plus 2% glucose and 15.5%
ethylene glycol (1). After 3 d growth, the cells were washed in
a fivefold excess of 9 mM Mes (pH adjusted to 5.7 with
Ca(OH),) (Ca-Mes solution) plus 17.1% ethylene glycol, and
diluted 10-fold with Ca-Mes solution over 4 h. Electrophy-
siology was done in 10 mm Bis-Tris propane/Mes solution
(pH 6.0) containing 1 mMm CaCl,. Triple-barreled microelec-
trodes were used: the common filling solution was 100 mm
K-acetate plus 10 mm KCI (the pH was about 7). Impaled
cells had volumes ranging from 5 to 10 pL.

For calcium ionophoresis, the cation-ejecting microelec-
trode was filled with 25 mm Ca?*. Currents were canceled
with a return current (the clamping current) through one of
the other microelectrodes in the assembly while the voltage
was clamped to the resting potential as measured by the third
microelectrode. The ionophoretic current was indirectly mon-
itored by measuring the clamping current.

RESULTS AND DISCUSSION

Initial experiments were done without voltage clamping
(13). This limited the magnitude of ionophoretic current that
could be used (4 to 50 pA), and there was no effect of
ionophoresis upon the current-voltage relations of the plasma
membrane.

With voltage clamping to maintain the potential at its
resting value, it was possible to increase the ionophoretic
current up to 1.25 nA. For all cells in this experimental series,
the initial membrane potential was —225 + 27 mV (n = 21).

In the sample experiment shown in Figure 1, control ion-
ophoresis of potassium into the cell was without any large
effect. Subsequent ionophoresis of calcium caused a hyper-
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Figure 1. Calcium ionophoresis with voltage-clamping. The calcium-injecting microelectrode contained acetate (100 mm), K* (82.5 mm), CI~ (10
mm), and Ca?* (25 mm). The ionophoretic current was balanced by voltage-clamping the potential at the resting potential using the other two
microelectrodes (both contained 100 mm K-acetate plus 10 mm KCI). By doing this, much larger ionophoretic currents could be passed than
were previously possible (13). Current-voltage measurements (shown as vertical bars in the membrane potential trace) were measured with a
conventional bipolar voltage clamp protocol. As a control, the initial ionophoresis was through one of the microelectrodes containing 100 mm K-
acetate plus 10 mm KClI, so that K* was injected into the cell. The effect of this and subsequent calcium injections on the membrane potential is
shown in the upper panel; their effects on the current-voltage relations are shown in the lower panel. Depolarizing spikes often seen at
hyperpolarized potentials occurred during the experiment but are not shown in the potential trace. Only two examples of the effect of calcium
ionophoresis on current-voltage relations are shown; the others were quite similar.

polarization of the potential and an increase in the conduct-
ance, and thus an increase in the short circuit current (i.e.
current at 0 mV) in the current-voltage relations. Both of
these effects must be a consequence of calcium ionophoresis
since neither is seen when calcium is absent from the
electrode.

The hyperpolarization is a consequence of either positive
charge movement out of the cell or negative charge movement
into the cell; likely candidates are calcium, potassium, chlo-
ride, or protons. Neurospora has a Ca>*/nH* antiporter (22),
and energetically, calcium efflux would have to be either
electrically silent or cause the potential to depolarize. Potas-
sium outward movement is unlikely: no active efflux mech-
anism is known, and potassium ionophoresis (which would
cause a more negative-inside Nernst potential for potassium)
causes a slight depolarization (Fig. 1). This indicates that a
potassium conductance does not dominate the electrical prop-

erties of the membrane. Finally, no chloride pump is known
in Neurospora. By elimination, proton efflux is most probable.

The increase in conductance seen after calcium ionopho-
resis could be interpreted as an increased ionic “leak.” But if
this were the case, the potential would depolarize: the ionic
leak potential is nearly 0 mV, as measured when the proton
pump is inhibited by ATP depletion (cyanide or carbon
monoxide treatment) or directly (vanadate ionophoresis)
(data not shown). The concomitant hyperpolarization and
increased conductance can be best explained by activation of
the proton pump as follows: increased proton pump activity
would cause the potential to hyperpolarize and would also
increase the maximal pump current. This would be seen as
increased current under no load conditions, i.e. at 0 mV,
where passive leakage contributes virtually nothing to overall
current (8), and thus increased conductance on the current-
voltage relation.
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Figure 2. Effects of calcium ionophoresis on the membrane potential
and short circuit current. The x axis shows the ionophoretic current
normalized for duration and cellular volume, i.e. coulombs of charge
per picoliter of cell volume. The actual concentrations are unknown
because the efficiency of current passage by calcium relative to the
other ions present is unknown. The upper panel shows the change
in membrane potential after calcium ionophoresis; the upward direc-
tion is hyperpolarization. The lower panel shows the change in short
circuit current (i.e. current at 0 mV) after calcium ionophoresis. Outlier
data points are not shown; these were present at higher ionophoretic
currents that caused inhibition of pump activity and possibly cellular
damage.

The dependence of changes in potential and short circuit
current on the amount of ionophoretic current is shown in
Figure 2. At lower currents (105-230 pA, 2,500 coulombs/
pL of cell volume ionophoresed into the cell), calcium injec-
tion caused membrane potential hyperpolarization and in-
creased short circuit current. At higher ionophoretic currents
(800-1250 pA, 12,600 coulombs/pL of cell volume), the data
are more scattered, but in general, calcium injection caused
depolarization and decreased short circuit current. The de-
polarization and decreased conductance on the current-volt-
age relations is also seen when the proton pump is inhibited
by cyanide, carbon monoxide, or vanadate ionophoresis (data
not shown). Thus, as intracellular calcium is increased by
ionophoresis, there is stimulation of proton pump activity,
but at some threshold, calcium levels are so high that they
inhibit pump activity and may have other deleterious effects.
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Figure 3. Calcium inhibition of proton ATPase in isolated plasma
membranes. The calcium is shown as total concentration. Free con-
centrations were approximately 20% to 30% lower due to the pres-
ence of 5 mm ATP and 5 mm phosphoenolpyruvate in the reaction
medium. The plasma membrane isolation and ATPase measurements
were according to Bowman et al. (3).

The final concentrations of calcium in the cell cannot be
directly measured. Theoretical evaluations of the amount of
calcium ionophoresed into the cell depend upon how much
of the ionic current is passed by calcium (18); this value is
uncertain, especially since intermittent blockage of the micro-
electrode was occasionally observed during the ionophoresis
of calcium as a decline in the clamping current (data not
shown). To determine the probable real increase in the cal-
cium concentration, I measured the effect of calcium on
ATPase activity of isolated plasma membrane (Fig. 3). AT-
Pase activity is inhibited at calcium concentrations higher
than 100 uM. This can be matched to inhibition by calcium
ionophoresis (Fig. 2), which occurs at a value of 10,000
coulombs/pL of cell volume. Thus, the actual increase in
intracellular calcium required to stimulate proton pump ac-
tivity is lower than 100 uM, probably in the range of 10 to 50
uM. The fact that calcium does not activate the proton ATPase
in vitro suggests that cytosolic factors required for activation
in vivo are lost during isolation of the plasma membranes.

There is a general consensus that cytoplasmic calcium in
higher plants is regulated at a level of about 1077 M (17, 29).
Transient increases to the micromolar level may trigger a
variety of cellular processes (20); these are often responses to
environmental stimuli (10, 11, 24, 30). The data presented
here are direct evidence that elevation of calcium has a specific
effect upon the activity of an electrogenic proton pump known
to play a central role in plant growth and development (25,
26). The activation requires cytosolic factors and may be via
a calcium-stimulated phosphorylation of the pump (21).
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