
Response to PLOS Comp Bio Reviewers – Revision 2 09/03/23 
 
We thank the reviewers and the PLOS Comp Bio editorial team for their time and effort 
spent towards providing a fair and useful critique of this manuscript. Here we provide a 
point-by-point response to the reviews, and an updated version of the manuscript. 
Throughout this response, text from the editor or reviewers will be italicized and 
displayed in gray font, while the authors responses will be in non-italicized black font, 
and excerpts from the text are in italicized black font. 
 
From the editor: In light of the reviews (below this email), we unfortunately cannot 
proceed to publication at this time, but invite the resubmission of a significantly-revised 
version that takes into account the reviewers' comments. Specifically, the reviewers 
have raised concerns regarding scientific novelty with regards to the prior publication of 
the AIMS framework, and the lack of clear novel scientific results, which would need to 
be addressed in a revised manuscript. 
 
We thank the editor for their handling of the manuscript, and hope that the 
accompanying revisions improve the manuscript. We note to the editor regarding their 
concern as to the relative novelty of this work that the AIMS software presented in the 
current manuscript is vastly different from that presented in the first AIMS-related 
publication [Boughter et al. eLife 2020]. The incorporation of non-antibody data types, 
the clustering and subsequent isolation of these clusters for analysis, metadata 
integration, and a wide range of additional features outlined in this manuscript were not 
present in the 2020 publication. 

Reviewer #1: The authors have addressed all of my concerns. 

We appreciate the reviewer’s comments on this manuscript, and hope that this revision 
remains satisfactory. 

Reviewer #2: The authors have substantially improved the content of the paper. In 
particular, the addition of statistical considerations in almost all of the previously flagged 
areas highlights where the AIMS may be most useful. There are a few (mostly minor!) 
outstanding issues listed below: 

We thank reviewer 2 for their previous comments on the manuscript and are glad we 
were able to address the majority of their concerns. 
 
Content revisions: 
 
1) The authors have still not adequately addressed the finite sample size issues for the 
information theory quantities. While the authors have accounted for the upper bound of 
the entropy due to the state-space having 21 possible entries, they still do not account 
explicitly for the varying coverage due to alignment. The maximum entropy for a 
particular position will also be capped by the coverage: S_max <= log(max(N, 21)) 
where N is the number of sequences that align to the position without the padding. It is 



crucial to include a plot alignment coverage by position so that the finite sampling can 
be accounted for: as the authors note, if a different alignment scheme is used the 
coverage is different and the resulting entropy by position plots change substantially. 

We agree with Reviewer 2 that the finite sample size is an important issue. We have 
now added functionality to AIMS that explicitly warns users when sequence coverage in 
a specific region may be low. The coverage metric we use is calculated as N_AA/N at 
each site of the encoding, where N_AA is the number of sequences where a gap is not 
present, and N is the total number of sequences. We have added this coverage metric 
to Figure 5B (now 4B), and let readers know in the figure legend that this coverage 
applies to all position-sensitive metrics in the figure (Panels A, C). 

An example of this is Figure 5. While I cannot be sure of the particulars without a 
coverage plot, the lack of alignment to positions 3-5 and 9-11 is the dominant features 
of figs 5B and 5C. Furthermore, the coverage differences between these peptide pools 
probably accounts for some of the most visually obvious features of the plot. Based on 
the plots I would guess that the HLA-A*02 Flu peptide pool includes more peptides 
longer than 9 amino acids so the alignment more often includes positions 5 and 9 which 
appear to never be aligned to by the HLA-B15 Ebola peptide pool (again, without a 
coverage plot this is impossible for me to determine). If a reader is not aware of these 
coverage artifacts they will likely be focused on that instead of the likely more 
biologically relevant entropy reduction at the anchor residues. 

We appreciate the reviewer giving an example of where this coverage metric would be 
particularly useful. We agree that this metric is critical for proper interpretation of the 
figures, and as mentioned above, have added it to Figure 5 (now 4). Some of the 
differences in the figure are, in fact, due largely to differences in coverage, and without 
the benefit of seeing the distribution of peptides (Supplemental Figure 8A) in the same 
figure, these coverage differences are non-obvious. We appreciate the reviewer’s 
improvement of this figure and the AIMS analysis as a whole. 
 
I would suggest the following actions to rectify this: 
a) At a minimum, coverage plots of the alignment of each peptide pool should be 
included in the Supplementary figures 
b) The finite sample size effects of entropy could be largely dealt with by only analyzing 
positions for which the coverage is sufficiently high (i.e. >20). Similarly it is probably 
wise to restrict the position-dependent amino acid probability distributions to positions 
with sufficient coverage. 

In addition to addressing the reviewer’s concerns by adding the coverage plots 
suggested by point (a), we have also added an explicit warning in the software (not 
included in the manuscript) when coverage is low (point b). This exceedingly low 
coverage warning is printed as an output in the notebook code, and will be incorporated 
into the GUI in the near future. 
 
2) If the authors have decided to not include any LDA analysis the discussion of LDA 



applications should be restricted to the discussion, not the results section (see 
paragraph from lines 167-180) or a main figure. 
 
In line with reviewer 2’s stylistic comment below, we have removed this section entirely 
from the text. The associated figure has been moved to the supplement. 
 
3) Figure 4 is much improved! The addition of the regions of significance is a great 
addition. I would recommend making sure the yticks in fig 4A are integers. For C/D) I 
still suggest adding an xlabel, but the figure alignments with A/B do alleviate the main 
concern. 
 
We thank the reviewer for their previous comments that helped to improve this figure. 
As reviewer 3 also pointed out, there was a mistake and a rough-draft version of the 
new Figure 4 (now 3) was accidentally uploaded to the resubmission. The suggested 
corrections have been made. 
 
4) While GLIPH is normally used as a qualitative motif tool, I would just reiterate that I 
think the authors are missing an opportunity for a quantitative comparison of the 
clustering functionality. This may not be essential for publication, but the authors have 
an opportunity to demonstrate to potential users any advantages they have over GLIPH 
groupings. 

While we believe that the direct comparison of AIMS distances between GLIPH clusters 
and AIMS clusters is likely a fair comparison between the two (Supplemental Figure 
S12), we have now added a quantitative comparison using simulated data as suggested 
by Reviewer 4 (Supplemental Table S2). GLIPH performs much worse than both AIMS 
and TCRdist, clustering only 28% of the receptors, with single sequences belonging to 
multiple clusters. However, the use of simulated data may be an unfair test case for 
GLIPH, as it was explicitly generated for the identification of expanded motifs. The 
developers of GLIPH would likely not recommend using GLIPH with simulated or naïve 
datasets. However, this is also a benefit of our approach that there are no such 
restrictions to the analysis.  
 
Style concerns: 
 
While I understand that the authors want to highlight the flexibility and motivation of 
each element of the AIMS tool, the result is that this paper is long, wordy, and reads like 
a README with the authors addressing the “AIMS user” instead of the reader. I flag this 
not as a concern for publication, but instead for the potential reach of AIMS as a tool. I 
think the utility of the tool would be better highlighted if the text was half the length; with 
some of the exploratory/”user options” cut; and more of a focus on what can be learned 
from the results. The authors don’t want to miss out on potential users of their tool 
because readers cannot get through the paper. 



We appreciate the stylistic comment, and agree that initial drafts of the manuscript were 
a bit verbose. We have cut over 3 pages of text and one figure from the initial draft of 
the manuscript and have made an effort to make the writing more concise. 

Reviewer #3: This is a description of the AIMS software package, meant to complement 
the original publication and present some new features. The manuscript is clearly 
written. There don't seem to be any specific novel biological insights; the manuscript is 
more a series of usage examples. Here are a few specific comments and suggestions. 
 
Line 112: "the flanking regions of bound peptides are ‘buried’ as highly conserved 
anchor residues that bind to the MHC platform and are unable to contact TCR " -- this is 
not true for peptide position 1, which points outward and can be contacted by the TCR 
and serve as a specificity determinant (talking about MHC class I; see e.g. PDB 5jzi).  

We appreciate the reviewer pointing out this oversimplification in the text. We have 
altered the text to highlight that not all peptides are contacted in these central regions: 

For class I MHC, the flanking regions of bound peptides are frequently ‘buried’ as highly 
conserved anchor residues that bind to the MHC platform (Fig. 1A,B). The majority of 
TCR contacts are made with the central regions of the peptides that bulge out of the 
MHC binding groove in the case of longer peptides [Tynan2005]. However, exceptions 
to this paradigm may not be uncommon, with TCRs capable of contacting the often-
buried peptide N-terminal residue [Wang2017] and the C-terminal residue potentially 
extending out of the MHC pocket [Guillaume2018].  
 
Could the amino acid colors in Fig.1 be made more consistent with biophysical 
similarity, rather than just based on alphabetical ordering? Following some of the 
previous sequence-logo type color schemes, for example, where positively charged 
amino acids are blue, negatively charged are red, polar are green, nonpolar gray (or 
variants of these colors). It might make the alignments more visually interpretable. It 
doesn't make sense to me that K and M are right next to each other (and A and R), for 
example, or that K and R are so far away. A similar argument could be made for 
ordering the amino acids by similarity, in figure 5A for example, rather than 
alphabetically. This might make it easier to see trends in preferences. Something like: 
WYFMLIVAPGCSTNQDEHRK 

We agree that the suggested changes may help with interpretability of the alignment 
figures. We believe small tweaks like these can create large improvements for the users 
of AIMS. We have now incorporated an option for users to define custom amino acid 
orderings for all plots used in the manuscript. For this manuscript, we opted for a slightly 
modified amino acid ordering based upon the reviewer’s suggestion. We believe 
“'WFMLIVPYHAGSTDECNQRK'” is an improvement on the original suggestion, mainly 
due to the separation of negative- and positive-charged amino acids, the clustering of 
small amino acids, and the central location of tyrosine and histidine, which can both 
operate in some capacity as amphipathic residues. We note, however, that these 



changes are somewhat subjective due to the difficulty in ordering amino acids in a linear 
fashion according to biophysical properties. 

How are the property values for missing/gapped sequence positions handled? Are they 
assigned the mean value? 

In AIMS, all missing or gapped sequence positions are left as a simple “0” in all 
matrices. When dealing with biophysical properties, this zero does not bias the analysis 
in a specific direction, as all property matrices are normalized to a mean of zero and a 
standard deviation of 1. In the calculation of mutual information, entropy, or frequencies, 
the gaps are accounted for as their own entry “-” so as not to bias amino acid 
frequencies. For instance, you can see in Figure S9 that the amino acid frequencies of 
rows 3-5 and 9-11 do not add to 1, because the gap is not included in this figure. 

We note that the suggestion of reviewer 2 to add a “coverage” metric in AIMS helps to 
alleviate what may otherwise be misleading results in some instances of the standard 
analysis. Effectively suggesting to readers that results in these low-coverage regions 
should not be given much weight. Should users want to investigate certain low coverage 
regions, different alignment schemes can accomplish such a task. 

The legend is messed up in Fig 4D 

As mentioned in the response to reviewer 2, it appears that a rough draft version of 
Figure 4 (now 3) was uploaded upon resubmission. We apologize for the mistake, and 
thank the reviewer for pointing out the issue. 
 
Figure 5A-- doesn't convey much information to me; does not seem to match the text 
description. "only P2 glutamine and isoleucine show up as distinct anchors for HLA-
B*15 and HLA-A*02, respectively" Actually it looks like leucine and methionine have 
stronger relative preferences (darker blue) than isoleucine at P2. 

We thank the reviewer for pointing out apparent inconsistencies between the figure and 
the text. We meant to refer to the C-terminal anchor (P14) in the case of isoleucine, not 
the anchor at P2. The text was misleading in this regard. We note, for this and the next 
comment regarding Figure 5 (now 4), that a metadata issue was discovered in the 
original analysis, which has been corrected in this version of the manuscript. As such, 
all panels of Figure 5 (now 4) have been altered, as well as some of the conclusions in 
the text. The interpretations remain largely the same with some differences in the 
magnitude of the effects. We have further included % enrichments of each amino acid 
to more directly tie together the text and the figure. 
 
Figure 5B-- the handling of gaps makes this a very confusing plot; shouldn't the anchor 
positions be the lowest entropy positions? Instead we have these artificial 0 values 
suggestive of high conservation but they are just positions without any amino acids. Or 
worse, intermediate but still very low entropy values (pos 5) from a mix of gaps and non-
gaps. This same issue extends to 5C where we have the most striking feature of the 



plot coming from the difference along the diagonal (ie, just entropy) at this silly position 
5 where one set of peptides has all gaps and the other doesn't. 

The gap-induced features of Figure 5B (and in turn 5C) (now 4B and 4C) are resolved 
with the addition of a bit more context. First, as per the suggestion of Reviewer 2, we 
have added the coverage at each position to Figure 5B (now 4B) to alleviate the 
artifacts introduced into the data by sparse coverage in certain regions. This coverage 
applies to Figure 5 (now 4) panels A, B, and C, providing context to the location of 
gapped regions. These gapped regions are artificial, but important for providing context 
to the data. The combination of low coverage for the influenza peptides yet non-zero 
entropy tells you that the Influenza-derived peptides in this dataset have a less uniform 
length than the Ebola-derived peptides. While this does alter the mutual information 
figure, again with the context of the coverage, users can identify these biases in their 
data. 

Figure 6: "the motifs identified by AIMS via the clustering in panel C" How, specifically, 
are motifs identified in the AIMS clusters? I couldn't find a description in the methods. A 
potential advantage of the GLIPH motifs is that they are nominally statistically significant 
based on a background repertoire. The AIMS clustering/motif ID procedure will 
presumably find clusters and motifs, even in TCRs from naive T cells without shared 
binding specificity. For example in shared V or J sequence regions. 

Normally in the AIMS analysis, “motifs” are not specifically identified. The point of the 
comparison in the text and in panel 6D (now 5D) is to show that combinations of motifs 
such as SIR, SIRS, and IRS are entirely degenerate and provide no added information. 
AIMS instead utilizes biophysically similar clusters, which should take the place of 
motifs. The AIMS motifs in panel 6D (now 5D) are taken directly from clusters and 
combinations of clusters for a direct comparison between AIMS and GLIPH. 

Specifically, the motifs were identified using a sequence logo plot and then converting 
regions of biophysical similarity to an “X”. So, in the case of motif RSXY which 
corresponds to clusters 4 and 5, we had sequences containing RSSY, RSGY, and 
RSAY, which are identical motifs save for the small polar residues which are replaced 
by an “X” in the final motif. In other words, for these figures the motifs were identified by 
hand for easy comparison to GLIPH, but the standard AIMS analysis makes it easy to 
identify sequence similarities in clusters of biophysically similar TCRs. 

Regarding the identification of statistically significant clusters, AIMS is also capable of 
identifying statistically significant enrichments of certain metadata groups by 
comparison of cluster groups to randomly permuted groups of sequences. Reviewer 4 
requested a test with simulated data, so such a statistical consideration is shown in 
Review Figure 1 for this test data. We find statistically significant enrichments in certain 
clusters (black bars) but not others (white space) helping AIMS users identify what may 
be spurious or random clusters and others which are statistically significant. 



 

Review Figure 1: Clusters are generated from a pool of three simulated datasets (discussed in more detail below) and assessed for 
purity and significance with respect to membership of each biophysically distinct simulated dataset. (Left) Cluster purity is measured 
simply as (Number of sequences from a dataset) / (Number of sequences in cluster). Each dataset is given a simple metadata # (1 – 
Negative charge dataset, 2 – Positive charge dataset, 3 – random sequence dataset). (Right) The associated significance of these 
clusters given as p-values. White space gives clusters with p > 0.05, grey or black has p < 0.05. Significant clusters mostly overlap 
with clusters with near 100% purity.  

However, this does not solve the issue raised by the reviewer regarding an analysis of 
naïve T cells. Without some comparison group, the permutation test will not work to 
identify statistically significant clusters. AIMS does, however, have an entropy-weighting 
feature to prevent clustering due to shared V- and J- segments, as seen in Review 
Figure 2. This feature is critical for large datasets (over 10,000 total receptors), as seen 
below. This entropy-weighting ensures that even in naïve repertoires, only biophysically 
similar receptors will be clustered, with an emphasis on the central peptide-contacting 
regions of the TCR. Such corrections ensure the clustering of biophysically similar 
TCRs, which regardless of antigen experience are meaningful clusters. To our 
knowledge, such analysis of naïve repertoires is not meaningful in GLIPH. 

 

Figure 2: Comparison of the effects of standard AIMS clustering (left) and entropy-weighted clustering (right) carried out on the 
same dataset (simulated data discussed below). Notice that the similarities in the clusters (lines between clusters omitted for clarity) 
are solely in the TRBJ-encoded region in the standard clustering, but shifts to the center of the TCR for the entropy-weighted 
clustering. Not only are central residues picked up by this entropy-weighting, but the surrounding residues tend to be enriched in 
specific biophysical properties (notice the enrichment in red in the lower third of the figure, indicative of positive charge). 
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Reviewer #4: This manuscript describes a novel analysis tool for the characterization of 
immune-related peptides/proteins based on their amino acid sequence. The authors 
have expanded an analysis pipeline that was previously developed only for antibody 
repertoire characterization, to now process and characterize essentially any set of 
amino acid sequences, with a focus on immune-related molecules. To achieve this 
generalized functionality, they apply sophisticated alignment, encoding and clustering 
approaches. 
 
The analysis of immune-related peptide/protein repertoires is becoming increasingly 
important with a fast growing number of available datasets. Understanding the diversity 
and functional properties of peptide/TCR/antibody repertoires is a key requirement for 
antigen-specific immunotherapy approaches. The aim of this manuscript is therefore of 
great importance and very timely. 

We thank the reviewer for this concise summary highlighting the novelty of the work 
presented in this manuscript. 

However, while the goal to characterize any ‚immune repertoire‘ is applaudable, it 
comes with the significant risk to ignore or neglect specific characteristics of certain 
repertoire types (e.g. peptide vs. protein, MHC vs. TCR). In fact, it remains unclear to 
me what the specific questions would be that could be addressed with such a 
generalized tool that can purportedly analyze all sorts of sequences.  

We agree with the reviewer that the individual characteristics of each repertoire type is 
critical to the proper analysis of these molecules. This is why in the deployment of the 
software, there are specific “modes” for each type of analysis (see supplemental Figure 
S3). The processing of each repertoire type is distinct (i.e. a TCR/antibody mode, an 
MHC mode, and a multi-sequence alignment mode). This processing generates a 
unique encoding of amino acid sequences into matrices containing the key structural 
features of each specific molecule, and from there all of the downstream analysis 
follows an identical pipeline (as highlighted in Figure S2). 

The AIMS software has been successfully applied to provide biological insights to the 
individual analysis of antibodies (Boughter et al. eLife 2020), TCRs (work in review), 
MHC molecules (work in review), SARs-CoV-2 RBD regions (Jiang et al. Comm. Bio. 
2023), and even the non-immune related molecular Dpr-DIP interactome (Nandigrami et 
al. J. Phys. Chem B 2022). In each of these cases, unique AIMS encodings were 
developed for analysis of these individual molecular species. The AIMS “architecture” 
that is identical across repertoires is only applied after this initial encoding, such that the 
key details for each unique receptor highlighted by the reviewer are not lost. The 
application of AIMS to multiple molecular species simultaneously will be addressed in 
later responses to the reviewer. 

From the abstract and main text it sounds as if repertoires of interacting peptides and 
MHC molecules could be magically clustered in order to identify certain peptides bound 
by certain MHC molecules. However, an MHC molecule doesn’t bind a peptide because 



it has a similar sequence, so I don’t understand how this should work. The same is true 
for the interaction of TCR (CDR3) and MHC:peptide complexes, how would the 
clustering based on amino acid sequence help in understanding their interaction? 

While it is certainly true that a simple concatenation of MHC and peptide sequences into 
a single matrix and subsequent clustering wouldn’t generate any meaningful results, the 
simultaneous analysis framework of AIMS makes it possible to identify matching 
patterns in each repertoire. We can look at an example of such careful analysis by 
considering the interactions between peptides and the canonical binding pockets on 
MHC molecules. To do this, we generate a new encoding strategy (as discussed above) 
for MHC anchor regions and highlight the ability of AIMS to identify (previously 
discovered) anchor preferences. Review Figure 3 shows how the AIMS analysis can be 
used to distinguish between binders and non-binders for specific peptides isolated from 
the immune epitope database. 

 

Review Figure 3: A demonstration of the utility of cross-repertoire analysis using the AIMS interaction score function. These 
interaction scores are calculated across 1000 peptides and two MHC molecules (either HLA-A*02:01 or HLA-B*15:01). Violin plots 
show the distribution of these scores while thick vertical black lines give the quartiles and thin horizontal black lines with a white dot 
in the center give the medians for each distribution. When comparing known binders of HLA-A2 (Influenza-A2) and HLA-B15 (Ebola-
B15) we see that their allele specificity is evident from the interaction scores, with the peptides having higher interaction scores with 
their respective proper interaction partners (Influenza-A2 peptides with HLA-A2 (A), and Ebola-B15 peptides with HLA-B15 (B)). 
Analyses within each individual dataset (Influenza-A2 peptides with HLA-A2 (C), and Ebola-B15 peptides with HLA-B15 (D)) show 
that binders and non-binders can likewise be distinguished using the AIMS interaction scores. Statistical significance of differences 
assessed using a permutation test comparison of medians, * p < 0.01, *** p < 0.0001 . 



Interaction scores are based upon the AIMS-encoded matrices and the biophysical 
properties of the amino acids at each encoded position (See Supplemental Table 3 for 
the interaction matrix). Scores are reported as single values averaged across the 
interaction scores at each individual site. Amino acids that make up each MHC pocket 
are identified according to the interaction matrix of Nielson et al. [ Plos ONE 2007 
“NetMHCPan” ] and Zhang et al. [ Bioinf 2009 “PickPocket”]. Unlike these programs 
(NetMHC and PickPocket), however, the AIMS interaction scores undergo no training to 
identify binders and non-binders. An accounting of the fundamental interactions 
between amino acids within the AIMS architecture is sufficient to generate the 
statistically significant differences shown in Review Figure 3. It is important to note, 
however, that this example was provided as a test case to provide examples of the 
utility of cross-repertoire analysis. For AIMS to properly function as a tool for identifying 
binding and non-binding peptides reliably, more work would be necessary. 

We further note that AIMS has been utilized for a more novel characterization of protein-
protein interactions, namely via the quantification of the interaction propensity between 
the germline regions of TCRs and the alpha-helices of MHC (Boughter et al. BiorXiv 
2023). More details on how these interaction scores are calculated can be found in the 
methods section of this cited preprint. 
 
As the authors point out, there is already excellent software to characterize each of the 
different immune repertoire types (antigen/TCRs/MHCs/antibodies). I’m lacking the 
imagination in which circumstances I would need a tool that can characterize all in one 
go (and what I could learn from this). The authors state for instance that “Software that 
compares, for instance, peptide and TCR repertoires typically give a simple binary “yes” 
or “no” to questions of binding, making the identification of trends within or across these 
repertoires difficult”. But what kind of trend would I expect across these repertoires? It 
would be fantastic if this tool could predict which TCR can bind which peptide, but this 
would be wishful thinking, as this has nothing to do with amino acid sequence similarity 
between peptide and TCR. 

First, we would like to point out that while amino acid similarity has nothing to do with 
the prediction of TCR-peptide interactions, amino acid complementarity has everything 
to do with these interactions. So, one of our next steps is to generate such a 
“complementarity score” to go along with the aforementioned interaction score. We 
have already done so for TCR-MHC germline interactions (as highlighted above) using 
the AIMS architecture and hope to work towards doing the same for peptides. However, 
looking at crystal structures of TCR-peptide-MHC complexes, it becomes clear that the 
problem is more complicated than simple complementarity of amino acids between TCR 
and peptide. There is an interplay of the entire TCR-peptide-MHC ternary complex, 
which may potentially be systematically deconstructed using multiple-receptor analysis 
as outlined in the present work. 

Which brings us to the second point. AIMS is not simply for cross-receptor analysis [See 
the “Going Beyond Receptor Clustering & Motif Analysis” Section]. It is also for single-
repertoire characterization. While other types of repertoire analysis software are great 



for identifying clusters of receptors, their analysis typically ends at this stage. AIMS 
goes further, characterizing the individual clusters (or entire repertoires) and generating 
quantifications of each identified group. Boiling the software down to its most ambitious 
goals leaves out perhaps its best feature, which is an entirely unique approach to 
repertoire characterization not attempted in any amino acid sequence analysis prior. 

 
Another example is this statement: “[AIMS] allows for cross-receptor analysis and the 
identification of patterns in the corresponding trends of interacting molecules.” I have no 
idea what the authors mean with this (‘patterns in the corresponding trends of 
interacting molecules’). 

By “patterns in the corresponding trends of interacting molecules” we mean situations 
such as the above discussed case of the anchor regions of MHC molecules. So, for 
example, a cluster of peptides may show an enrichment for a basic residue at the C-
terminus. It has been shown that A03 HLA supertype has a preference for basic 
residues in the F’ pocket, while no other supertypes have this preference [Sidney et al. 
BMC Immunology 2008]. AIMS clustering of MHC molecules by their pocket residues 
would likely align closely with these supertype designations, corresponding to a “trend” 
of certain biophysical properties. This complementary “trend” would identify interacting 
molecules, i.e. A03 HLA supertype members and those peptides with basic residues at 
the C-terminus. The AIMS biophysical property analysis, again going beyond simple 
clustering of molecules, aids in the identification of these trends. 

I’m also concerned by the issue, which became particularly clear through the highly 
insightful review by reviewer #2, that for many of the possible parameter settings that 
impact on the analysis outcome are not well described. The authors brush over this by 
stating that the user should know what they are doing and should try many different 
settings to see how it affects their results. But what is the user to do if the results 
change depending on the setting? How are they to know which are the ‘right’ results 
(and settings). I would argue that the developers of a tool should be the ones to show 
the user which parameter settings are critical for appropriate analyses and give 
guidelines what should be used in which case. The authors state that the tool should be 
used for exploration, but the user needs some guidelines about how different results are 
to be interpreted, based on thorough testing of known/simulated data. 

We agree with the reviewer that a thorough, controlled testing of the software with 
simulated data may greatly improve the confidence of users in the functionality of the 
software. We have added the option to simulate data into AIMS (details added to the 
Methods), and present the results as Supplementary Table S2, in addition to the 
previously generated tests of the effects of encoding-alignment on analysis. We again 
find limited effects on the choice of alignment, clustering algorithm, and projection 
algorithm in the overall statistics, but note that there are nuanced differences in the 
types of key receptors and regions of interest identified with each mode of analysis that 
are not captured by these tables. For instance, while the “Left” alignment scheme 
appears to perform somewhat comparably to the “Standard” analysis, the clusters are 



strongly determined in part by J-gene usage in the “Left” alignment, even with the 
entropy re-weighting discussed above. However, such insights may be desirable in 
some contexts, for example, researchers may be interested in biophysically similar 
antibodies or TCRs utilizing a specific V- and J-gene segment (IGHV1-69, for instance, 
has tendencies towards broad neutralization). As such, it is difficult to call such a feature 
“wrong”.  

Further, regarding the responsibilities of developers, we would argue that using any 
software without an understanding of the underlying assumptions of that software 
represents negligence on the part of the user. For instance, the use of the analysis 
software Seurat has been a boon to the field of single cell RNA sequencing, but using 
this software without an understanding of the normalization features, the effects of 
dropout in RNAseq analysis, and the strengths and weaknesses of RNAseq as a 
technique in general may generate misleading results. 

We do, however, believe that improvements to the software can reduce the burden 
placed on users. To this end, and strongly motivated by reviewer comments for this 
manuscript, we have included simulated data, warnings and visualizations of low 
coverage areas, and direct testing of the impact of different alignment strategies on data 
analysis. We believe these additions have greatly improved the overall usability of 
AIMS. 
 
Beyond the relevance and usability of the new tool, the manuscript describes in great 
detail the computational steps performed by their pipeline. I have to admit that I lack the 
computational and mathematical background to judge some of the employed 
approaches, so I’m not questioning those. However, reviewer #2 seems to have dipped 
deeply into the methodology and examined/reviewed it carefully, finding it generally 
sound. 

We hope that the newest version of the text, with alterations as suggested by Reviewer 
2, is more readable than previous drafts. 
 
The comparison to existing tools (e.g. GLIPH or TCRdist for TCR clustering) is only 
partly helpful, since it is difficult to interpret the differences to their results. Which tool is 
right when there are differences? Here it would be helpful to have a simulated test 
dataset where we know what to expect in terms of output. 

It should be noted, that, of course, AIMS can be used as a complementary piece to the 
existing tools GLIPH and TCRdist. To our knowledge, both of these software packages 
have limited utility in the downstream characterization of identified clusters, which AIMS 
was originally primarily designed to do. Users have the option to cluster TCRs (although 
not antibodies, MHC, or peptides) in GLIPH or TCRdist and use the characterization 
features of AIMS after importing these clustered receptors. 

Additionally, as mentioned above, we have generated such a simulated dataset as 
suggested by the reviewer. To directly compare the performance of GLIPH, TCRdist, 



and AIMS for TCR clustering, we simulate three repertoires with distinct biophysical 
properties in the center of CDR3B (see updated Methods for more details). We find that 
of the three, GLIPH performs by far the worst in terms of cluster purity and number of 
receptors clustered (Supplemental Table S2). However, as mentioned above, the use of 
simulated data may represent an unfair test of GLIPH. If assessing performance solely 
on cluster purity, TCRdist performs the best of the three algorithms. However, it is 
important to note that the AIMS distance metric performs just as well, suggesting 
distance generally is the metric of choice for generating “pure” clusters. Further, if we 
look at the AIMS clusters (Review Figure 4), we note that “impurities” in the charged 
clusters largely come from the “random” dataset, identifying randomly generated 
sequences with charge patterns matching the specifically generated charged 
sequences. Such tolerance may in fact be important when looking for things like cross-
reactive receptors, suggesting yet again that there does not exist any “right” answer to 
the problem of receptor clustering. 

 

Figure 4: Clustering of simulated data using the standard AIMS analysis pipeline identifies moderately “Impure” clusters that are 
nonetheless biophysically similar. (A) Cluster membership of each identified cluster visualized using stacked bar plots. The majority 
of clusters are overwhelmingly comprised of one of the three simulated datasets, with impurities largely coming from the randomly 
generated sequences (white). (B) Visualization of the clustered sequences colored by the normalized charge of each sequence. As 
should be clear from the figure, positively charged sequences occur within the first 20 clusters (first 6000 sequences), while 
negatively charged sequences dominate clusters 40 and on (sequences 6000-12000). Lines separating the clusters are omitted for 
clarity, due to the large number of small clusters. 

 
Overall, it seems to me that the authors are here describing an advanced amino acid 
sequence clustering tool that might be useful also in the context of immune repertoire 
analysis, e.g. for the analysis of a TCR sequence dataset. If it does better in this 
clustering than other existing tools remains unclear to me. However, I find the current 
framing with cross-repertoire analyses highly confusing and even misleading. 

We should note that at no point in this manuscript do we suggest that cross-repertoire 
analysis would take the form of a simple clustering of combined datasets (say TCR and 
peptide) to generate conclusions about specificity. Cross-repertoire analysis looks more 
like the examples discussed in the earlier response to Reviewer 4, in the discussion of 
peptide-MHC pocket interactions. The analysis we perform goes beyond simple 
clustering. See sections “Going Beyond Receptor Clustering and Motif Analysis”, and 
“Generating Quantitative Metrics of Repertoire Diversity and Amino Acid Patterning”. 



 

What is the biological meaning of comparing amino acid sequences of TCRs with those 
of peptides? 

We further note that comparisons between the amino acid sequences of TCRs with 
those of peptides are very important for understanding the biophysics of a T cell 
response to antigen. TCRs bind peptides presented by MHC to initiate an immune 
response [Meuer et al. J. Exp. Med. 1983, Haskins et al. J. Exp. Med. 1983], making 
comparison of the amino acids comprising these molecular species highly important. 


