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 Model  Main Effect:  

F-stat 
Main Effect:  
p-value 

Main Effect: 
effect size 

Interaction: F-
stat  

Interaction: 
p-value 

Interaction: 
effect size 
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CORnet-S F(1,42)=424.4 p<0.0001 η2p =0.91 F(5,210)=293.6 p<0.0001 η2p =0.87 
VGG-19 F(1,42)=1612.1 p<0.0001 η2p =0.97 F(9,378)=268.4 p<0.0001 η2p =0.86 
ResNet50 F(1,42)=554.9 p<0.0001 η2p =0.93 F(7,294)=290.2 p<0.0001 η2p =0.87 
ResNet101 F(1,42)=1001.7 p<0.0001 η2p =0.96 F(7,294)=345.8 p<0.0001 η2p =0.89 
AlexNet F(1,42)=935.4 p<0.0001 η2p =0.96 F(8,336)=195.0 p<0.0001 η2p =0.82 
ResNet50-CLIP F(1,40)= 517.3 p<0.0001 η2p=0.93 F(6,240)=181.2 p<0.0001 η2p=0.82 
ViT-B_32-CLIP F(1,40)= 604.5 p<0.0001 η2p=0.94 F(9,360)=110.5 p<0.0001 η2p=0.73 
ResNet50-SWSL F(1,40)= 1159.3 p<0.0001 η2p=0.97 F(7,280)=164.7 p<0.0001 η2p=0.80 
ResNeXt101-32x3d-SWSL F(1,40)=2363.1 p<0.0001 η2p=0.98 F(7,280)= 225.9 p<0.0001 η2p=0.85 

ViT_large_patch-16_224 F(1,40)=852.01 p<0.0001 η2p=0.96 F(8,320)=158.9 p<0.0001 η2p=0.80 
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s CochCNN9 F(1,38)=551.9 p<0.0001 η2p =0.94 F(9,342)=189.2 p<0.0001 η2p =0.83 

CochResNet50 F(1,38)=467.8 p<0.0001 η2p =0.92 F(8,304)=227.4 p<0.0001 η2p =0.86 

 
Supplementary Table 1. Human recognition of model metamers is significantly different from the generation model’s recognition 
for all tested models, as evaluated by a main effect of observer (model or human) and an interaction between the effect of 
metamer generation stage and the observer.  
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Supplementary Figure 1. Human recognition of visual model metamers generated from ResNet50 model with two different 
types of optimization strategies for metamer generation. An in-lab experiment was conducted to test whether differences in the 
optimization strategy would influence human-recognizability of model metamers. This experiment used one example visual 
model (a ResNet50 architecture). a) Human recognition was similar for the two optimization strategies. Error bars plot SEM 
across participants (N=10). b) Metamers are subjectively distinct for the two optimization methods, but not in ways that affect 
the recognition task. Models and metamer generation. The optimization code and techniques used for this experiment differed 
from the experiments described in the rest of this paper (they followed methods used in our previous work 1) but showed a similar 
effect of model stage for standard neural network models (metamers generated from late stages of ImageNet1K task-optimized 
ResNet50 models were unrecognizable to humans). Models and metamer generation for this experiment were implemented in 
TensorFlow v1.12 2. We converted the ResNet50 model available via the PyTorch Model Zoo to TensorFlow using ONNX 
(version 1.6.0). Optimization variants. We tested two different optimization schemes. The first used stochastic gradient descent, 
where each step of gradient descent was constrained to have an L2 norm of 1. The second method used the Adam optimizer3, 
which uses an adaptive estimation of first and second order moments of the gradient, with an exponentially decaying learning 
rate (initial learning rate of 0.001, 1000 decay steps, and a decay rate of 0.95). In both cases optimization ran for 15000 steps. 
Stimuli. For each of the 16 categories, we randomly selected 16 examples from the ImageNet1K training dataset using the list 
of images provided by 4 for a total of 256 natural images that were used to generate stimuli. Procedure. The experiment was run 
together with an unrelated pilot experiment comparing four other models, the data for which are not analyzed here. To reduce 
the number of conditions, the stage corresponding to ResNet50 “layer1” was not included in in the experiment. Participants 
classified each image into one of the 16 presented categories. Each trial began with a fixation cross at the center of the screen 
for 300ms, followed by a natural image or a model metamer presented at the center of the screen for 200ms, followed by a pink 
noise mask presented for 200ms, followed by a 4x4 grid containing all 16 icons. Stimuli were presented on a 20” ACER LCD 
(backlit LED) monitor with a spatial resolution of 1600x900 and a refresh rate of 60Hz. Stimuli spanned 256x256 pixels and were 
viewed at a distance of approximately 62 cm. Before the experiment, each participant was shown a printout of the 16 category 
images with labels and the experimenter pointed to and read each category. This was followed by a demo experiment with 12 
trials without feedback (same stimuli as in the main experiments, but performance was not used to exclude participants). Each 
participant saw 6 examples from each condition, chosen such that each natural image or metamer was from a unique image 
from the 256-image behavioral set. 
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Supplementary Figure 2. Visual and auditory models become robust to adversarial attacks after adversarial training. Visual 
and auditory models were evaluated with Lp-norm white box adversarial attacks of varying strengths. a) ResNet50 models 
adversarially trained on ImageNet1K (same models and color scheme as Figure 5c,d). b) AlexNet models adversarially trained 
on ImageNet1K (same models and color scheme as Figure 5e,f). c) CochResNet50 models adversarially trained with waveform 
perturbations on word recognition (same models and color scheme as Figure 6b). d) CochCNN9 models adversarially trained 
with waveform perturbations on word recognition (same models and color scheme as Figure 6c). e) CochResNet50 models 
adversarially trained with cochleagram perturbations on word recognition (same models and color scheme as Figure 6f). f) 
CochCNN9 models adversarially trained with cochleagram perturbations on word recognition (same models and color scheme 
as Figure 6g). For each model and perturbation type, performance was evaluated for five random subsets of 1024 examples 
from the validation set. Error bars are SEM across the 5 subsets. For auditory models, adversarial perturbations for evaluation 
were always added to the waveform (because cochleagram perturbations are not necessarily realizable as audio signals due to 
overcompleteness). Adversarial training produced robustness to adversarial perturbations (better performance at large 
perturbation sizes), along with some reduction in clean accuracy, as is typical for adversarially trained models5. Training with 
random perturbations typically produced similar results as standard training, as expected. In many plots, the results for random-
perturbation training (dotted lines) overlap with those for standard training (black line).  



 
5 

 
 Model 1  Model 2 F-stat p-value effect size 
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ResNet50 L2-norm (𝜖 = 3) ResNet50 Standard Supervised F(1,19)=792.3 p<0.0001 η2p=0.98 

ResNet50 L2-norm (𝜖 = 3) ResNet50 random L2-norm (𝜖 = 3) F(1,19)=242.2 p<0.0001 η2p=0.93 

ResNet50 L∞-norm (𝜖 = 8/255) ResNet50 Standard Supervised F(1,19)=315.3 p<0.0001 η2p=0.94 

ResNet50 L∞-norm (𝜖 = 8/255) ResNet50 random L∞-norm (𝜖 = 8/255) F(1,19)=176.3 p<0.0001 η2p=0.90 

ResNet50 L∞-norm (𝜖 = 4/255) 
 ResNet50 Standard Supervised F(1,19)=403.0 p<0.0001 η2p=0.95 

AlexNet L2-norm (𝜖 = 3) AlexNet Standard Supervised F(1,19)=518.6 p<0.0001 η2p=0.96 

AlexNet L2-norm (𝜖 = 3) AlexNet random L2-norm (𝜖 = 3) F(1,19)=623.0 p<0.0001 η2p=0.97 

AlexNet L∞-norm (𝜖 = 8/255) AlexNet Standard Supervised F(1,19)=104.6 p<0.0001 η2p=0.85 

AlexNet L∞-norm (𝜖 = 8/255) AlexNet random L∞-norm (𝜖 = 8/255) F(1,19)=121.4 p<0.0001 η2p=0.86 
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CochCNN9 waveform L2-norm (𝜖 = 1) CochCNN9 Standard F(1,19)=210.3 p<0.0001 η2p=0.92 

CochCNN9 waveform L2-norm (𝜖 = 1) CochCNN9 random waveform L2-norm (𝜖 = 1) F(1,19)=107.3 p<0.0001 η2p=0.85 

CochCNN9 waveform L∞-norm (𝜖 = 0.002) CochCNN9 Standard F(1,19)=133.4 p<0.0001 η2p=0.88 

CochCNN9 waveform L∞-norm (𝜖 = 0.002) CochCNN9 random waveform L∞-norm (𝜖 = 0.002) F(1,19)=114.6 p<0.0001 η2p=0.86 

CochResNet50 waveform L2-norm (𝜖 = 0.5) CochResNet50 Standard F(1,19)=9.77 p=0.0067 η2p=0.34 

CochResNet50 waveform L2-norm (𝜖 = 1) CochResNet50 Standard F(1,19)=0.29 p=0.59 η2p=0.015 

CochResNet50 waveform L2-norm (𝜖 = 1) CochResNet50 random waveform L2-norm (𝜖 = 1) F(1,19)=8.6 p=0.0097 η2p=0.31 

CochResNet50 waveform L∞-norm (𝜖 = 0.002) CochResNet50 random waveform L∞-norm (𝜖 = 0.002) F(1,19)=4.8 p=0.044 η2p=0.20 

CochResNet50 waveform L∞-norm (𝜖 = 0.002) CochResNet50 Standard F(1,19)=9.26 p=0.007 η2p=0.33  
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 CochCNN9 cochleagram L2-norm (𝜖 = 0.5) CochResNet50 Standard F(1,19)=166.3 p<0.0001 η2p=0.90 

CochCNN9 cochleagram L2-norm (𝜖 = 1) CochResNet50 Standard F(1,19)=145.2 p<0.0001 η2p=0.88 

CochCNN9 cochleagram L2-norm (𝜖 = 1) CochCNN9 random cochleagram L2-norm (𝜖 = 1) F(1,19)=157.2 p<0.0001 η2p=0.89 

CochCNN9 cochleagram L2-norm (𝜖 = 1) CochCNN9 waveform L2-norm (𝜖 = 1) F(1,19)=12.6 p=0.0023 η2p=0.40 

CochResNet50 cochleagram L2-norm (𝜖 = 0.5) CochResNet50 Standard F(1,19)=102.2 p<0.0001 η2p=0.84 

CochResNet50 cochleagram L2-norm (𝜖 = 1) CochResNet50 Standard F(1,19)=145.1 p<0.0001 η2p=0.88 

CochResNet50 cochleagram L2-norm (𝜖 = 1) CochResNet50 random cochleagram L2-norm (𝜖 = 1) F(1,19)=127.4 p<0.0001 η2p=0.87 

CochResNet50 cochleagram L2-norm (𝜖 = 1) CochResNet50 waveform L2-norm (𝜖 = 1) F(1,19)=66.6 p<0.0001 η2p=0.78 

 
Supplementary Table 2. Metamers for adversarial trained networks are more human-recognizable than metamers from 
standard networks or networks with random perturbations. Each comparison is evaluated with a repeated measure ANOVA 
comparing human recognition of Model 1 to Model 2. In audio models, statistical tests were also performed between models 
with different locations of adversarial perturbations (waveform or cochleagram perturbations).  
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Supplementary Figure 3. Image model recognition of metamers generated from other models. Metamers were generated from 
the model indicated in the plot title and recognition was measured by presenting the metamers to other models (each grey line 
on the plot corresponds to one recognition model). Error bars on individual model curves are bootstrapped (1000 bootstraps) 
SEM from the model predictions. Error bars on the average recognition curve is the SEM across recognition models (N=28 
recognition models). Model metamers from deep stages tend to be unrecognizable to other models, but models trained with 
adversarial perturbations or with architecturally fixed lowpass filtering operations have metamers that are more recognizable by 
other models. 
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Supplementary Figure 4. Auditory model recognition of metamers generated from other models. Metamers were generated 
from the model indicated in the plot title and recognition was measured by presenting the metamers to other models (each grey 
line on the plot corresponds to one recognition model). Error bars on individual model curves are bootstrapped (1000 bootstraps) 
SEM from the model predictions. Error bars on the average recognition curve is the SEM across recognition models (N=16 
recognition models). As with the image models, model metamers from deep stages tend to be unrecognizable to other models, 
but models trained with adversarial perturbations have metamers that are more recognizable by other models. 
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Supplementary Modeling Note 1: Model training, evaluation, and optimization details 
 
Models were trained and evaluated with the PyTorch deep learning library 6, and the Robustness library 7, modified 
to accommodate metamer generation and auditory model training. Model code and instructions for downloading 
checkpoints are available online at https://github.com/jenellefeather/model_metamers_pytorch. Model architecture 
descriptions are provided in Supplementary Modeling Note 2. All models were trained on the OpenMind computing 
cluster at MIT using NVIDIA GPUs with a minimum of 11GB memory. In the methods sections that follow we often 
refer to model stages as “layers”, to be consistent with how they are named in PyTorch. “Stage” and “layer” should 
be taken as synonymous. 
 
Image training dataset 
Unless otherwise noted, all visual neural network models were trained on the ImageNet1K Large Scale Visual 
Recognition Challenge dataset 8. This classification task consists of 1000 classes of images with 1,281,167 images 
in the training set and 50,000 images in the validation set. All classes were used for training the neural network 
models. Accuracy on ImageNet1K task and additional training parameters are reported in Supplementary Table 3. 
 
ImageNet1K model training and evaluation 
Unless otherwise described below, visual models trained on ImageNet1K consisted of publicly available 
checkpoints. Standard supervised models used the pretrained PyTorch checkpoints from torchvision.models 
(documentation https://pytorch.org/vision/stable/models.html, referred to as “pytorch” in Supplementary Table 3). 
The input pixel values ranged from 0-1 (or from 0-255 in the case of HMAX). Visual model performance was 
evaluated as the model accuracy on the ImageNet1K validation set, implemented by resizing the images so the 
smallest dimension was 256 pixels (or 250 in the case of HMAX) and taking a center crop of 224x224 (or 250 in the 
case of HMAX) pixels of the image. Train, test, and metamer images were all normalized by subtracting channel 
means and dividing by channel standard deviations before being passed into the first stage of the neural network 
backbone (except in the case of HMAX, where this normalization was not applied). Channel means were set to 
[0.485, 0.456, 0.406] and channel standard deviations were set to [0.229, 0.224, 0.225] unless otherwise noted for 
the architecture. ImageNet1K model training used data-parallelization to split batches across multiple GPUs.  
 
Visual models trained on large-scale datasets 
We also tested five visual models that were pretrained on datasets larger than the ImageNet1K dataset described 
above. Two of these were the visual encoders from Contrastive Language-Image Pre-Training (CLIP) models (one 
with a ResNet50 visual encoder and one with a ViT-B_32 visual encoder), obtained from the publicly available 
checkpoints at https://github.com/openai/CLIP (referred to as “clip” in Supplementary Table 3) 9. CLIP models were 
trained on a dataset of 400 million (image, text) pairs collected from the internet. ImageNet1K performance from 
the CLIP models is evaluated with a zero-shot prediction using the list of prepared 80 image template prompts and 
modified ImageNet labels from 9. We found empirically that we could not synthesize metamers from this classifier, 
and so only included model stages from the visual encoder in our experiments. CLIP models used a custom channel 
mean of [0.48145466, 0.4578275, 0.40821073] and a channel standard deviation of [0.26862954, 0.26130258, 
0.27577711]. The third and fourth of these models were Semi-Weakly Supervised (SWSL) ImageNet models 
(ResNet50 and ResNeXt101-32x8d architectures), obtained from the publicly available checkpoints at 
https://github.com/facebookresearch/semi-supervised-ImageNet1K-models (referred to as “swsl” in Supplementary 
Table 3) 10. SWSL Models are pre-trained on 940 million public images with 1.5K hashtags matching with the 1000 
synsets in the ImageNet dataset, followed by fine-tuning on the ImageNet1K training images described above. The 
fifth model was a Vision Transformer (ViT_large_patch-16_224, 11), obtained from the publicly available checkpoint 
at https://github.com/rwightman/pytorch-image-models (referred to as “timm” in Supplementary Table 1). 
ViT_large_patch-16_224 was pre-trained on the ImageNet-21K dataset, consisting of approximately 14 million 
images with about 21000 distinct object categories, and then fine-tuned on the ImageNet1K training images 
described above.  
 
Self-supervised ResNet50 vision models 
Self-supervised ResNet50 models were downloaded from the OpenSelfSup Model Zoo, and the training details that 
follow are taken from the documentation (https://github.com/open-mmlab/OpenSelfSup, referred to as 
“openselfsup” in Supplementary Table 3). Three models, each with a ResNet50 architecture, were used: MoCo_V2, 
SimCLR and BYOL. MoCo_V2 self-supervised training had a batch size of 256, with data augmentations consisting 
of random crop (224x224 pixels), random horizontal flip (probability=0.5), random color jitter (brightness=0.4, 
contrast=0.4, saturation=0.4, hue=0.1, probability=0.8, all values uniformly chosen), random greyscale 
(probability=0.2), and random gaussian blur (sigma_min=0.1, sigma_max=0.2, probability=0.5). SimCLR self-
supervised training had a batch size of 256, with augmentations consisting of random crop (224x224 pixels), random 
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horizontal flip (probability=0.5), random color jitter (brightness=0.8, contrast=0.8, saturation=0.8, hue=0.2, 
probability=0.8, all values uniformly chosen), random greyscale (probability=0.2), and random gaussian blur 
(sigma_min=0.1, sigma_max=0.2, probability=0.5). BYOL self-supervised training had a batch size of 4096, with 
augmentations consisting of random crop (224x224 pixels), random horizontal flip (probability=0.5), random color 
jitter (brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1, probability=0.8, all values uniformly chosen), random 
greyscale (probability=0.2), and random gaussian blur (sigma_min=0.1, sigma_max=0.2, probability=0.5). For all 
self-supervised ResNet50 models, a linear readout consisting of a fully connected layer with 1000 units applied to 
the average pooling layer of the model was trained using the same augmentations used for supervised training of 
the other ImageNet1K-trained models described above. The linear readout was trained for 100 epochs of 
ImageNet1K (while the model backbone up to avgpool remained unchanged). For MoCo_V2 and SimCLR models, 
the accuracy was within 1% of that reported on the OpenSelfSup (BYOL average pooling evaluation was not posted 
at the time of training). The linear readout served as a check that the downloaded models were instantiated correctly, 
and was used to help verify the success of the metamer generation optimization procedure, as described below. 
Linear evaluations from each model stage were obtained by training a fully connected layer with 1000 units and a 
softmax classifier applied to a random subsample of 2048 activations. If the number of activations was less than or 
equal to 2048 all activations were maintained. 
 
Self-supervised IPCL AlexNetGN models 
A model trained with Instance-Prototype Contrastive Learning (IPCL) and a supervised model with the same 
augmentations were downloaded from the IPCL github (https://github.com/harvard-visionlab/open_ipcl, referred to 
as “ipcl" in Supplementary Table 3) 12. Both models used an AlexNet architecture with group-normalization layers. 
As described in the original publication 12, the models were trained with a batch size of 128x5 (128 images with 5 
augmentations each), for 100 epochs, with data augmentations consisting of a random resize crop (random crop of 
the image resized with a scale range of [0.2,1] and aspect ratio [3/4,4/3], and resized to 224x224 pixels), random 
horizontal flip (probability=0.5), random grayscale conversion (probability=0.2), random color jitter (brightness=0.6, 
contrast=1, saturation=0.4, and hue +/- 144 degrees).  
 
Using the procedure described in 12, a linear readout consisting of a fully connected layer with 1000 units was used 
to evaluate each model stage. The readout was trained using a batch size of 256, with input augmentations of a 
random resize crop (random crop of the image resized with a scale range of [0.08,1] and aspect ratio [3/4,4/3], and 
resized to 224x224 pixels) and a random horizontal flip (probability=0.5). The linear readout was trained for 10 
epochs with the one-cycle learning rate policy 13, with cosine annealing to vary the learning rate from 0.00003, 
increasing to a maximum of .3 after 3 epochs, then decreasing with a cosine annealing function toward zero (3e-
09) by 10 epochs.  
 
Models trained on Stylized ImageNet 
Models trained on a “Stylized” ImageNet were downloaded from publicly available checkpoints 
(https://github.com/rgeirhos/texture-vs-shape, referred to as “texture-vs-shape” in Supplementary Table 3) and 
training details that follow are taken from the documentation 14. Stylized ImageNet is constructed by taking the 
content of an ImageNet1K image and replacing the style of the image with that of a randomly selected painting 
using AdaIN style transfer 15. A single stylized version of each image in the ImageNet1K training dataset was used 
for training. The models were trained with a batch size of 256 for 60 epochs, with input augmentations of a random 
resize crop (random crop of the image resized with a scale range of [0.08,1] and aspect ratio [3/4,4/3], and resized 
to 224x224 pixels) and a random horizontal flip (probability=0.5). 
 
HMAX vision model 
The hand-engineered HMAX vision model was based off of a publicly availably implementation in PyTorch 
(https://github.com/wmvanvliet/pytorch_hmax) which follows the model documented in a previous publication 16. A 
gaussian activation function was used, and boundary handling was added to match the MATLAB implementation 
provided by the original HMAX authors (https://maxlab.neuro.georgetown.edu/hmax.html). For full comparison to 
the other models, we trained a linear classifier consisting of 1000 units to perform the ImageNet1K recognition task 
on the final C2 output of the HMAX model. This fully connected layer was trained for 30 epochs of the ImageNet1K 
training dataset, and the learning rate was dropped after every 10 epochs. Inputs to HMAX during the classifier 
training consisted of random crops (250x250 pixels), random horizontal flip (p=0.5), random color jitter 
(brightness=0.1, contrast=0.1, saturation=0.1, probability=1, all values uniformly chosen), and lighting noise (alpha 
standard deviation of 0.05, an eigenvalue of [0.2175, 0.0188, 0.0045], and channel eigenvectors of [[-0.5675, 
0.7192, 0.4009], [-0.5808, -0.0045, -0.8140], [-0.5836, -0.6948, 0.4203]]). HMAX performance was evaluated by 
measuring the model accuracy on the ImageNet1K validation set after resizing the images so that the smallest 
dimension was 250 pixels, taking a center crop of 250x250 pixels of the image, converting to greyscale, and 
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multiplying by 255 to scale the image to the 0-255 range. As expected, the performance on this classifier was low, 
but it was significantly above chance and could thus be used for the metamer optimization criteria described below. 
 
Empirically, we found that both of the hand-engineered models contained stages that were difficult to optimize with 
the same strategy used for the neural networks. In both cases we found that optimization was aided by selectively 
optimizing for subsets of the units (channels) in the early iterations of the optimization process. For the HMAX 
model, the subsets that were chosen depended on the model stage. For the S1 stage, we randomly choose 
activations from a single Gabor filter channel to include in the optimization. For the C1 stage, we randomly selected 
a single scale. And for the S2 and C2 stages we randomly chose a single patch size. The random choice of subset 
was changed after every 50 gradient steps. This subset-based optimization strategy was used for the first 2000 
iterations at each learning rate value. All units were then included for the remaining 1000 iterations for that learning 
rate value. Unlike the other models in this paper, we used only the Signal-To-Noise Ratio for the matching criterion, 
because we found empirically that after the S2 stage of the HMAX model, activations from pairs of random images 
became strongly correlated due to the different offsets and scales in the natural image patch set, such that the 
correlation measures were not diagnostic of the match fidelity. 
 
Adversarial training – vision models 
Adversarially trained ResNet50 models were obtained from the robustness library 
(https://github.com/MadryLab/robustness, referred to as “robustness” in Supplementary Table 3). Adversarially 
trained AlexNet architectures and the random perturbation ResNet50 and AlexNet architectures were trained for 
120 epochs of the ImageNet1K dataset, with image pixel values scaled between 0-1, using data parallelism to split 
batches across multiple GPUs. Learning rate was decreased by a factor of 10 after every 50 epochs of training. 
During training, data augmentation consisted of random crop (224x224 pixels), random horizontal flip 
(probability=0.5), color jitter (brightness=0.1, contrast=0.1, saturation=0.1, probability=1, all values uniformly 
chosen), and lighting noise (alpha standard deviation of 0.05, an eigenvalue of [0.2175, 0.0188, 0.0045], and 
channel eigenvectors of [[-0.5675, 0.7192, 0.4009], [-0.5808, -0.0045, -0.8140], [-0.5836, -0.6948, 0.4203]]). An 
adversarial or random perturbation was then added. All adversarial examples were untargeted, such that the loss 
used to generate the adversarial example pushed the input away from the original class by maximizing the cross-
entropy loss, but did not push the prediction towards a specific target class. For the L2-norm (𝜖 = 3) model, 
adversarial examples were generated with a step size of 1.5 and 7 attack steps. For the L∞-norm (𝜖 = 8/255) model, 
adversarial examples were generated with a step size of 4/255 and 7 attack steps. For both ResNet50 and AlexNet 
random-perturbation L2-norm models, a random sample on the L2 ball with width 𝜖 = 3 was drawn and added to the 
input, independently for each training example and dataset epoch. Similarly, for both Resnet50 and AlexNet random 
perturbation L∞-norm models, a random sample on the corners of the L∞ ball was selected by randomly choosing a 
value of ±8/255 to add to each image pixel, independently chosen for each training example and dataset epoch. 
After the adversarial or random perturbation was added to the input image, the new image was clipped between 0-
1 before being passed into the model. 
 
VOneAlexNet vision model 
The VOneAlexNet architecture was downloaded from the VOneNet GitHub repository 
(https://github.com/dicarlolab/vonenet) 17. Modifications were then made to use Gaussian noise rather than Poisson 
noise as the stochastic component, as in 18, and to use the same input normalization as in our other models (rather 
than a mean of 0.5 and standard deviation of 0.5 as used in 17). The VOneAlexNet architecture was trained for 120 
epochs using the same data augmentations and training procedure described for the adversarially trained AlexNet 
model (but without adversarial or random pertubrations). The model was trained with stochastic responses 
(Gaussian noise with standard deviation of 4) in the “VOne” model stage, but for the purposes of metamer 
generation we fixed the noise by randomly drawing one noise sample when loading the model and using this noise 
sample for all metamer generation and adversarial evaluation. Although “fixing” the noise reduces the measured 
adversarial robustness compared to when a different sample of noise is used for each iteration of the adversarial 
example generation, the model with a single noise draw was still significantly more robust than a standard model, 
and allowed us to perform the metamer experiments without having to account for the stochastic representation 
during metamer optimization.  
 
LowpassAlexNet vision model 
The LowpassAlexNet architecture was trained for 120 epochs using the same augmentations and training 
procedure described for the adversarially trained AlexNet models (but without adversarial or random perturbations). 
To approximately equate performance on natural stimuli with the VOneNetAlexNet, we chose an early checkpoint 
that was closest, but did not exceed, the Top 1% performance of the VOneAlexNet model (to ensure that the greater 
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recognizability of the metamers from LowpassAlexNet could not be explained by higher overall performance of that 
model). This resulted in a comparison model trained for 39 epochs of the ImageNet1K dataset.  
 
AlexNet vision model, early checkpoint 
We trained an AlexNet architecture for 120 epochs using the same augmentations and training procedure described 
for the adversarially trained AlexNet models (but without adversarial or random perturbations). After training, to 
approximately equate performance on natural stimuli with the VOneNetAlexNet and LowpassAlexNet, we chose an 
early checkpoint that was closest, but not lower than, the performance of the VOneAlexNet model. This resulted in 
a comparison model trained for 51 epochs of the ImageNet1K dataset.  
 
Pre-trained adversarially robust models for final stage evaluation 
To compare the relationship between metamer recognizability and adversarial robustness of adversarially trained 
models (Figure 6c), we evaluated a large set of adversarially trained models. We evaluated all of the models 
included in a well-known robustness evaluation as of November 2022 – these comprised the ImageNet- L∞ 
evaluation of robustbench 19 (8 models), as well as additional models from each of the repositories from which these 
models were chosen (17 additional models), for a total of 25 models. Five of these models were from 
https://github.com/dedeswim/vits-robustness-torch 20, and were trained with L∞-norm, 𝜖 = 4/255, (ViT-XCiT-L12, 
ViT-XCiT-M12, ViT-XCit-S12, ConvNeXt-T, and GELUResNet-50). Another 16 of these models were from 
https://github.com/microsoft/robust-models-transfer 21, with 3 trained with L∞-norm, 𝜖 = 4/255, (ResNet18, 
ResNet50, and Wide-ResNet-50-2), 3 trained with L∞-norm, 𝜖 = 1/255, (ResNet18, ResNet50, and Wide-ResNet-
50-2), and 10 trained with L2-norm, 𝜖 = 3.0, (ResNet18, ResNet50, Wide-ResNet-50-2, Wide-ResNet-50-4, 
DenseNet, MNASNET, MobileNet-v2, ResNeXt50_32x4d, ShuffleNet, VGG16_bn). Another 3 models were 
ResNet50 architectures from https://github.com/MadryLab/robustness 7; one was trained on L∞-norm, 𝜖 = 4/255, 
one was trained on L∞-norm, 𝜖 = 8/255, and was one trained on L2-norm, 𝜖 = 3.0). Lastly, 1 model was the 
ResNet50 checkpoint available from https://github.com/locuslab/fast_adversarial 22. Only the final layer was used 
for metamer generation for these models. These models are omitted from Supplementary Table 3 as they were 
used for only a single analysis (that of Figure 6b). 
 
Adversarial evaluation -- visual models 
The adversarial robustness of visual models was evaluated with white-box untargeted adversarial attacks (i.e., in 
which the attacker has access to the model’s parameters when determining an attack that will cause the model to 
classify the image as any category other than the correct one). All 1000 classes of ImageNet1K were used for the 
adversarial evaluation. Attacks were computed with L1, L2, and L∞ maximum perturbation sizes (ε) added to the 
image, with 64 gradient steps each with size ε/4 (pilot experiments suggested that this step size and number of 
steps were sufficient to produce adversarial examples for most models). We randomly chose images from the 
ImageNet1K evaluation dataset to use for adversarial evaluation, applying the evaluation augmentation described 
above (resizing so that the smallest dimension was 256 pixels, followed by a center crop of 224x224 pixels). Five 
different subsets of 1024 stimuli were drawn to compute error bars.  
 
For the detailed investigation of adversarial vulnerability shown in Supplemental Figure 9, we measured robustness 
to two additional types of white-box adversarial attacks. “Fooling Images” 23 were constructed by first initializing the 
input image as a sample from a normal distribution with standard deviation of 0.05 and a mean of 0.5. We then 
randomly chose a target label from the 1000 classes of ImageNet1K and derived a perturbation to the image that 
would cause the noise to be classified as the target class. Performance was evaluated as the percent of perturbed 
images that had the target label. Attacks were computed with L1, L2, and L∞ maximum perturbation sizes (ε) added 
to the image, with 64 gradient steps each with size ε/4. Error bars were computed using five different random 
samples of 1024 target labels. “Feature Adversaries” 24 were constructed by deriving small perturbations to a natural 
“source” image to yield model activations (at a particular model stage) that are close to those evoked by a different 
natural “target” image, by minimizing the L2 distance between the perturbed source image activations and the target 
activations. The source and target images were randomly selected from the ImageNet1K validation dataset. 
Evaluation was performed by measuring the percent of perturbed images that had the same label as the target 
image. Attacks were computed with L1, L2, and L∞ maximum perturbation sizes (ε) added to the image, with 128 
gradient steps each with size ε/16. Error bars were computed using five different subsets of 1024 “source” and 
“target” stimuli. 
 
For the statistical comparisons between the adversarial robustness of architectures for Figure 6f we performed a 
repeated measure ANOVA with within-group factors of architecture and perturbation size 𝜖. A separate ANOVA 
was performed for each adversarial attack type. The values of 𝜖 included in the ANOVA were constrained to a range 
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where the VOneAlexNet and LowPassAlexNet showed robustness over the standard AlexNet (four values for each 
attack type, 𝜖-! ∈ {10

../, 100, 100./, 101}, 𝜖-" ∈ {10
2., 1023./, 103, 103./}, 𝜖-# ∈ {1021./, 1021, 1020./, 1020}), so that any 

difference in clean performance did not affect the comparisons. We computed statistical significance for the main 
effect of architecture by a permutation test, randomly permuting the architecture assignment, independent for each 
subset of the data. We computed a p-value by comparing the observed F-statistic to the null distribution of F-
statistics from permuted data (i.e., the p-value was one minus the rank of the observed F-statistic divided by the 
number of permutations). In cases where the maximum possible number of unique permutations was less than 
10,000, we instead divided the rank by the maximum number of unique permutations.  
 
We performed the same type of ANOVA analysis for the statistical comparisons in Supplementary Figure 9, using 
adversarial attack strengths for which VOneAlexNet and LowPassAlexNet showed robustness over the standard 
AlexNet for the specific attack being evaluated. For the “Fooling Images” in Supplementary Figure 9a we used 
attack strengths of 𝜖-! ∈ {10

../, 100, 100./, 101}, 𝜖-" ∈ {10
2., 1023./, 103, 103./}, 𝜖-# ∈ {1021./, 1021, 1020./, 1020}, and 

for the feature adversaries in Supplementary Figure 9b we used attack strengths of 𝜖-! ∈ {10
0./, 101, 101./, 104}, 

𝜖-" ∈ {10
3, 103./, 10., 10../}, 𝜖-# ∈ {1020./, 1020, 102../, 102.}).  

 
Out of distribution evaluation – visual models 
We evaluated model performance on out of distribution images using two publically available benchmarks. For both 
benchmarks, we utilized the BrainScore 25 implementations of the behavioral benchmarks for the models.  
 
The ImageNet-C benchmark 26 measures model top 1 accuracy on distorted images derived from the ImageNet 
test set, using the labels for the original image. The accuracy is averaged over stimulus sets consisting of the 
following distortions: Gaussian noise, shot noise, impulse noise, defocus blur, frosted glass blur, motion blur, zoom 
blur, snow, frost, fog, brightness, contrast, elastic, pixelate, and JPEG compression.  
 
The Geirhos 2021 benchmark 27 measures whether the model gets the same stimuli correct as human observers 
(error consistency), using 16-way recognition decisions from human observers for comparison. The error 
consistency is averaged over stimulus sets consisting of the following stimulus manipulations: colour/grayscale, 
constrast, high-pass, low-pass (blurr), phase scrambling, power equalization, false colour, rotation, Eidolon I, 
Eidolon II, Eidonlon III, uniform noise, sketch, stylized, edge, silhouette, and texture-shape cue conflict.  
  
 
Audio training dataset 
All auditory neural network models were trained on the Word-Speaker-Noise (WSN) dataset. This dataset was first 
presented in 1 and was constructed from existing speech recognition and environmental sound classification 
datasets. The dataset is approximately balanced to enable performance of three tasks on the same training 
exemplar: (1) recognition of the word at the center of a two second speech clip (2) recognition of the speaker and 
(3) recognition of environmental sounds, that are superimposed with the speech clips (serving as “background 
noise” for the speech tasks while enabling an environmental sound recognition task). Although the dataset is 
constructed to enable all three tasks, the models described in this paper were only trained to perform the word 
recognition task. The speech clips used in the dataset were excerpted from the Wall Street Journal 28 (WSJ) and 
Spoken Wikipedia 29 (SWC).  
 
To choose speech clips, we screened WSJ, TIMIT 30 and a subset of articles from SWC for appropriate audio clips 
(specifically, clips that contained a word at least four characters long and that had one second of audio before the 
beginning of the word and after the end of the word, to enable the temporal jittering augmentation described below). 
Some SWC articles were left out of the screen due to a) potentially offensive content for human listening 
experiments; (29/1340 clips), b) missing data; (35/1340 clips), or c) bad audio quality (for example, due to computer 
generated voices of speakers reading the article or the talker changing mid-way through the clip; 33/1340 clips). 
Each segment was assigned the word class label of the word overlapping the segment midpoint and a speaker 
class label determined by the speaker. With the goal of constructing a dataset with speaker and word class labels 
that were approximately independent, we selected words and speaker classes such that the exemplars from each 
class spanned at least 50 unique cross-class labels (e.g., 50 unique speakers for each of the word classes). This 
exclusion fully removed TIMIT from the training dataset. We then selected words and speaker classes that each 
contained at least 200 unique utterances, and such that each class could contain a maximum of 25% of a single 
cross-class label (e.g., for a given word class, a maximum of 25% of utterances could come from the same speaker). 
These exemplars were subsampled so that the maximum number in any word or speaker class was less than 2000. 
The resulting training dataset contained 230,356 unique clips in 793 word classes and 432 speaker classes, with 
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40,650 unique clips in the test set. Each word class had between 200 and 2000 unique exemplars. A “null” class 
was used as a label when a background clip was presented without the added speech. 
 
The environmental soundtrack clips that were superimposed on the speech clips were a subset of examples from 
the AudioSet dataset (a set of annotated YouTube video soundtracks) 31. To minimize ambiguity for the two speech 
tasks, we removed any sounds under the “Speech” or “Whispering” branch of the AudioSet ontology. Since a high 
proportion of AudioSet clips contain music, we achieved a more balanced set by excluding any clips that were only 
labeled with the root label of “Music”, with no specific branch labels. We also removed silent clips by first discarding 
everything tagged with a “Silence” label and then culling clips containing more than 10% zeros. This screening 
resulted in a training set of 718,625 unique natural sound clips spanning 516 categories. Each AudioSet clip was a 
maximum of 10 seconds long, from which a 2-second excerpt was randomly cropped during training (see below).  
 
Auditory model training 
During training, the speech clips from the Word-Speaker-Noise dataset were randomly cropped in time and 
superimposed on random crops of the AudioSet clips. Data augmentations during training consisted of 1) randomly 
selecting a clip from AudioSet to pair with each labeled speech clip, 2) randomly cropping 2 seconds of the AudioSet 
clip and 2 seconds of the speech clip, cropped such that the labeled word remained in the center of the clip (due to 
training pipeline technicalities, we used a pre-selected set of 5,810,600 paired speech and natural sound crops 
which spanned 25 epochs of the full set of speech clips and 8 passes through the full set of AudioSet clips), 3) 
superimposing the speech and the noise (i.e., the AudioSet crop) with a Signal-to-Noise-Ratio (SNR) sampled from 
a uniform distribution between -10dB SNR and 10dB SNR, augmented with additional samples of speech without 
an AudioSet background (i.e. with infinite SNR, 2464 examples in each epoch) and samples of AudioSet without 
speech (i.e. with negative infinite SNR, 2068 examples in each epoch) and 4) setting the root-mean-square (RMS) 
amplitude of the resulting signal to 0.1. Evaluation performance is reported on one pass through the speech test 
set (i.e., one crop from each of the 40,650 unique test set speech clips) constructed with the same augmentations 
used during training (specifically, variable SNR and temporal crops, paired with a separate set of AudioSet test 
clips, same random seed used to test each model such that test sets were identical across models). Audio model 
training used data-parallelization to split batches across multiple GPUs.  
 
Each auditory model was trained for 150 epochs (where an epoch is defined as a full pass through the set of 
230,356 speech training clips). The learning rate was decreased by a factor of 10 after every 50 epochs (see 
Supplementary Table 4).  
 
Auditory model cochlear stage 
The first stage of the auditory models produced a “cochleagram” – a time-frequency representation of audio with 
frequency tuning that mimics the human ear, followed by a compressive nonlinearity 32. This stage consisted of the 
following sequence of operations. First, the 20kHz audio waveform passed through a bank of 211 bandpass filters 
with center frequencies ranging from 50Hz to 10kHz. Filters were zero-phase with frequency response equal to the 
positive portion of a single period of a cosine function, implemented via multiplication in the frequency domain. Filter 
spacing was set by the Equivalent Rectangular Bandwidth (ERB N) scale 33. Filters perfectly tiled the spectrum such 
that the summed squared response across all frequencies was flat (four low-pass and four high-pass filters were 
included in addition to the bandpass filters in order to achieve this perfect tiling). Second, the envelope was extracted 
from each filter subband using the magnitude of the analytic signal (via the Hilbert transform). Third, the envelopes 
were raised to the power of 0.3 to simulate basilar membrane compression. Fourth, the compressed envelopes 
were lowpass-filtered and downsampled to 200Hz (1d convolution with a Kaiser-windowed Sinc filter of size 1001 
in the time domain, applied with a stride of 100 and no zero padding, i.e. “valid” convolution), resulting in a final 
“cochleagram” representation of 211 frequency channels by 390 time points. The first stage of the neural network 
“backbone” of the auditory models operated on this cochleagram representation. Cochleagram generation was 
implemented in PyTorch such that the components were differentiable for metamer generation and adversarial 
training. Cochleagram generation code will be released upon acceptance of the paper.  
 
Spectemp model 
The hand-engineered Spectro-Temporal filter model (Spectemp) was based on a previously published model 34. 
Our implementation differed from the original model in specifying spectral filters in cycles/ERB rather than 
cycles/octave (because our implementation operated on a cochleagram generated with ERB-spaced filters). The 
model consisted of a linear filter bank tuned to spectro-temporal modulations at different frequencies, spectral 
scales, and temporal rates. The filtering was implemented via 2D convolution with zero padding in frequency (211 
samples) and time (800 samples). Spectro-temporal filters were constructed with spectral modulation center 
frequencies of [0.0625, 0.125, 0.25, 0.5, 1, 2] cycles/ERB and temporal modulation center frequencies of [0.5, 1, 2, 
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4, 8, 16, 32, 64] Hz, including both upward and downward frequency modulations (resulting in 96 filters). An 
additional 6 purely spectral and 8 purely temporal modulation filters were included for a total of 110 modulation 
filters. This filterbank operated on the cochleagram representation (yielding the ‘filtered_signal’ stage in Figure 4d-
f). We squared the output of each filter response at each time step (‘power’) and took the average across time for 
each frequency channel (‘average’), similar to previous studies 35–37. To be able to use model classification 
judgments as part of the metamer generation optimization criteria (see below), we trained a linear classifier after 
the average pooling layer (trained for 150 epochs of the speech training set with a learning rate that started at 0.01 
and decreased by a factor of 10 after every 50 speech epochs, using the same data augmentations as for the neural 
networks). Although performance on the word recognition task for the Spectemp model was low, it was significantly 
above chance, and thus could be used to help verify the success of the metamer generation optimization procedure. 
 
For the Spectemp model, we observed that the higher frequency modulation channels were hardest to optimize. 
We set up a coarse-to-fine optimization strategy by initially only including the lowest frequency spectral and temporal 
modulation filters in the loss function, and adding in the filters with the next lowest modulation frequencies after 
every 400 optimization steps (with 7 total sets of filters defined by center frequencies in both temporal and spectral 
modulation, and the remaining 200/3000 steps continuing to include all of the filters from the optimization). The 
temporal modulation cutoffs for each of the 7 sets were [0, 0.5, 1, 2, 4, 8, 16] Hz and the spectral modulation cutoffs 
were [0, 0.0625, 0.125, 0.25, 0.5, 1, 2] cycles/ERB; a filter was included in the nth set if it had either a temporal or 
spectral scale that was equal to or less than the nth temporal or spectral cutoff, respectively. This strategy was 
repeated for each learning rate.  
 
Adversarial training – auditory models – waveform perturbations 
CochResNet50 and CochCNN9 were adversarially trained with perturbations in the waveform domain. We also 
included a control training condition in which random perturbations were added to the waveform. For both 
adversarial and random waveform perturbations, after the perturbation was added, the audio signal was clipped to 
fall between -1 and 1. As with the adversarially trained vision models, all adversarial examples were untargeted. 
The L2-norm (𝜖 = 0.5	and 𝜖 = 1.0) model adversarial examples were generated with a step size of 0.25 and 0.5, 
respectively, and 5 attack steps. L∞-norm (𝜖 = 0.002) model adversarial examples in the waveform space were 
generated with a step size of 0.001 and 5 attack steps. For random perturbation L2-norm models (both 
CochResNet50 and CochCNN9), a random sample on the L2 ball with width 𝜖 = 	1.0 was selected and added to the 
waveform, independently for each training example and dataset epoch. Similarly, for random perturbation L∞-norm 
models, a random sample on the corners of the L∞ ball was selected by randomly choosing a value of ±0.002 to 
add to each image pixel, chosen independently for each training example and dataset epoch.  
 
We estimated the SNR56 for the perturbations of the waveform using: 

SNR56  =  20 log.3 
||𝑥||
||ξ|| 

where x is the input waveform and ξ is the adversarial perturbation. As described above, the input waveforms, x, to 
the model were RMS normalized to 0.1, and thus ||𝑥|| = 0.1 ∗ √𝑛, where 𝑛 is the number of samples in the waveform 
(40,000). For L2-norm perturbations to the waveform, the norm of the perturbation is just the 𝜖 value, and so 𝜖 = 0.5 
and 𝜖 = 1.0 correspond to ||ξ|| = 0.5	and	||ξ|| = 	1, resulting in SNR56 values of 32.04 and 26.02, respectively. For 
L∞-norm perturbations, the worst case (lowest) SNR56 is achieved by a perturbation that maximally changes every 

input value. Thus, an L∞ perturbation with 𝜖 = 0.002 has ||ξ|| = C∑ (0.0020)43,333
89. , corresponding to a SNR56 value 

of 33.98. These SNR56 values do not guarantee that the perturbations were always fully inaudible to humans, but 
they confirm that the perturbations are relatively minor and unlikely to be salient to a human listener.  
 
Adversarial training – auditory models – cochleagram perturbations 
CochResNet50 and CochCNN9 were adversarially trained with perturbations in the cochleagram domain. The fixed 
components of the cochleagram generation enabled norm-based constraints on the perturbation size to the 
cochleagram analogous to those used for input-based adversarial examples. Although the perturbation size on the 
cochleagram is not directly comparable to the perturbation size on the waveform, in each case we chose the 
perturbation size during adversarial training to be large enough that the model showed robustness to adversarial 
perturbations while not being so large that the model could not perform the task (as is standard for adversarial 
training). Further, training models with perturbations generated at the cochleagram stage resulted in substantial 
robustness to adversarial examples generated at the waveform (Supplementary Figure 2). We also included a 
control training condition in which random perturbations were added to the cochleagram. Adversarial or random 
perturbations were added to the output of the cochleagram stage, after which the signal was passed through a 
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ReLU so that no negative values were fed into the neural network backbone. All adversarial examples were 
untargeted. The L2-norm (𝜖 = 0.5 and 𝜖 = 1.0) model adversarial examples were generated with a step size of 0.25 
and 0.5 respectively, and 5 attack steps. For random perturbation L2-norm models (both CochResNet50 and 
CochCNN9), a random sample on the L2 ball with width 𝜖 = 	1.0 was selected, independently for each training 
example and dataset epoch.  
 
We estimated the SNR56 of the cochleagram perturbations using the average cochleagram from the test dataset, 
whose L2-norm was 40.65. Using this value with the SNR56 equation yielded estimates of 38.20 and 32.18 dB for 
cochleagram perturbation models trained with 𝜖 = 0.5 and	𝜖 = 1.0, respectively. We again cannot guarantee that 
the perturbations are inaudible to a human, but they are fairly low in amplitude and thus unlikely to be salient.  
 
Adversarial evaluation – auditory models 
As in visual adversarial evaluation, the adversarial vulnerability of auditory models was evaluated with untargeted 
white-box adversarial attacks. Attacks were computed with L1, L2, and L∞ maximum perturbation sizes (ε) added to 
the waveform, with 64 gradient steps each with size ε/4 (pilot experiments and previous results 18 suggested that 
this step size and number of steps were sufficient to attack most auditory models). We randomly chose audio 
samples from the WSN evaluation dataset to use for adversarial evaluation, including the evaluation augmentations 
described above (additive background noise augmentation with SNR randomly chosen between -10 to 10 dB SNR, 
and RMS normalization to 0.1). Five different subsets of 1024 stimuli were drawn to compute error bars.  
 
Comparison of auditory adversarial robustness to metamer recognizability 
When comparing adversarial robustness to model metamer recognition (Figure 6b), the model metamer 
recognizability was evaluated using intermediate stage metamers (layer4 for CochResNet50, and ReLU4 for 
CochCNN9). This was because the final stage metamer recognizability was sufficiently low overall (because the 
auditory recognition task was much harder than the visual task: 793 vs. 16 possible classes) that a floor effect 
plausibly explained the absence of a significant correlation for the final stage metamers (r=0.21, p=0.215).  
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Model Learning Rate (at Start) Batch Size Accuracy (Top 1) Accuracy (Top 5) 
AlexNet Standard (pretrained, pytorch) (pretrained) 56.518 79.070 
AlexNet L2-norm (𝜖 = 3) 0.01 256 41.882 65.018 
AlexNet random L2-norm (𝜖 = 3) 0.01 256 57.978 79.986 
AlexNet L∞-norm (𝜖 = 8/255) 0.01 256 29.702 51.034 
AlexNet random L∞-norm (𝜖 = 8/255) 0.01 256 57.738 79.996 
ResNet50 Standard (pretrained, pytorch) (pretrained) 76.130 92.862 
ResNet50 L2-norm (𝜖 = 3) (pretrained, robustness) (pretrained) 57.900 80.706 
ResNet50 random L2-norm (𝜖 = 3) 0.1 256 76.600 93.136 
ResNet50 L∞-norm (𝜖 = 4/255) (pretrained, robustness) (pretrained) 62.424 84.060 
ResNet50 L∞-norm (𝜖 = 8/255) (pretrained, robustness) (pretrained) 47.906 72.484 
ResNet50 random L∞-norm (𝜖 = 8/255) 0.1 256 73.062 91.366 
ResNet101 Standard (pretrained, pytorch) (pretrained) 77.374 93.546 
VGG-19 Standard (pretrained, pytorch) (pretrained) 72.376 90.876 
CORnet-S Standard (pretrained, cornet) (pretrained) 73.020 91.116 
ResNet50-BYOL (pretrained, openselfsup) / 30 

linear eval 
(pretrained) / 
256 linear eval 

68.706 88.090 

ResNet50-MOCO_V2 (pretrained, openselfsup) / 30 
linear eval 

(pretrained) / 
256 linear eval 

67.832 88.322 

ResNet50-SIMCLR (pretrained, openselfsup) / 30 
linear eval 

(pretrained / 256 
linear eval 

59.204 81.304 

HMAX 0.1 linear eval  256 6.101 15.070 
VOneAlexNet 0.01 256 47.84 71.57 
LowpassAlexNet 0.01 256 47.620 72.416 
AlexNet (EarlyCheckpoint) 0.01 256 52.536 76.446 
CLIP-ResNet50 (pretrained, clip) / zero-shot eval  (pretrained) 59.822 86.568 
CLIP-ViT-B-32 (pretrained, clip) / zero-shot eval (pretrained) 63.360 88.820 
SWSL-ResNet50 (pretrained, swsl)  (pretrained) 81.180 95.986 
SWSL-ResNeXt50 (pretrained, swsl) (pretrained) 84.294 97.174 
ViT_large_patch-16_224 (pretrained, timm) (pretrained) 84.374 97.232 
AlexNetGN IPCL Primary Model (pretrained, ipcl) / cosine 

annealing (0.00003 to 0.03) 
(pretrained) / 
256 linear eval 

40.288 63.622 

AlexNetGN IPCL Supervised Comparison (pretrained, ipcl) (pretrained) 60.988 82.786 
AlexNet Stylized ImageNet Trained  (pretrained, texture-vs-shape) (pretrained) 40.012 64.178 
ResNet50 Stylized ImageNet Trained (pretrained, texture-vs-shape) (pretrained) 60.184 82.616 

Supplementary Table 3: Vision architecture training parameters and ImageNet1K accuracy.  
 
 

Model Learning Rate (at Start) Batch Size Accuracy (Top 1) Accuracy (Top 5) 
CochCNN9 Standard 0.01 128 66.672 83.129 
CochCNN9 waveform L2-norm (𝜖 = 1) 0.01 128 48.091 67.240 
CochCNN9 random waveform L2-norm (𝜖 = 1) 0.01 128 65.710 82.376 
CochCNN9 waveform L∞-norm (𝜖 = 0.002) 0.01 128 60.440 78.278 
CochCNN9 random waveform L∞-norm (𝜖 = 0.002) 0.01 128 66.283 82.952 
CochCNN9 cochleagram L2-norm (𝜖 = 1) 0.01 128 48.002 66.089 
CochCNN9 cochleagram L2-norm (𝜖 = 0.5) 0.01 128 57.198 75.001 
CochCNN9 random cochleagram L2-norm (𝜖 = 1) 0.01 128 66.706 83.087 
CochResNet50 Standard 0.1 256 86.797 95.360 
CochResNet50 waveform L2-norm (𝜖 = 0.5) 0.1 256 78.130 90.536 
CochResNet50 waveform L2-norm (𝜖 = 1) 0.1 256 70.546 85.474 
CochResNet50 random waveform L2-norm (𝜖 = 1) 0.1 256 85.916 94.871 
CochResNet50 waveform L∞-norm (𝜖 = 0.002) 0.1 256 83.491 93.658 
CochResNet50 random waveform L∞-norm (𝜖 = 0.002) 0.1 256 86.367 95.090 
CochResNet50 cochleagram L2-norm (𝜖 = 1) 0.1 256 71.392 85.149 
CochResNet50 cochleagram L2-norm (𝜖 = 0.5) 0.1 256 80.435 91.444 
CochResNet50 random cochleagram L2-norm (𝜖 = 1) 0.1  256 86.556 95.144 
Spectemp (linear eval)  0.01 (linear eval) 128 (linear eval)  5.743 13.780 

Supplementary Table 4: Auditory model architecture training parameters and word classification accuracy.  
  



 
17 

 
Experiment Models Total Number of 

conditions (Includes 
Natural Image) 

Number of trials per 
condition per 
participant 
Average (min, max) 

Number of 
Participants 

Visual Experiment 1 
(Standard Models) 

CORnet-S 
VGG-19 
ResNet50 
ResNet101 
AlexNet 

37 10 (8, 14) 22 

Visual Experiment 2 
(Large-Scale Dataset 
Models) 

ResNet50: CLIP 
ViT-B_32: CLIP 
ResNet50: SWSL 
ResNeXt101-32_8d: SWSL 
ViT_large_patch-16_224 

39 10 (7,13) 21 
 

Visual Experiment 3 
(Self-Supervised 
ResNet50 Models) 

ResNet50 Standard Supervised 
ResNet50 SimCLR 
ResNet50 MoCo_V2 
ResNe50 BYOL 

29 13 (11, 20) 21 

Visual Experiment 4 
(IPCL AlexNetGN) 

IPCL Primary Model 
IPCL Supervised Comparison 

19 21 (18, 24) 23 

Visual Experiment 5 
(Stylized-ImageNet 
Trained Models) 

ResNet50 Standard ImageNet Trained  
ResNet50 Stylized ImageNet Trained 
AlexNet Standard ImageNet Trained 
AlexNet Stylized ImageNet Trained 

31 12 (11, 16) 21 

Visual Experiment 6 
(HMAX) 

HMAX 6 33 (31, 34) 20 

Visual Experiment 7 
(ResNet50 Adversarially 
Robust) 

ResNet50 Standard Supervised 
ResNet50 L2-norm (𝜖 = 3) 
ResNet50 random L2-norm (𝜖 = 3) 
ResNet50 L∞-norm (𝜖 = 4/255) 
ResNet50 L∞-norm (𝜖 = 8/255) 
ResNet50 random L∞-norm (𝜖 = 8/255) 

43 9 (6, 13) 20 

Visual Experiment 8 
(AlexNet Adversarially 
Robust) 

AlexNet Standard Supervised 
AlexNet L2-norm (𝜖 = 3) 
AlexNet random L2-norm (𝜖 = 3) 
AlexNet L∞-norm (𝜖 = 8/255) 
AlexNet random L∞-norm (𝜖 = 8/255) 

41 9 (7, 14) 20 

Visual Experiment 9 
(AlexNet with 
Regularized Metamers) 

AlexNet Standard with No Regularization 
AlexNet Standard with Regularization (Small Step) 
AlexNet Standard with Regularization (Large Step) 
AlexNet Adversarially Trained L2-norm (𝜖 = 3) 

33 12 (8, 18) 20 

Visual Experiment 10 
(Single Image 
Consistency Experiment) 

Natural Image 
AlexNet random perturbation L2-norm (𝜖 = 3) – ReLU2 
AlexNet random perturbation L2-norm (𝜖 = 3) – Final Stage 
AlexNet adversarial perturbation L2-norm (𝜖 = 3) – Final Stage 

4 100 (96, 103) 40 

Visual Experiment 11 
(Adversarially Trained 
Models Final Stage)  

Adversarially Trained Models (see Methods) 27 14 (12, 17) 21 

Visual Experiment 12 
(Lowpass AlexNet and 
VOneAlexNet) 

AlexNet Standard Supervised 
Lowpass AlexNet 
VOneAlexNet 

25 16 (14, 20) 20 

Supplementary Table 5. Conditions and number of trials included in each visual experiment. Each condition was initially 
allocated ceiling(400/N) trials, and then trials were removed at random until the total number of trials was equal to 400. In 
addition, if the stimulus for a condition did not pass the metamer optimization criteria (and thus, had to be omitted from the 
experiment), the natural image was substituted for it as a placeholder, and analyzed as an additional trial for the natural condition. 
These two constraints resulted in the number of trials per condition varying somewhat across. The HMAX experiment was run 
with 200 rather than 400 because it contained only 6 conditions (metamer optimization was run for all 400 stimuli and a subset 
of 200 images was randomly chosen from the subset of the 400 images for which metamer optimization was successful in every 
stage of the model). HMAX metamers were black and white, while all metamers from all other models were in color.  
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Experiment Models  Total Number 
of conditions 
(Includes 
Natural Audio) 

Number of trials 
per condition per 
participant 
Average (min, max) 

Number of 
Participants 

Auditory Experiment 1 
(Standard Models) 

CochResNet50 Standard 
CochCNN9 Standard  

18 22 (18, 23) 20 

Auditory Experiment 2 
(Spectemp Model) 

Spectemp Model 6 33 (30, 34) 20 

Auditory Experiment 3 
(CochResNet50 Waveform 
Adversarial Training) 

CochResNet50 Standard Supervised 
CochResNet50 waveform L2-norm (𝜖 = 0.5) 
CochResNet50 waveform L2-norm (𝜖 = 1) 
CochResNet50 random waveform L2-norm (𝜖 = 1) 
CochResNet50 waveform L∞-norm (𝜖 = 0.002) 
CochResNet50 random waveform L∞-norm (𝜖 = 0.002) 

49 8 (5, 9) 20 

Auditory Experiment 4 
(CochCNN9 Waveform 
Adversarial Training) 

CochCNN9 Standard Supervised 
CochCNN9 waveform L2-norm (𝜖 = 1) 
CochCNN9 random waveform L2-norm (𝜖 = 1) 
CochCNN9 waveform L∞-norm (𝜖 = 0.002) 
CochCNN9 random waveform L∞-norm (𝜖 = 0.002) 

46 8 (6, 9) 20 

Auditory Experiment 5 
(CochResNet50 
Cochleagram Adversarial 
Training) 

CochResNet50 Standard Supervised 
CochResNet50 cochleagram L2-norm (𝜖 = 0.5) 
CochResNet50 cochleagram L2-norm (𝜖 = 1) 
CochResNet50 random cochleagram L2-norm (𝜖 = 1) 
CochResNet50 waveform L2-norm (𝜖 = 1) 

41 9 (7, 10) 20 

Auditory Experiment 6 
(CochCNN9 Cochleagram 
Adversarial Training) 

CochCNN9 Standard Supervised 
CochCNN9 cochleagram L2-norm (𝜖 = 0.5) 
CochCNN9 cochleagram L2-norm (𝜖 = 1) 
CochCNN9 random cochleagram L2-norm (𝜖 = 1) 
CochCNN9 waveform L2-norm (𝜖 = 1) 

46 8 (6, 9) 20 

Supplementary Table 6. Conditions and number of trials included in each auditory experiment As in the visual experiments, 
each condition was initially allocated ceiling(400/N) trials, and then trials were removed at random until the total number of trials 
was equal to 400. If the model stage selected produced a metamer that did not pass the metamer optimization criteria (and thus, 
was omitted from experiment stimuli), the natural audio was used instead, but was not included in the analysis. As in the visual 
experiments, these two constraints resulted in the number of trials per condition varying somewhat across participants. The 
Spectemp experiment used only 200 of the original 400 excerpts, for a total of 216 trials. This experiment was run with a smaller 
number of stimuli because it contained only 6 conditions (metamer optimization was run for all 400 stimuli and a subset of 200 
was randomly chosen from the subset of the 400 original excerpts for which metamer optimization was successful in every stage 
of the model). 
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Supplementary Modeling Note 2: Model Architecture Descriptions 
 
The general structure of the neural network architectures used in the paper are documented in this file, including 
names for the model stages that were used for metamer generation and included on figures. Model stage names 
and number of features are only given for the model stages used in metamer experiments (bolded in the tables 
below). All output shapes are specified without a batch dimension.  
 
CORnet-S 
The CORnet-S architecture was proposed in 38 and contains recurrent and skip connections motivated by brain 
and behavioral data.  
 

Model Stage Name  PyTorch Operation Output Shape Number of 
Features 

natural_image input (3,224,224) 150528 

 Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) (64, 112, 112)  

 BatchNorm2d(64) (64, 112, 112)  

 ReLU (64, 112, 112)  

 MaxPool2d(kernel_size=3, stride=2, padding=1) (64, 56, 56)  

 Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False) (64, 56, 56)  

 BatchNorm2d(64) (64, 56, 56)  

V1 ReLU (64, 56, 56) 200704 

 Conv2d(64, 128, kernel_size=1, stride=1, bias=False) (128, 56, 56)  

V2 CORblock_S(128, scale=4, time=2) (128, 28, 28) 100352 
 

 Conv2d(128, 256, kernel_size=1, stride=1, bias=False) (256, 28, 28)  

V4 CORblock_S(256, scale=4, time=4) (256, 14, 14) 50176 
 

 Conv2d(256, 512, kernel_size=1, stride=1, bias=False) (512, 14, 14)  

IT CORblock_S(512, scale=4, time=2) (512, 7, 7) 25088 
 

 AdaptiveAvgPool2d(1) (512, 1, 1)  

final Linear(512, 1000) (1000) 1000 

 
The CORblock_S(channels, scale, t) components of the architecture have the following structure:  

1. Input (x) 

2. Conv2d(channels, channels * scale, kernel_size=1, bias=False) 

3. BatchNorm2d(channels * scale) 

4. ReLU 

5. t=0: Conv2d(channels * scale, channels * scale, kernel_size=3, stride=2, padding=1, bias=False) 
t != 0: Conv2d(channels * scale, channels * scale, kernel_size=3, stride=1, padding=1, bias=False) 

6. BatchNorm2d(channels * scale) 

7. ReLU 

8. Conv2d(channels * scale, channels, kernel_size=1, bias=False) 

9. BatchNorm2d(channels) 
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10. Process skip connection (on input, x):  
t=0: x processed with 

a. 1x1 Conv2d(channels, channels, kernel_size=1, stride=2, bias=False) 
b. BatchNorm2d(channels) 

 
t != 0: x processed with Identity() 

11. Add output from (9) to output from (10) 

12. (Output) ReLU  

To implement recurrent connections, the input passes through this CORblock_S block `t` times, where the 
convolutional layers share weights for each timestep `t` but the batch normalization layers have unique learnable 
weights for each `t`. The first pass `t=0` through the block contains additional downsampling of the residual 
connection and in the second convolution.  
 
VGG19 
The VGG19 architecture was proposed in 39 and has 16 convolutional layers, 5 max pooling layers, and 2 fully 
connected layers (plus one classification layer).  

Model Stage Name  PyTorch Operation Output Shape Number of 
Features 

natural_image input (3,224,224) 150528 

 Conv2d(3, 64, kernel_size=3, padding=1) (64, 224, 224)  

 ReLU (64, 224, 224)  

 Conv2d(64, 64, kernel_size=3, padding=1) (64, 224, 224)  

conv_relu_0_1 ReLU (64, 224, 224) 3211264 

 MaxPool2d(kernel_size=2, stride=2) (64, 112, 112)  

 Conv2d(64, 128, kernel_size=3, padding=1) (128, 112, 112)  

 ReLU (128, 112, 112)  

 Conv2d(128, 128, kernel_size=3, padding=1) (128, 112, 112)  

conv_relu_1_1 ReLU (128, 112, 112) 1605632 

 MaxPool2d(kernel_size=2, stride=2) (128, 56, 56)  

 Conv2d(128, 256, kernel_size=3, padding=1) (256, 56, 56)  

 ReLU (256, 56, 56)  

 Conv2d(256, 256, kernel_size=3, padding=1) (256, 56, 56)  

 ReLU (256, 56, 56)  

 Conv2d(256, 256, kernel_size=3, padding=1) (256, 56, 56)  

 ReLU (256, 56, 56)  

 Conv2d(256, 256, kernel_size=3, padding=1) (256, 56, 56)  

conv_relu_2_3 ReLU (256, 56, 56) 802816 

 MaxPool2d(kernel_size=2, stride=2) (256, 28, 28)  

 Conv2d(256, 512, kernel_size=3, padding=1) (512, 28, 28)  

 ReLU (512, 28, 28)  

 Conv2d(512, 512, kernel_size=3, padding=1) (512, 28, 28)  

 ReLU (512, 28, 28)  
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 Conv2d(512, 512, kernel_size=3, padding=1) (512, 28, 28)  

 ReLU (512, 28, 28)  

 Conv2d(512, 512, kernel_size=3, padding=1) (512, 28, 28)  

conv_relu_3_3 ReLU (512, 28, 28) 401408 

 MaxPool2d(kernel_size=2, stride=2) (512, 14, 14)  

 Conv2d(512, 512, kernel_size=3, padding=1) (512, 14, 14)  

 ReLU (512, 14, 14)  

 Conv2d(512, 512, kernel_size=3, padding=1) (512, 14, 14)  

 ReLU (512, 14, 14)  

 Conv2d(512, 512, kernel_size=3, padding=1) (512, 14, 14)  

 ReLU (512, 14, 14)  

 Conv2d(512, 512, kernel_size=3, padding=1) (512, 14, 14)  

conv_relu_4_3 ReLU (512, 14, 14) 100352 

 MaxPool2d(kernel_size=2, stride=2) (512, 7, 7)  

avgpool AdaptiveAvgPool2d((7, 7)) (note: this is equal to the output of the above 
MaxPool2d) 

(512, 7, 7) 25088 
 

 Linear(512 * 7 * 7, 4096) (4096)  

fc_relu_0 ReLU (4096) 4096 

 Dropout(p=0.5) (4096)  

 Linear(4096, 4096) (4096)  

fc_relu_1 ReLU (4096) 4096 

 Dropout(p=0.5) (4096)  

final Linear(4096, 1000) (1000) 1000 

 
 
ResNet50 
The ResNet50 architecture was proposed in 40 and has 48 convolutional layers with 1 max pooling layer and 1 
average pooling layer (plus one classification layer). It has 4 residual blocks (ResNetBlocks below) which have skip 
(or shortcut) connections. This architecture is used for all models labled as “ResNet50” with the exception of 
ResNet50: CLIP, which has modifications described below.   
 
Layer names and number of features are only given for the layers used in metamer experiments.  

Model Stage Name  PyTorch Operation Output Shape Number of 
Features 

natural_image input (3,224,224) 150528 

 Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) (64, 112, 112)  

 BatchNorm2d(64) (64, 112, 112)  

conv1_relu1 ReLU (64, 112, 112) 802816 
 

 MaxPool2d(kernel_size=3, stride=2, padding=1) (64, 56, 56)  

layer1 ResNetBlock(inplanes=64, planes=64, num_blocks=3, stride=1) (256, 56, 56) 802816 
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layer2 ResNetBlock(inplanes=256, planes=128, num_blocks=4, stride=2) (512, 28, 28) 401408 
 

layer3 ResNetBlock(inplanes=512, planes=256, num_blocks=6, stride=2) (1024, 14, 14) 200704 
 

layer4 ResNetBlock(inplanes=1024, planes=512, num_blocks=3, stride=2) (2048, 7, 7) 100352 
 

avgpool AdaptiveAvgPool2d(1,1) (2048, 1, 1) 2048 

final Linear(2048, 1000)  (1000) 1000 

 
The ResNetBlock components of the architecture have the following structure:  

1. input (x) 

2. 1x1 Conv2d(inplanes, planes, stride=1) 

3. BatchNorm2d(planes) 

4. ReLU  

5. 3x3 Conv2d (planes, planes, stride=1) 

6. BatchNorm2d(planes) 

7. ReLU 

8. 1x1 Conv2d (planes, planes * expansion, stride=1) 

9. BatchNorm2d(planes) 

10. Residual connection on x (if inplanes !=planes * expansion): 1x1 Conv2D (inplanes, planes * expansion, stride) 

11. Residual connection on x (if inplanes !=planes * expansion): BatchNorm2d(planes * expansion) 

12. Add output from (9) to output from (11) 

13. (Output) ReLU  

Multiple of these residual blocks (num_blocks) are stacked together to form a single ResNetBlock. The expansion 
factor was set to four for all layers (expansion=4).  
 
ResNet50: CLIP modifications 
The CLIP model with a ResNet50 visual encoder obtained from https://github.com/openai/CLIP had three "stem" 
convolutions as opposed to one, with an average pool instead of a max pool. It also prepends an avgpool to 
convolutions with stride > 1 within the residual blocks, and uses a final attention pooling layer rather than average 
pooling. Full architecture details below.  
 
Layer names and number of features are only given for the layers used in metamer experiments.  

Model Stage Name  PyTorch Operation Output Shape Number of 
Features 

natural_image input (3,224,224) 150528 

 Conv2d(3, 32, kernel_size=3, stride=2, padding=1, bias=False) (32, 112, 112)  

 BatchNorm2d(32) (32, 112, 112)  

 ReLU (32, 112, 112)  

 Conv2d(32, 32, kernel_size=3, stride=1, padding=1, bias=False) (32, 112, 112)  

 BatchNorm2d(32) (32, 112, 112)  

 ReLU (32, 112, 112)  
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 Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False) (64, 112, 112)  

 BatchNorm2d(64) (64, 112, 112)  

 ReLU (64, 112, 112)  

stem AvgPool2d(kernel_size=2, stride=2, padding=0) (64, 56, 56) 200704 

layer1 ResNetBlock(inplanes=64, planes=64, num_blocks=3, stride=1) (256, 56, 56) 802816 
 

layer2 ResNetBlock(inplanes=256, planes=128, num_blocks=4, stride=2) (512, 28, 28) 401408 
 

layer3 ResNetBlock(inplanes=512, planes=256, num_blocks=6, stride=2) (1024, 14, 14) 200704 
 

layer4 ResNetBlock(inplanes=1024, planes=512, num_blocks=3, stride=2) (2048, 7, 7) 100352 
 

attnpool AttentionPool2D(spatial_dim=7, embed_dim=2048, num_heads=32, 
output_dim=1024) 

(1024) 1024 

 
The ResNetBlock components of the architecture have the following structure:  

1. input (x) 

2. 1x1 Conv2d(inplanes, planes, stride=1, bias=False) 

3. BatchNorm2d(planes) 

4. ReLU  

5. 3x3 Conv2d (planes, planes, stride=1, bias=False) 

6. BatchNorm2d(planes) 

7. ReLU 

8. Downsampling after second convolution (if stride > 1): AvgPool2d(kernel_size=stride, stride=stride, padding=0) 

9. 1x1 Conv2d (planes, planes * expansion, stride=1, bias=False) 

10. BatchNorm2d(planes) 

11. Residual connection on x (if inplanes !=planes * expansion):  
a. (if stride>1): AvgPool2d(kernel_size=stride, stride=stride, padding=0) 
b. 1x1 Conv2D (inplanes, planes * expansion, stride=1, bias=False) 
c. BatchNorm2d(planes * expansion) 

12. Add output from (10) to output from (11) 

13. (Output) ReLU  

Multiple of these residual blocks (num_blocks) are stacked together to form a single ResNetBlock. The expansion 
factor was set to four for all layers (expansion=4).  
 
ResNet101 
The ResNet101 architecture was proposed in 40 and has 99 convolutional layers with 1 max pooling layer and 1 
average pooling layer (plus one classification layer).It has 4 residual blocks (ResNetBlocks below) which have skip 
(or shortcut) connections. The main difference compared to the ResNet50 model is the increased depth of the third 
ResNetBlock (layer3) in the model.  
 

Model Stage Name  PyTorch Operation Output Shape Number of 
Features 

natural_image input (3,224,224) 150528 

 Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) (64, 112, 112)  
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 BatchNorm2d(64) (64, 112, 112)  

conv1_relu1 ReLU (64, 112, 112) 802816 
 

 MaxPool2d(kernel_size=3, stride=2, padding=1) (64, 56, 56)  

layer1 ResNetBlock(inplanes=64, planes=64, num_blocks=3, stride=1) (256, 56, 56) 802816 
 

layer2 ResNetBlock(inplanes=256, planes=128, num_blocks=4, stride=2) (512, 28, 28) 401408 
 

layer3 ResNetBlock(inplanes=512, planes=256, num_blocks=23, stride=2) (1024, 14, 14) 200704 
 

layer4 ResNetBlock(inplanes=1024, planes=512, num_blocks=3, stride=2) (2048, 7, 7) 100352 
 

avgpool AdaptiveAvgPool2d(1,1) (2048, 1, 1) 2048 

final Linear(2048, 1000)  (1000) 1000 

 
The ResNetBlock components of the architecture have the following structure (same as in ResNet50 model):  

1. input (x) 

2. 1x1 Conv2d(inplanes, planes, stride=1) 

3. BatchNorm2d(planes) 

4. ReLU  

5. 3x3 Conv2d (planes, planes, stride=1) 

6. BatchNorm2d(planes) 

7. ReLU 

8. 1x1 Conv2d (planes, planes * expansion, stride=1) 

9. BatchNorm2d(planes) 

10. Residual connection on x (if inplanes !=planes * expansion): 1x1 Conv2D (inplanes, planes * expansion, stride) 

11. Residual connection on x (if inplanes !=planes * expansion): BatchNorm2d(planes * expansion) 

12. Add output from (9) to output from (11) 

13. (Output) ReLU  

Multiple of these residual blocks (num_blocks) are stacked together to form a single ResNetBlock. The expansion 
factor was set to four for all layers (expansion=4).  
 
AlexNet 
AlexNet was proposed in 41 and consists of 5 convolutional layers, 3 max-pooling layers, and 2 fully connected 
layers (plus one classification layer). 
 
Model stage names and number of features are only given for the stages used in metamer experiments.  

Model Stage Name  PyTorch Operation Output Shape Number of 
Features 

natural_image input (3,224,224) 150528 

 Conv2d(3, 64, kernel_size=11, stride=4, padding=2) (64, 55, 55)  

relu0 ReLU (64, 55, 55) 193600 

 MaxPool2d(kernel_size=3, stride=2) (64, 27, 27)  
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 Conv2d(64, 192, kernel_size=5, padding=2) (192, 27, 27)  

relu1 ReLU (192, 27, 27) 
 

139968 
 

 MaxPool2d(kernel_size=3, stride=2) (192, 13, 13)  

 Conv2d(192, 384, kernel_size=3, padding=1) (384, 13, 13)  

relu2 ReLU (384, 13, 13) 
 

64896 
 

 Conv2d(384, 256, kernel_size=3, padding=1) (256, 13, 13)  

relu3 ReLU (256, 13, 13)  
 

43264 
 

 Conv2d(256, 256, kernel_size=3, padding=1) (256, 13, 13)  

relu4 ReLU (256, 13, 13)  43264 
 

 MaxPool2d(kernel_size=3, stride=2) (256, 6, 6)  

 Dropout(p=0.5) (9216)  

 Linear(256 * 6 * 6, 4096) (4096)  

fc0_relu ReLU (4096) 4096 
 

 Dropout(p=0.5) (4096)  

 Linear(4096, 4096) (4096)  

fc1_relu ReLU (4096) 4096 

final Linear(4096, 1000) (1000) 1000 

 
ViT-B_32: CLIP 
ViT-B_32 is a vision transformer architecture based on that proposed in 42. The visual encoder from CLIP with this 
architecture was used for metamer generation.  
 
Model stage names and number of features are only given for the stages used in metamer experiments.  

Model Stage Name  PyTorch Operation Output Shape Number of 
Features 

natural_image Input (3,224,224) 150528 

conv1 Conv2d(3, 768, kernel_size=(32,32), stride=(32,32), padding=0, 
bias=False) 

(768, 7, 7) 37632 

 Reshape(768,49) (768,49)  

 Permute(1,0) (49,768)  

class_embedding Concatenate(class_embedding, x) (50, 768) 38400 

 Add(x, positional_embedding) (50,768)  

ln_pre LayerNorm(768, eps=1e-05, elementwise_affine=True) (50,768) 38400 

block_0 ResidualAttentionBlock(d_model=768, n_head=12, attn_mask=None) (50,768) 38400 

 ResidualAttentionBlock(d_model=768, n_head=12, attn_mask=None) (50,768)  

 ResidualAttentionBlock(d_model=768, n_head=12, attn_mask=None) (50,768)  

block_3 ResidualAttentionBlock(d_model=768, n_head=12, attn_mask=None) (50,768) 38400 
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 ResidualAttentionBlock(d_model=768, n_head=12, attn_mask=None) (50,768)  

 ResidualAttentionBlock(d_model=768, n_head=12, attn_mask=None) (50,768)  

block_6 ResidualAttentionBlock(d_model=768, n_head=12, attn_mask=None) (50,768) 38400 

 ResidualAttentionBlock(d_model=768, n_head=12, attn_mask=None) (50,768)  

 ResidualAttentionBlock(d_model=768, n_head=12, attn_mask=None) (50,768)  

block_9 ResidualAttentionBlock(d_model=768, n_head=12, attn_mask=None) (50,768) 38400 

 ResidualAttentionBlock(d_model=768, n_head=12, attn_mask=None) (50,768)  

blocks_end ResidualAttentionBlock(d_model=768, n_head=12, attn_mask=None) (50,768) 38400 

 slice(0,:)  (768)  

 LayerNorm(768, eps=1e-05, elementwise_affine=True) (768)  

linear_end Linear(768, 512, bias=False)  (512) 512 

 
The transformer ResidualAttentionBlock components of the architecture have the following structure:  

1. input  

2. LayerNorm(d_model) 

3. MultiheadAttention(d_model, n_head, attn_mask) 

4. Residual: Add (1) to output of (3) 

5. LayerNorm(d_model) 

6. MLP Layer: 
a. Linear (d_model, d_model * 4) 
b. QuickGELU 
c. Linear (d_model * 4, d_model) 

7. Residual: Add output of (4) to output of (6) 

Note that an attention mask of “None” as used for the visual encoder and corresponds to full attention between 
the tokens.  
 
SWSL-ResNext101-32x8d 
The ResxNet101-32x8d architecture was proposed in 43 and has 99 convolutional layers with 1 max pooling layer 
and 1 average pooling layer (plus one classification layer). It has 4 residual blocks (ResNextBlocks below) which 
have skip (or shortcut) connections. The main difference compared to the ResNet101 model is the presence of 
grouped 2D convolutions for the 3x3 convolution of the residual block.  
 

Model Stage Name  PyTorch Operation Output Shape Number of 
Features 

natural_image input (3,224,224) 150528 

 Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) (64, 112, 112)  

 BatchNorm2d(64) (64, 112, 112)  

conv1_relu1 ReLU (64, 112, 112) 802816 
 

 MaxPool2d(kernel_size=3, stride=2, padding=1) (64, 56, 56)  

layer1 ResNextBlock(inplanes=64, planes=64, num_blocks=3, stride=1, 
cardinality=32, base_width=8) 

(256, 56, 56) 802816 
 

layer2 ResNextBlock(inplanes=256, planes=128, num_blocks=4, stride=2, 
cardinality=32, base_width=8) 

(512, 28, 28) 401408 
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layer3 ResNextBlock(inplanes=512, planes=256, num_blocks=23, stride=2, 
cardinality=32, base_width=8) 

(1024, 14, 14) 200704 
 

layer4 ResNextBlock(inplanes=1024, planes=512, num_blocks=3, stride=2, 
cardinality=32, base_width=8) 

(2048, 7, 7) 100352 
 

avgpool AdaptiveAvgPool2d(1,1) (2048, 1, 1) 2048 

final Linear(2048, 1000)  (1000) 1000 

 
The ResNextBlock components of the architecture have the following structure:  

1. input (x) 

2. 1x1 Conv2d(inplanes, width, stride=1, bias=False) 

3. BatchNorm2d(width) 

4. ReLU  

5. 3x3 Conv2d (width, width, stride=1, groups=cardinality, bias=False) 

6. BatchNorm2d(width) 

7. ReLU 

8. 1x1 Conv2d (width, planes * expansion, stride=1, bias=False) 

9. BatchNorm2d(planes) 

10. Residual connection on x (if inplanes !=planes * expansion): 1x1 Conv2D (inplanes, planes * expansion, stride) 

11. Residual connection on x (if inplanes !=planes * expansion): BatchNorm2d(planes * expansion) 

12. Add output from (9) to output from (11) 

13. (Output) ReLU  

Where width=(floor(planes * base_width / 64 ) * cardinality) and multiple of these blocks (num_blocks) are stacked 
together to form a single ResNextBlock. The expansion factor was set to four for all layers (expansion=4).  
 
ViT_large_patch-16_224 
ViT-large_path-16_224 is a vision transformer architecture based on that proposed in 42.  
 
Model stage names and number of features are only given for the stages used in metamer experiments.  

Model Stage Name  PyTorch Operation Output Shape Number of 
Features 

natural_image Input (3,224,224) 150528 

 Conv2d(3, 1024, kernel_size=(16,16), stride=(16,16), padding=0, 
bias=False) 

(1024, 14, 14)  

 Reshape(768,49) (1024,196)  

patch_embed Permute(1,0) (196,1024)  

 Concatenate(class_embedding, x) (197,1024)  

pos_embedding Add(x, positional_embedding) (197, 1024)  

block_0 TransformerBlock(dim=1024, n_head=16, qkv_bias=True) (197, 1024)  

block_1 TransformerBlock(dim=1024, n_head=16, qkv_bias=True) (197,1024)  

block_2 TransformerBlock(dim=1024, n_head=16, qkv_bias=True) (197, 1024)  

block_3 TransformerBlock(dim=1024, n_head=16, qkv_bias=True) (197, 1024)  

block_4 TransformerBlock(dim=1024, n_head=16, qkv_bias=True) (197, 1024)  



 
28 

block_5 TransformerBlock(dim=1024, n_head=16, qkv_bias=True) (197, 1024)  

block_6 TransformerBlock(dim=1024, n_head=16, qkv_bias=True) (197,1024)  

block_7 TransformerBlock(dim=1024, n_head=16, qkv_bias=True) (197, 1024)  

block_8 TransformerBlock(dim=1024, n_head=16, qkv_bias=True) (197, 1024)  

block_9 TransformerBlock(dim=1024, n_head=16, qkv_bias=True) (197, 1024)  

block_10 TransformerBlock(dim=1024, n_head=16, qkv_bias=True) (197, 1024)  

block_11 TransformerBlock(dim=1024, n_head=16, qkv_bias=True) (197, 1024)  

block_12 TransformerBlock(dim=1024, n_head=16, qkv_bias=True) (197,1024)  

block_13 TransformerBlock(dim=1024, n_head=16, qkv_bias=True) (197, 1024) 
  

 

block_14 TransformerBlock(dim=1024, n_head=16, qkv_bias=True) (197, 1024)  

block_15 TransformerBlock(dim=1024, n_head=16, qkv_bias=True) (197, 1024)  

block_16 TransformerBlock(dim=1024, n_head=16, qkv_bias=True) (197, 1024)  

block_17 TransformerBlock(dim=1024, n_head=16, qkv_bias=True) (197, 1024)  

block_18 TransformerBlock(dim=1024, n_head=16, qkv_bias=True) (197,1024)  

block_19 TransformerBlock(dim=1024, n_head=16, qkv_bias=True) (197, 1024)  

block_20 TransformerBlock(dim=1024, n_head=16, qkv_bias=True) (197, 1024)  

block_21 TransformerBlock(dim=1024, n_head=16, qkv_bias=True) (197, 1024)  

block_22 TransformerBlock(dim=1024, n_head=16, qkv_bias=True) (197, 1024)  

blocks_end TransformerBlock(dim=1024, n_head=16, qkv_bias=True) (197,1024)  

 LayerNorm(768, eps=1e-05, elementwise_affine=True) (197,1024)  

 slice(0,:)  (1024)  

final Linear(1024, 1000, bias=True)  (1000) 1000 

 
The TransformerBlock components of the architecture have the following structure:  

1. input  

2. LayerNorm(dim) 

3. Attention(dim, num_heads, qkv_bias) 

4. Residual: Add (1) to output of (3) 

5. LayerNorm(d_model) 

6. MLP Layer: 
a. Linear (d_model, d_model * 4) 
b. GELU 
c. Linear (d_model * 4, d_model) 

7. Residual: Add output of (4) to output of (6) 

 
 
LowpassAlexNet 
Modifications were made to the AlexNet architecture to reduce aliasing. The model consists of 5 convolutional 
layers, 5 weighted-average-pooling (HannPooling) layers, and 2 fully connected layers (plus one classification 
layer).  
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Model stage names and number of features are only given for the stages used in metamer experiments.  
Model Stage Name  PyTorch Operation Output Shape Number of 

Features 

natural_image input (3,224,224) 150528 

 Conv2d(3, 64, kernel_size=11, stride=1, padding=5) (64, 224, 224)  

 ReLU (64, 224, 224)  

 HannPooling2d(pool_size=17, stride=4, padding=5) (64, 55, 55) 
 

 

relu0 ReLU (64, 55, 55) 
 

193600 
 

 HannPooling2d(pool_size=9, stride=2, padding=2) (64, 27, 27) 
 

 

 Conv2d(64, 192, kernel_size=5, padding=2) (192, 27, 27) 
 

 

relu1 ReLU (192, 27, 27) 139968 
 

 HannPooling2d(pool_size=9, stride=2, padding=2) (192, 13, 13)  

 Conv2d(192, 384, kernel_size=3, padding=1) (384, 13, 13)  

relu2 ReLU (384, 13, 13) 
 

64896 
 

 Conv2d(384, 256, kernel_size=3, padding=1) (256, 13, 13)  

relu3 ReLU (256, 13, 13)  
 

43264 
 

 Conv2d(256, 256, kernel_size=3, padding=1) (256, 13, 13)  

relu4 ReLU (256, 13, 13)  43264 
 

 HannPooling2d (pool_size=9, stride=2, padding=2) (256, 6, 6)  

 Dropout(p=0.5) (9216)  

 Linear(256 * 6 * 6, 4096) (4096)  

fc0_relu ReLU (4096) 4096 
 

 Dropout(p=0.5) (4096)  

 Linear(4096, 4096) (4096)  

fc1_relu ReLU (4096) 4096 

final Linear(4096, 1000) (1000) 1000 

 
VOneAlexNet 
VOneAlexNet was proposed in 17 and consists of 5 convolutional layers, 3 max-pooling layers, and 2 fully connected 
layers (plus one classification layer). Gaussian noise rather than Poisson-like noise was used during training, as 
proposed in 18. 
 
Model stage names and number of features are only given for the stages used in metamer experiments.  

Model Stage Name  PyTorch Operation Output Shape Number of Features 

natural_image input (3,224,224) 150528 
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 gabors(simple_channels=256, complex_channels=256, kernel_size=25, 
stride=4) 

(512, 56, 56)  

v1_output additive_gaussian_noise(std=4) (512, 56, 56) 1605632* 

 Conv2d(512, 64, kernel_size=1, stride=1, bias=False) (64, 56, 56)  

 Conv2d(64, 192, kernel_size=5, stride=2, padding=2) (192, 28, 28)  

relu1 ReLU (192, 28, 28) 
 

150528 
 

 MaxPool2d(kernel_size=3, stride=2, padding=1) (192, 14, 14)  

 Conv2d(192, 384, kernel_size=3, padding=1) (384, 14, 14)  

relu2 ReLU (384, 14, 14) 
 

75264 
 

 Conv2d(384, 256, kernel_size=3, padding=1) (256, 14, 14)  

relu3 ReLU (256, 14, 14)  
 

50176 
 

 Conv2d(256, 256, kernel_size=3, padding=1) (256, 14, 14)  

relu4 ReLU (256, 14, 14)  50176 

 MaxPool2d(kernel_size=3, stride=2, padding=1) (256, 7, 7)  

 Dropout(p=0.5) (12544)  

 Linear(256 * 6 * 6, 4096) (4096)  

fc0_relu ReLU (4096) 4096 
 

 Dropout(p=0.5) (4096)  

 Linear(4096, 4096) (4096)  

fc1_relu ReLU (4096) 4096 

final Linear(4096, 1000) (1000) 1000 

 
*Metamers were generated from the output of the VOneNet block. We note that this model stage has more 
parameters than the comparison relu0 stage of AlexNet and LowpassAlexNet, but that we plot the relu0/VOneBlock 
on the same line in Figure 6d and Supplementary Figure 13. Subsequent stages (relu1 onwards) have similar 
dimensionality, although differ slightly due to the padding in the VOneAlexNet architecture.  
 
Auditory Models 

CochResNet50  
The CochResNet50 model is a ResNet50 backbone architecture applied to a cochleagram representation (such 
that 2D convolutions learned on the cochleagram).  
 

Model Stage Name  PyTorch Operation Output Shape Number of 
Features 

natural_audio Input (waveform) (40000) 40000 

cochleagram Cochleagram (1,211,390) 82290 

 Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) (64, 106, 195)  

 BatchNorm2d(64) (64, 106, 195)  



 
31 

conv1_relu1 ReLU (64, 106, 195) 1322880 

 MaxPool2d(kernel_size=3, stride=2, padding=1) (64, 53, 98)  

layer1 ResNetBlock(inplanes=64, planes=64, num_blocks=3, stride=1) (256, 53, 98) 1329664 
 

layer2 ResNetBlock(inplanes=256, planes=128, num_blocks=4, stride=2) (512, 27, 49) 677376 
 

layer3 ResNetBlock(inplanes=512, planes=256, num_blocks=6, stride=2) (1024, 14, 25) 358400 
 

layer4 ResNetBlock(inplanes=1024, planes=512, num_blocks=3, stride=2) (2048, 7, 13) 186368 
 

avgpool AdaptiveAvgPool2d(1,1) (2048, 1, 1) 2048 

final Linear(2048, 794)  (794) 794 

 
The ResNetBlock components of the architecture have the following structure (same as in ResNet50 visual model):  

1. input (x) 

2. 1x1 Conv2d(inplanes, planes, stride=1) 

3. BatchNorm2d(planes) 

4. ReLU  

5. 3x3 Conv2d (planes, planes, stride=1) 

6. BatchNorm2d(planes) 

7. ReLU 

8. 1x1 Conv2d (planes, planes * expansion, stride=1) 

9. BatchNorm2d(planes) 

10. Residual connection on x (if inplanes !=planes * expansion): 1x1 Conv2D (inplanes, planes * expansion, stride) 

11. Residual connection on x (if inplanes !=planes * expansion): BatchNorm2d(planes * expansion) 

12. Add output from (9) to output from (11) 

13. (Output) ReLU  

Multiple of these residual blocks (num_blocks) are stacked together to form a single ResNetBlock. The expansion 
factor was set to four for all layers (expansion=4).  

CochCNN9  
The CochCNN9 architecture is based on found in 36 through a neural network architecture search. The architecture 
differs in that the input to the first stage of the model is not reshaped to 256x256, rather it is maintained as the 
211x390 size cochleagram. The convolutional layer filters and pooling regions are similarly reshaped to maintain 
the approximate receptive field size in frequency and time. The model is also trained with batch normalization rather 
than the local response normalization used in 36. 
 

Model Stage Name  PyTorch Operation Output Shape Number of Features 

natural_audio Input (waveform) (40000) 40000 

cochleagram Cochleagram (1,211,390) 82290 

 BatchNorm2d(1) (1,211,390)  

 Conv2d(1, 96, kernel_size=[7, 14], stride=[3, 3], padding='same') (96, 71, 130)  
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relu0 ReLU (96, 71, 130) 886080 
 

 MaxPool2d(kernel_size=[2,5] , stride=[2,2], padding='same') (96, 36, 65)  

 BatchNorm2d(96) (96, 36, 65)  

 Conv2d(96, 256, kernel_size=[4,8], stride=[2,2], padding='same') (256, 18, 33)  

relu1 ReLU (256, 18, 33) 152064 
 

 MaxPool2d(kernel_size=[2,5] , stride=[2,2], padding='same') (256, 9, 17)  

 BatchNorm2d(256) (256, 9, 17)  

 Conv2d(256, 512, kernel_size=[2,5], stride=[1,1], padding='same') (512, 9, 17)  

relu2 ReLU (512, 9, 17) 78336 
 

 Conv2d(512, 1024, kernel_size=[2,5], stride=[1,1], padding='same') (1024, 9, 17)  

relu3 ReLU (1024, 9, 17) 156672 
 

 Conv2d(1024, 512, kernel_size=[2,5], stride=[1,1], padding='same') (512, 9, 17)  

relu4 ReLU (512, 9, 17) 78336 
 

avgpool AvgPool(kernel_size=[2,5] , stride=[2,2], padding='same') (512, 5, 9) 23040 
 

 Linear(512*9*5 , 4096) (4096)  

relufc ReLU (4096) 4096 

 Dropout(p=0.5) (4096)  

final Linear(4096, 794) (794) 794 
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