Kinetically matched C-N coupling toward efficient urea electrosynthesis enabled on copper single-atom alloy

Mengqiu Xu^{1,‡}, Fangfang Wu^{2,‡}, Ye Zhang¹, Yuanhui Yao¹, Genping Zhu¹, Xiaoyu Li¹, Liang Chen^{1*}, Gan Jia¹, Xiaohong Wu^{3*}, Youju Huang¹, Peng Gao^{1*} and Wei Ye^{1*}

¹College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.

²College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.

³School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China.

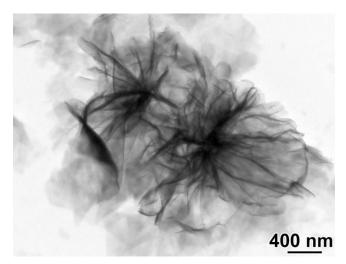
[‡]These authors contributed equally.

Chemicals.

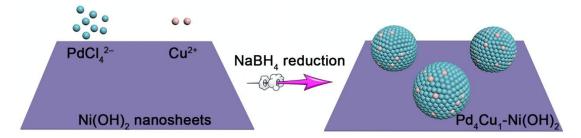
Nickel(II) nitrate hexahydrate (Ni(NO₃)₂·6H₂O, A.R.), copper(II) chloride dihydrate (CuCl₂·2H₂O, A.R.), potassium palladium(II) chloride (K₂PdCl₄, A.R.), iron(III) trichloride hexahydrate (FeCl₃·6H₂O, A.R.), tetrabutyl titanate (C₁₆H₃₆O₄Ti, A.R.), diacetylmonoxime (C₄H₇NO₂, A.R.), thiosemicarbaxide (CH₅N₃S, A.R.), urease, urea (CH₄N₂O, A.R.), carbon black, sodium borohydride (NaBH₄, A.R.), sodium salicylate (NaC₇H₅O₃, A.R.), Monopotassium monosodium tartrate tetrahydrate (KNaC₄H₁₂O₁₀, A.R.), sodium hydroxide (NaOH, A.R.), sodium hypochlorite (NaClO, A.R.), EDTA disodium dehydrate $(C_{10}H_{20}N_2Na_2O_{10},$ A.R.), sodium nitroprusside (FeNa₂C₅H₄N₆O₃, A.R.), 4-methoxybenzyl alcohol (C₈H₁₀O₂, A.R.), triethylene glycol (C₆H₁₄O₄, A.R.), ammonium chloride (NH₄Cl, A.R.), sodium nitrite (NaNO₂, A.R.), ethanol (EtOH, A.R.), ¹⁵N-labeled potassium nitrate (K¹⁵NO₃, ≥99.5%), potassium nitrate (KNO₃, A.R.), potassium hydroxide (KOH, A.R.), potassium bicarbonate (KHCO₃, A.R.), ultra-high purity CO₂ (99.999%), ultra-high purity Ar (99.999%), Nessler reagent and Griess reagent were purchased from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). All chemicals were used without further purification. All aqueous solutions were prepared using de-ionized (DI) water with a resistivity of 18.25 M Ω ·cm⁻¹.

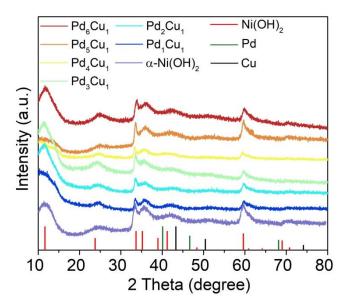
Synthesis of TiO₂ nanosheets

Tetrabutyl titanate (10 mL) was added in an autoclave with a Teflon liner. Then HF solution (4 mL) was added and stirred for 10 min. After that, absolute ethanol (10 mL) was then added into the mixture and stirred for another 10 min. The mixture was transferred and sealed in an autoclave with a Teflon liner, and heated at 180 °C for 16 h. After it was cooled to room temperature, the product was collected with centrifugation and washed with NaOH (0.1 M) solution and DI water at least five times. The product was dried a vacuum oven at 80 °C for 24 h. [S1]

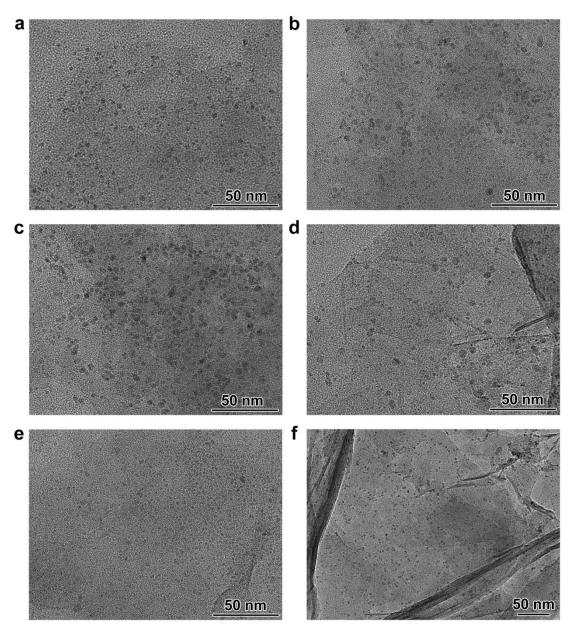

Synthesis of Pd₄Cu₁-rGO composite structure

Graphene oxide (15.35 mL, 2.3 wt.‰) was diluted into 20 mL DI water. Then, K_2PdCl_4 (3.13 mg) and $CuCl_2 \cdot 2H_2O$ (0.4 mg) were dissolved in the above solution. After ultrasound for 10 min, ice water cooled NaBH₄ solution (10 mM, 6 mL) was dropped in the mixture to reduce Pd^{2+} and Cu^{2+} to form Pd_4Cu_1 alloy cluster. After stirring for another 1 h, the mixture was transferred and sealed in an autoclave with a Teflon liner, heated at 110 °C for 3 h. The final product was collected by centrifugation, washed three times with water, and freeze-dried.

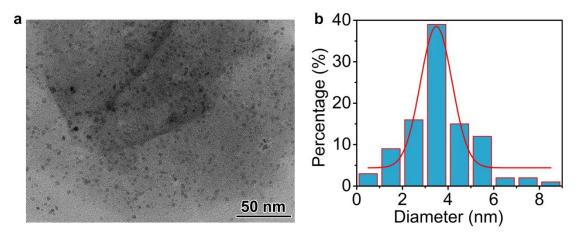

Supplementary Figures:


Supplementary Fig. 1. Schematic demonstration of kinetics matching of CO_2RR and NO_3RR in C–N coupling toward urea electrosynthesis.

Supplementary Fig. 2. TEM image of layered $\alpha\text{-Ni}(OH)_2$ nanosheets.

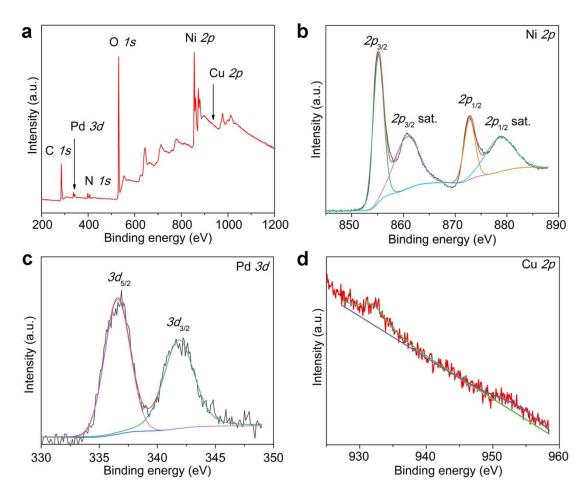


Supplementary Fig. 3. Schematic depiction of the synthesis of Pd_4Cu_1 -Ni(OH) $_2$ composite structure.

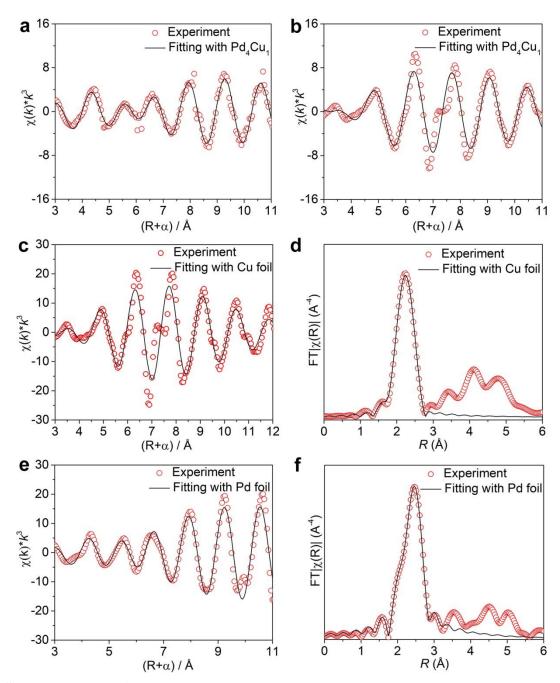


Supplementary Fig. 4. Powder XRD patterns of bare α -Ni(OH)₂ nanosheets, Pd₁Cu₁-Ni(OH)₂, Pd₂Cu₁-Ni(OH)₂, Pd₃Cu₁-Ni(OH)₂, Pd₄Cu₁-Ni(OH)₂, Pd₅Cu₁-Ni(OH)₂, and Pd₆Cu₁-Ni(OH)₂ composite samples. The standard diffraction patterns for α -Ni(OH)₂ (JCPDS No. 22-0444), *fcc* Pd (JCPDS No. 46-1043) and *fcc* Cu (JCPDS No. 04-0836) are provided as references.

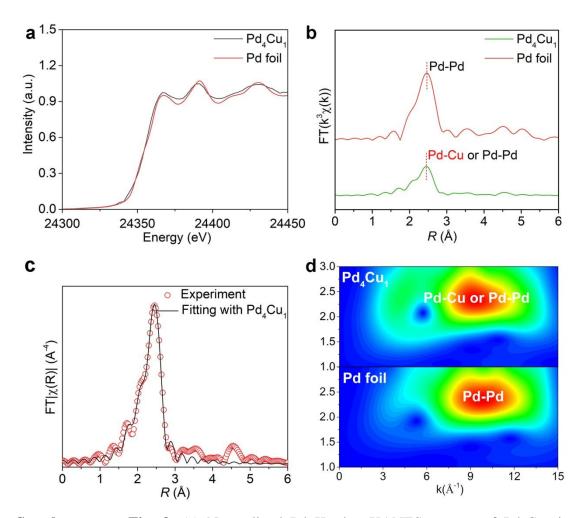
Notes: As shown in Supplementary Fig. 4, the composite samples $(Pd_xCu_1-Ni(OH)_2, x=1, 2, 3, 4, 5, 6)$ only display diffraction patterns of α -Ni(OH)₂, and the diffraction patterns of metallic Pd/Cu are not emerged. The possible reason may be due to the small size of Pd_xCu_1 clusters.



Supplementary Fig. 5. TEM images of (a) Pd_1Cu_1 -Ni(OH)₂, (b) Pd_2Cu_1 -Ni(OH)₂, (c) Pd_3Cu_1 -Ni(OH)₂, (d) Pd_5Cu_1 -Ni(OH)₂, (e) Pd_6Cu_1 -Ni(OH)₂ and (f) Pd-Ni(OH)₂ composite samples.

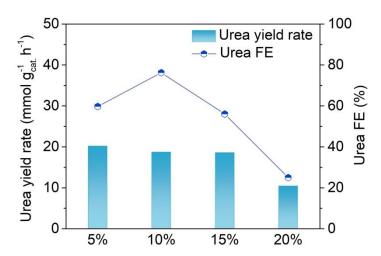

Supplementary Fig. 6. (a) TEM image of Pd_4Cu_1 -Ni(OH)₂ composite sample. (b) The particle size distribution diagram of Pd_4Cu_1 clusters.

Notes: As shown in Supplementary Fig. 5 and 6, Pd_xCu_1 clusters (x=1, 2, 3, 4, 5, 6) anchored on α -Ni(OH)₂ display comparable size distribution, which is a prerequisite for the comparison of catalytic activity.

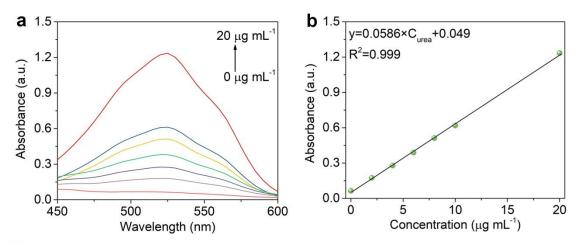


Supplementary Fig. 7. XPS characterizations of Pd_4Cu_1 -Ni(OH)₂ sample: (a) survey, (b) Ni 2p, (c) Pd 3d, (d) Cu 2p.

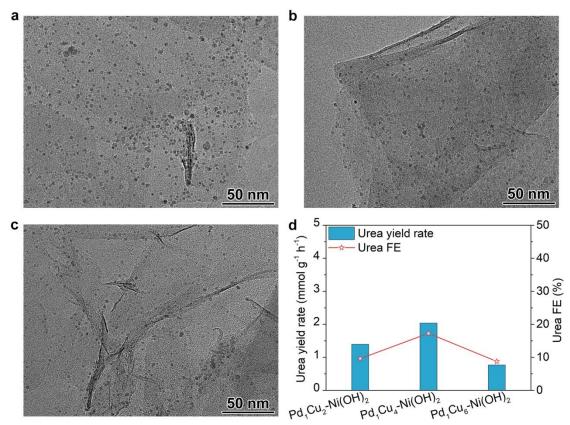
Notes: As shown in Supplementary Fig. 7, the survey spectrum confirms the existence of Pd, Cu, Ni and O elements. The binding energies located at 855.2 and 872.9 eV can be assigned to $2p_{3/2}$ and $2p_{1/2}$ of Ni²⁺, respectively (Supplementary Fig. 7b). Another pairs of binding energies located at 860.8 and 879.0 eV are assigned to the satellite peaks of $2p_{3/2}$ and $2p_{1/2}$, respectively. [S2]



Supplementary Fig. 8. (a,b) The corresponding EXAFS k space fitting curves of $Pd_4Cu_1-Ni(OH)_2$ sample. The corresponding EXAFS fitting curves of (c,d) Cu foil and (e,f) Pd foil.

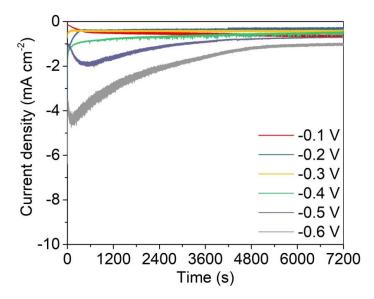

Supplementary Fig. 9. (a) Normalized Pd K-edge XANES spectra of Pd₄Cu₁ in reference with Pd foil, (b) k^3 -weighted Fourier-transform Pd K-edge EXAFS spectra, (c) the experimental Pd K-edge EXAFS spectrum (red circle) and the fitting curve (black line) of Pd₄Cu₁. (d) Wavelet transforms of the k^2 -weighted Pd K-edge EXAFS signals for the high-coordination shells in reference with Pd foil.

Notes: Pd K-edge XANES spectrum of Pd_4Cu_1 -Ni(OH)₂ was also obtained in reference with Pd foil (Supplementary Fig. 9). The two curves are almost overlapped, indicating metallic Pd feature in Pd_4Cu_1 -Ni(OH)₂ sample. Pd–Pd (2.70 Å) and Pd–Cu (2.62 Å) bonds are all resolved with CNs of 7.9 and 1.4 in Pd K-edge EXAFS (Supplementary Table 2), respectively. Consistent with Cu case, the fitting curve is almost overlapped with experiment spectrum, validating the reliability of the fitting result (Supplementary Fig. 8 and 9c). Wavelet transforms (WT) analysis of the Pd K-edge EXAFS oscillations of Pd_4Cu_1 -Ni(OH)₂ sample resolves Pd–Cu bond (Supplementary Fig. 9d).

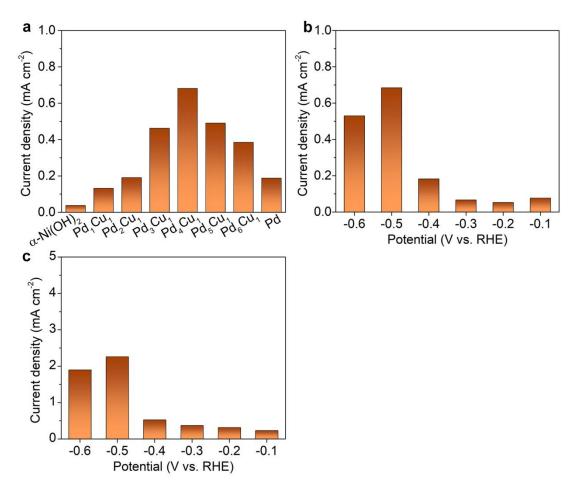


Supplementary Fig. 10. The relationship of urea yield rates and FEs with varied loading amounts of Pd₄Cu₁ in Pd₄Cu₁-Ni(OH)₂ composite sample at -0.5 V in H-type cell.

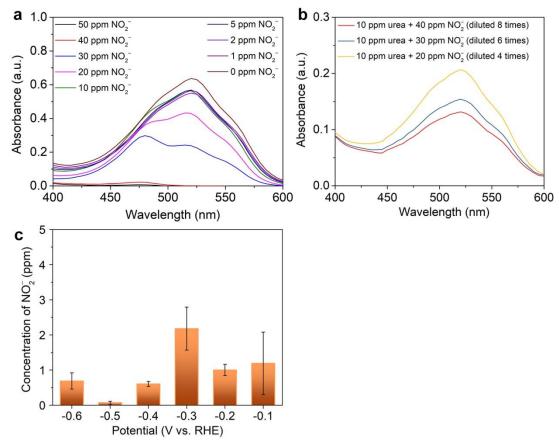
Notes: We investigated the effect of loading amount of Pd_4Cu_1 clusters on urea yield rate and FE at -0.5 V. As shown in Supplementary Fig. 10, urea yield rates are comparable with 5%, 10% and 15% loading amount. Urea FEs show a volcano plot with the loading amounts, and the optimal urea yield rate and urea FE were obtained with Pd_4Cu_1 loading amount of 10%.

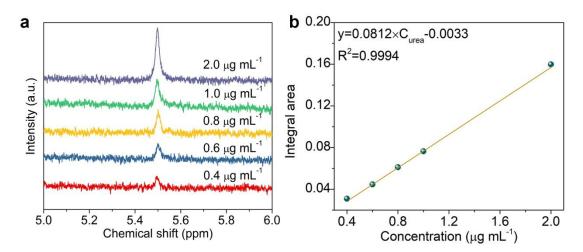


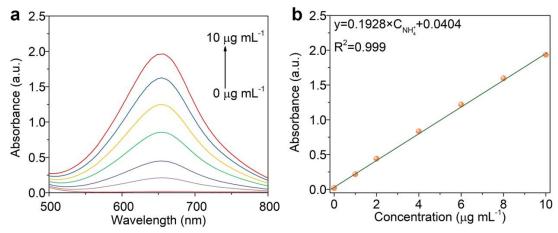
Supplementary Fig. 11. (a) UV-Vis absorption curves of diacetyl monoxime assays with varied concentrations of urea after heating at $100\,^{\circ}$ C for $20\,$ min. (b) Calibration curve used for urea estimation.



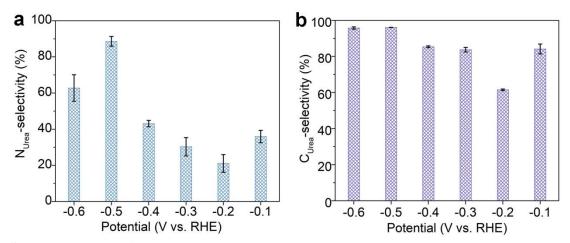
Supplementary Fig. 12. (a-c) TEM images of Pd_1Cu_2 -Ni(OH)₂, Pd_1Cu_4 -Ni(OH)₂, and Pd_1Cu_6 -Ni(OH)₂ samples. (d) Urea yield rates and FEs of the three samples.


Notes: To further demonstrate the unique role of Cu single-atom in Pd host, we also prepared Pd single-atom in Cu lattice as a comparison. As shown in Supplementary Fig. 12a-12c, Pd₁Cu₂, Pd₁Cu₄ and Pd₁Cu₆ clusters are successfully anchored on Ni(OH)₂ nanosheets. Urea yield rates and urea FEs are 0.77, 2.03, 1.39 mmol g⁻¹ h⁻¹ and 8.7%, 17.3%, 9.6% for Pd₁Cu₆-Ni(OH)₂, Pd₁Cu₄-Ni(OH)₂ and Pd₁Cu₂-Ni(OH)₂ composite catalysts (Supplementary Fig. 12d), respectively. Urea yield rates and urea FEs all lower than that of Pd₄Cu₁-Ni(OH)₂, suggesting the unique role of Cu single-atom alloy in promoting urea electrosynthesis.

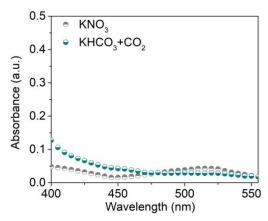

Supplementary Fig. 13. Potential-dependent *I-t* curves of Pd_4Cu_1 -Ni(OH)₂ sample in the mixture of KHCO₃ (0.1 M) and KNO₃ (0.1 M) in H-type cell under continuous CO_2 flow.


Supplementary Fig. 14. Urea partial current densities for (a) Pd_xCu_1 -Ni(OH)₂ (x=1-6) composite samples at -0.5 V, (b) Pd_4Cu_1 -Ni(OH)₂ in H-type cell and (c) in GDE.

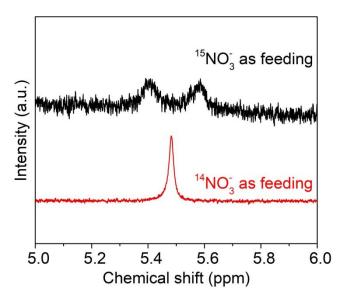
Supplementary Fig. 15. (a) UV-Vis absorption curves of urea (10 ppm) with different concentrations of NO_2^- , (b) UV-Vis absorption curves of the diluted solutions. (c) Potential-dependent concentrations of NO_2^- in the electrolyte. (c) Error bars in accordance with the standard deviation of at least three independent measurements.



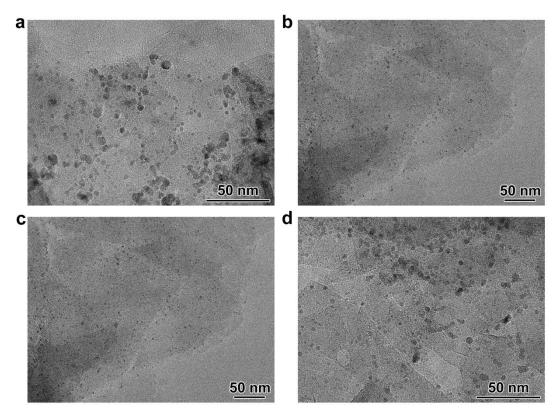
Supplementary Fig. 16. (a) ¹H-NMR spectra (500 MHz) recorded in a series of urea solutions with different concentrations. (b) Calibration curve used for urea quantification.



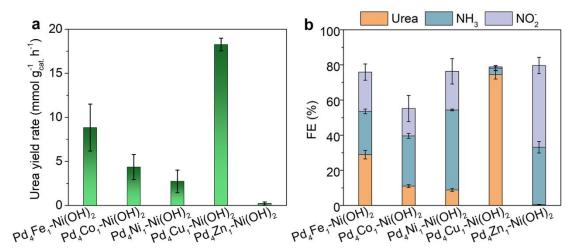
Supplementary Fig. 17. UV-Vis curves of indophenol assays with NH_4^+ ions and (b) calibration curve used for estimation of NH_3 .


Notes: In order to investigate the impact of NO_2^- on the quantification of urea in the electrolyte, we firstly obtained UV-Vis absorption curves of 10 ppm urea with different concentrations of NO_2^- . As shown in Supplementary Fig. 15a, the absorbance at 524 nm is really declined when the concentrations of NO_2^- surpass 10 ppm. As the concentrations of NO_2^- decline to 10, 5, 2, 1 ppm, the absorption curves are almost overlapped, but slightly lower than that without NO_2^- . The results indicate that NO_2^- will not greatly affect the quantification of urea when the concentrations are less than 10 ppm. This conclusion is further confirmed by diluting results (Supplementary Fig. 15b). Therefore, we also quantified the concentrations of NO_2^- in the electrolyte. As shown in Supplementary Fig. 15c, the concentrations of NO_2^- in the electrolyte all lower than 3 ppm, suggesting the accuracy of spectrophotometric result. In order to further confirm the concentration of urea in the electrolyte, the quantification of urea were further carried out with 1H -NMR (Supplementary Fig. 16) and urease method (Supplementary Fig. 17). The results for the estimation of urea concentrations are consistent.

Supplementary Fig. 18. Potential-dependent (a) NO_3^- -to-urea and (b) CO_2 -to-urea selectivity for Pd_4Cu_1 -Ni(OH) $_2$ composite sample in urea electrosynthesis. (a, b) Error bars in accordance with the standard deviation of at least three independent measurements.

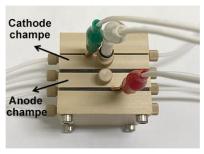


Supplementary Fig. 19. UV-Vis spectra of the electrolytes for Pd_4Cu_1 -Ni(OH)₂ in the mixture of KNO₃ or KHCO₃ and CO₂.

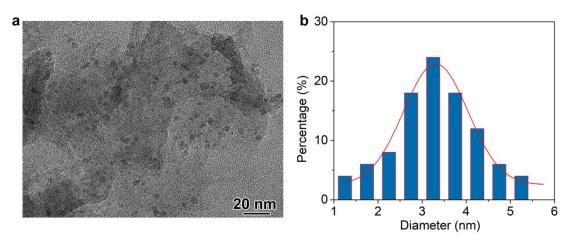


Supplementary Fig. 20. ¹⁵N isotope labeling experiments using ¹⁵NO₃⁻ (100 mM) and ¹⁴NO₃⁻ as N feeding in electrochemical C–N coupling toward urea production.

Notes: To confirm the produced urea rooted from the electrochemical C–N coupling from CO₂ and NO₃⁻, we acquired UV-Vis absorption curves for Pd₄Cu₁-Ni(OH)₂ recorded in solo KNO₃ or KHCO₃ + CO₂ at –0.5 V, which indicates no urea formation (Supplementary Fig. 19). Furthermore, ¹⁵N isotope labeling experiments were carried out (Supplementary Fig. 20). ¹H-NMR spectra indicate that a single peak located at 5.5 ppm using ¹⁴NO₃⁻ as N-source. When feeding ¹⁵NO₃⁻ as N-source, a double peak is observed, which is the characteristic peak of CO(¹⁵NH₂)₂. ^[S3] All the results verify that urea is really obtained from electrochemical C–N coupling from CO₂ and NO₃⁻.

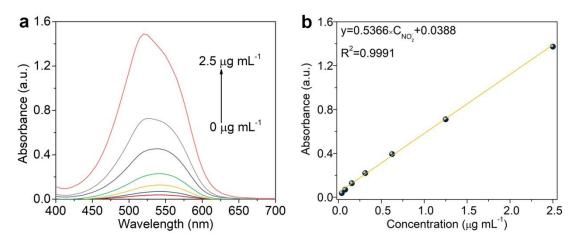


 $\label{eq:continuous} \textbf{Supplementary Fig. 21.} \ TEM \ images \ of \ (a) \ Pd_4Fe_1-Ni(OH)_2, \ (b) \ Pd_4Co_1-Ni(OH)_2, \ (c) \ Pd_4Ni_1-Ni(OH)_2, \ (d) \ Pd_4Zn_1-Ni(OH)_2.$

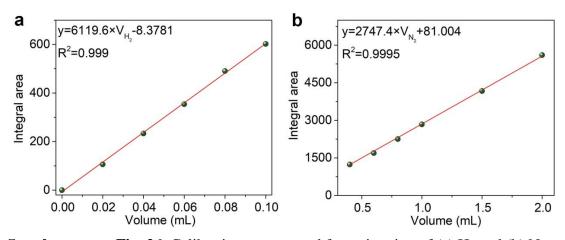


Supplementary Fig. 22. Screening of metal types (Fe, Co, Ni, Cu, Zn) in electrochemical C–N coupling: (a) Urea yield rate and (b) FE. (a, b) Error bars in accordance with the standard deviation of at least three independent measurements.

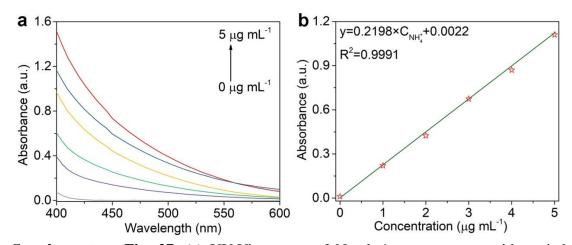
Notes: In order to screen the optimal transition metals single-atom alloys, we chose typical transition metals, i.e., Fe, Co, Ni, Cu, Zn. As shown in Supplementary Fig. 22, urea yield rates are arranged as follows: $Pd_4Cu_1-Ni(OH)_2 > Pd_4Fe_1-Ni(OH)_2 > Pd_4Co_1-Ni(OH)_2 > Pd_4Ni_1-Ni(OH)_2 > Pd_4Zn_1-Ni(OH)_2$. Urea FEs for $Pd_4X_1-Ni(OH)_2$ samples show a similar trend with urea yield rates. The results suggest the best choice of Cu single-atom alloy in urea electrosynthesis. Notably, the process of NO_2^- to *NH₂ is inhibited on Zn single-atom alloy and no urea is formed.

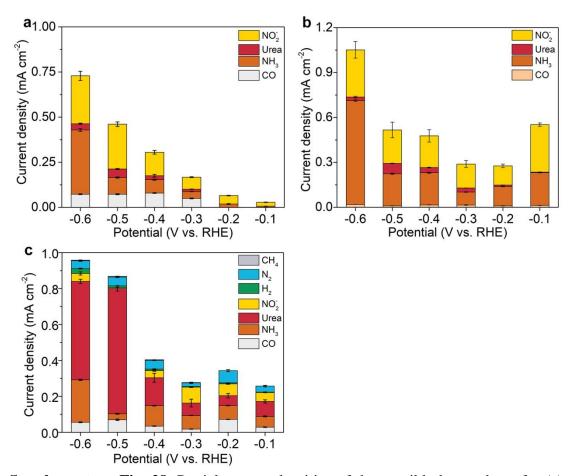


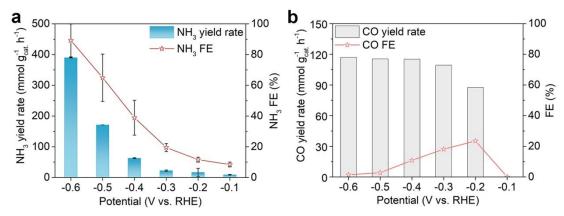
Supplementary Fig. 23. Photograph of an actual GDE for urea electrosynthesis.



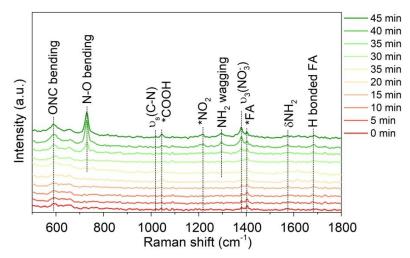
Supplementary Fig. 24. TEM image of Pd_4Cu_1 -Ni(OH)₂ after durability test, (b) the particle size distribution diagram of Pd_4Cu_1 clusters after durability test.


Notes: Supplementary Fig. 24a shows the TEM image of Pd_4Cu_1 -Ni(OH)₂ sample after 100 h of durability test in H-type cell. Pd_4Cu_1 still displays cluster structure with size of 3.3 \pm 0.9 nm (Supplementary Fig. 24b), suggesting the rigidity of the composite catalyst.

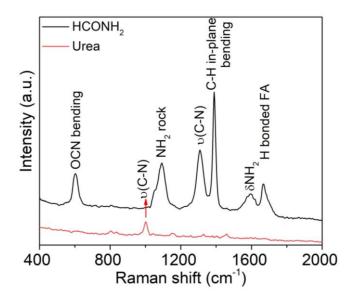

Supplementary Fig. 25. (a) UV-Vis curves of Griess's regent with varied concentrations of NO_2^- at room temperature for 15 min. (b) Calibration curve used for estimation of NO_2^- .


Supplementary Fig. 26. Calibration curves used for estimation of (a) H₂ and (b) N₂.

Supplementary Fig. 27. (a) UV-Vis curves of Nessler's agent assays with varied concentrations of NH_4^+ . (b) Calibration curve used for the estimation of NH_4^+ .

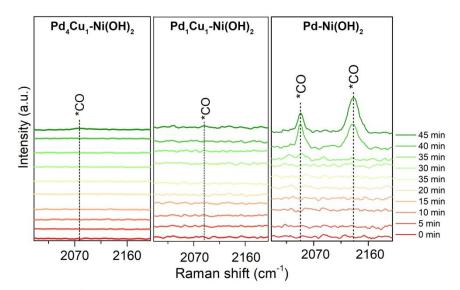


Supplementary Fig. 28. Partial current densities of the possible by-products for (a) $Pd-Ni(OH)_2$, (b) $Pd_1Cu_1-Ni(OH)_2$, (c) $Pd_4Cu_1-Ni(OH)_2$. (a-c) Error bars in accordance with the standard deviation of at least three independent measurements.

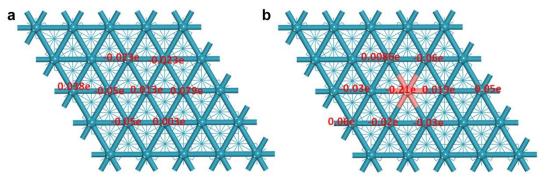


Supplementary Fig. 29. (a) Evaluation of NO₃RR performance in 0.1 M KNO₃ and (b) CO₂RR performance in 0.1 M KHCO₃ solution with continuous CO₂ flow using Pd₄Cu₁-Ni(OH)₂ sample as a catalyst in H-type cell. (a) Error bars in accordance with the standard deviation of at least three independent measurements.

Notes: Electrochemical NO₃RR performance was assessed in 0.1 M KNO₃ solution (Supplementary Fig. 29a). Ammonia yield rates increase from 9.0, 16.7, 22.4, 62.9, 171.0 to 390.0 mmol g_{cat.}⁻¹ h⁻¹ as the applied potential negatively shifts from –0.1 to –0.6 V. Accordingly, ammonia FEs increase from 8.5%, 11.6%, 19.5%, 38.9%, 64.9% to 89.2%. Supplementary Fig. 29b shows potential-dependent CO₂RR performance in H-type cell. CO is the main product in CO₂RR for Pd₄Cu₁-Ni(OH)₂. The yield rates of CO are 0, 87.6, 109.4, 115.2, 115.4, 117.0 mmol g_{cat.}⁻¹ h⁻¹ at –0.1, –0.2, –0.3, –0.4, –0.5 and –0.6 V, respectively. The optimal CO FE of 23.5% was achieved at –0.2 V. (a) Error bars in accordance with the standard deviation of at least three independent measurements

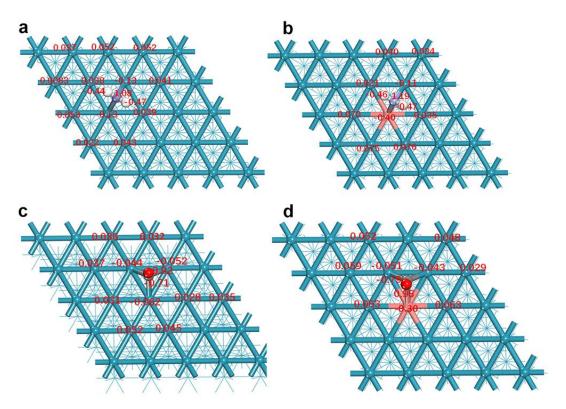


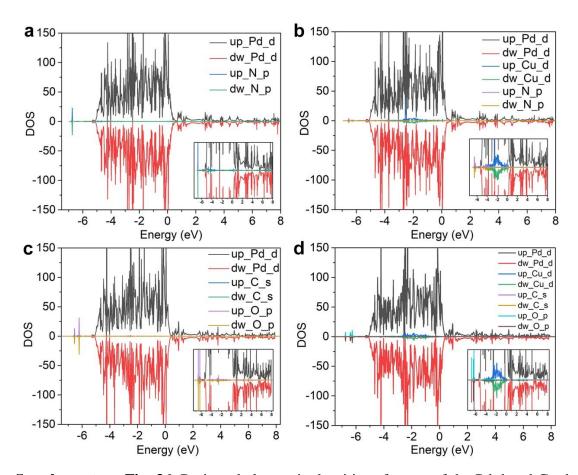
Supplementary Fig. 30. In-situ Raman spectra recorded in urea electrosynthesis at -0.5 V from 0 to 45 min for Pd_1Cu_1 -Ni(OH)₂.

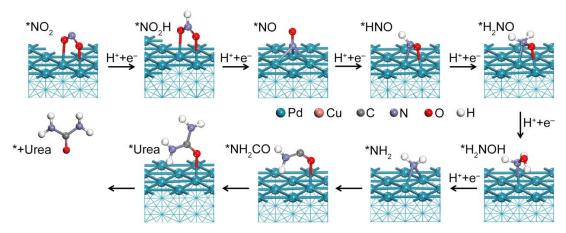


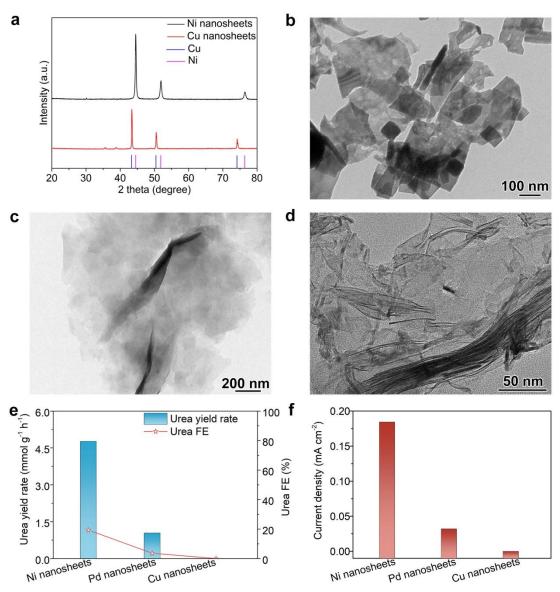
Supplementary Fig. 31. Raman spectra of HCONH₂ (FA) and urea standards with same concentrations dissolved in the mixture of KNO₃ and KHCO₃.

Notes: Supplementary Fig. 31 shows the Raman spectra of urea and HCONH₂ dissolved in the mixture of KNO₃ and KHCO₃. The peak located at 1000 cm⁻¹ is the characteristic $v_s(C-N)$ mode of urea. As shown in Supplementary Table 4, the peaks located at 602, 1091, 1308, 1390, 1598, 1668 cm⁻¹ are assigned to OCN bending, NH₂ rock, v(C-N), C-H in-plane bending, δ NH₂ modes and H bonded formamide, respectively. It should be noted that formamide displays stronger Raman signal than urea.

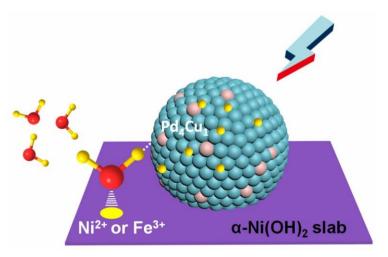

Supplementary Fig. 32. In-situ Raman spectra to trace *CO evolution on $Pd-Ni(OH)_2$, $Pd_1Cu_1-Ni(OH)_2$ and $Pd_4Cu_1-Ni(OH)_2$ at -0.5 V.


Supplementary Fig. 33. Bader charge analysis of (a) Pd(111) and (b) $Cu_1Pd(111)$ slabs.

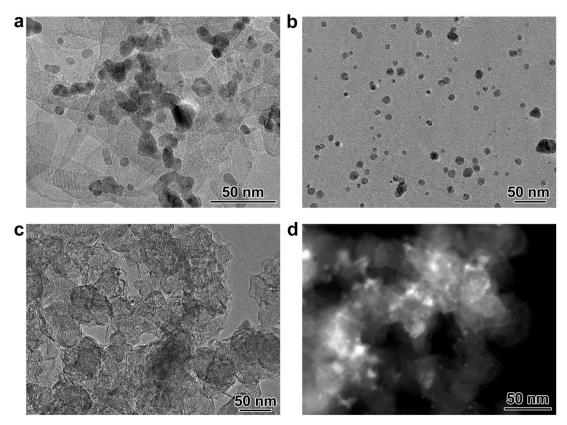

Supplementary Fig. 34. Top view (top) and side views (down) of differential charge densities of $Cu_1Pd(111)$ -*NH₂, Pd(111)-*NH₂, $Cu_1Pd(111)$ -*CO, Pd(111)-*CO.


Supplementary Fig. 35. Bader charge analysis of the two main intermediate species (*CO and *NH₂) on Pd(111) and Cu₁Pd(111) surfaces: (a) Pd(111)-*NH₂, (b) Cu₁Pd(111)-*NH₂, (c) Pd(111)-*CO, (d) Cu₁Pd(111)-*CO.

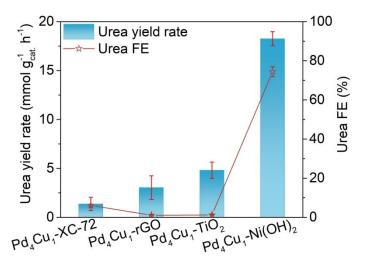
Supplementary Fig. 36. Projected electronic densities of states of the Pd d and Cu d orbitals on Pd(111) and $Cu_1Pd(111)$, and those of the Pd d, Cu d, C s, N p and O p orbitals on $Cu_1Pd(111)$ surfaces.



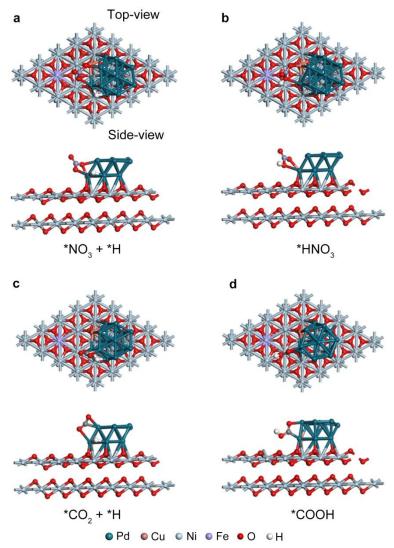
Supplementary Fig. 37. DFT-calculated urea formation cycle on Pd(111) surface.



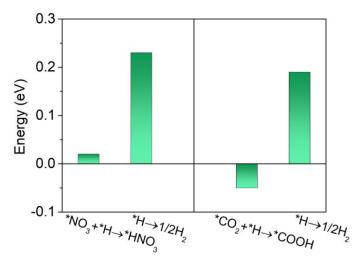
Supplementary Fig. 38. (a) XRD patterns of Cu nanosheets and Ni nanosheets. TEM images of (b) Cu nanosheets, (c) Ni nanosheets and (d) Pd nanosheets. (e) Urea yield rates and urea FEs, (f) urea partial current density.


Notes: Ni nanosheets, Pd nanosheets and Cu nanosheets were synthesized to make a comprehensive comparison. As shown in Supplementary Fig. 38, urea yield rates and urea FEs at -0.5 V are 4.8, 1.0, 0 mmol g^{-1} h^{-1} , 19.3%, 3.6% and 0% for Ni nanosheets, Pd nanosheets and Cu nanosheets, respectively.

Supplementary Fig. 39. Schematic demonstration the promotion effect of $Pd_4Cu_1/Ni(OH)_2$ interface on water dissociation in alkaline media.

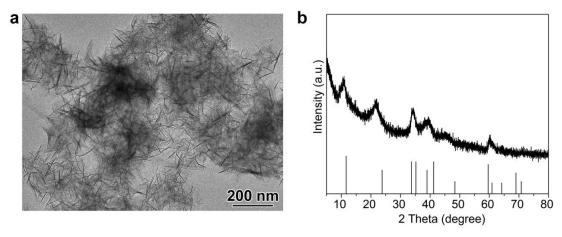


Supplementary Fig. 40. TEM images of (a) Pd_4Cu_1 -TiO₂, (b) Pd_4Cu_1 -rGO, (c) Pd_4Cu_1 -XC-72. (d) HAADF-STEM image of Pd_4Cu_1 -XC-72.

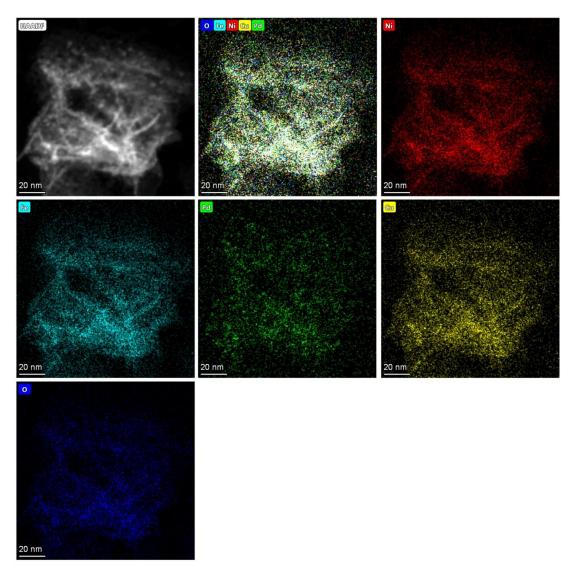


Supplementary Fig. 41. Urea yield rates and FEs for Pd₄Cu₁ clusters with different carriers. Error bars in accordance with the standard deviation of at least three independent measurements.

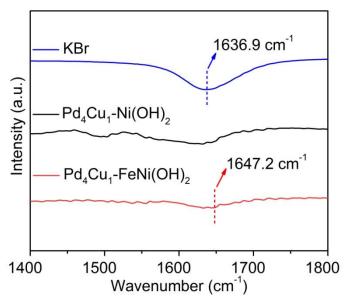
Notes: Ni(OH)₂ nanosheets were replaced by XC-72, rGO and TiO₂ nanosheets to investigate the role of the carrier (Supplementary Fig. 40). As shown in Supplementary Fig. 41, urea yield rates and FEs are 1.4 and 3.0 mmol $g_{cat.}^{-1} h^{-1}$, 6.1% and 1.0% using XC-72 and rGO as carriers with good electrical conductivity. The results indicate that the conductivity of the carrier is not responsible for the high performance of urea electrosynthesis. Then, semiconductor (TiO₂ nanosheets) were employed as carrier, urea yield rate and FE are still lower than that of Ni(OH)₂, suggesting the unique role of Pd₄Cu₁/Ni(OH)₂ interface on urea electrosynthesis.



Supplementary Fig. 42. Adsorption configurations of (a) $*NO_3 + *H$, (b) $*HNO_3$, (c) $*CO_2 + *H$ and (d) *COOH on Cu_1Pd -FeNi(OH)₂.

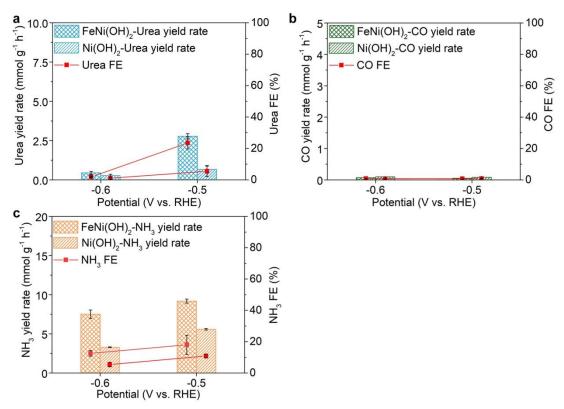


Supplementary Fig. 43. The energy barriers of H–H coupling to form H_2 or the hydrogenation of *NO₃ and *CO₂ to form *HNO₃ and *COOH.

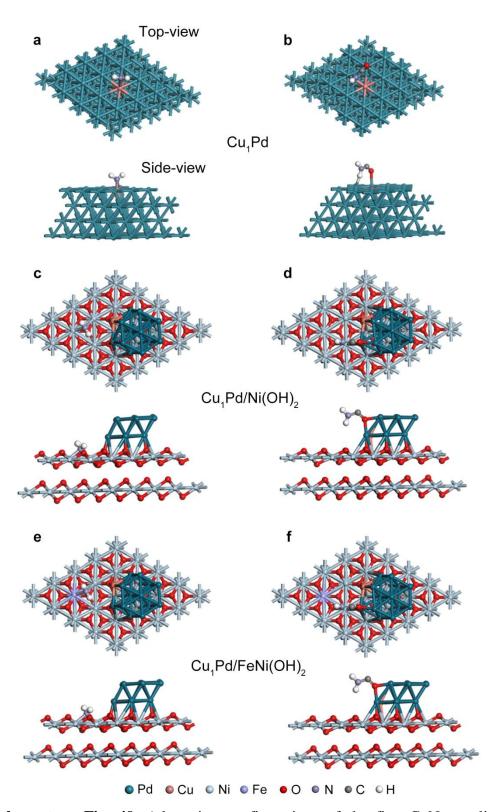

Notes: In view of the enhanced the dissociation of H–OH bond, we then calculated the energy barriers of H–H coupling to form H_2 and the hydrogenation of *NO₃ and *CO₂ processes in the co-existence of *H, *NO₃ and *CO₂. As shown in Supplementary Fig. 42, 43, the energy barriers are 0.23 eV for H–H coupling to release H_2 and 0.02 eV for *NO₃+*H \rightarrow *HNO₃ process in the co-existence of *H and *NO₃, suggesting that the produced active H atoms tend to add to adjacent *NO₃, instead of H_2 evolution, which guarantees high urea FE. Similarly, active *H atoms tend to add to adjacent *CO₂ to trigger CO₂RR in the co-existence of *H and *CO₂.

Supplementary Fig. 44. (a) TEM image of Fe-doped $Ni(OH)_2$ nanosheets and (b) XRD pattern of Pd_4Cu_1 -Fe $Ni(OH)_2$.

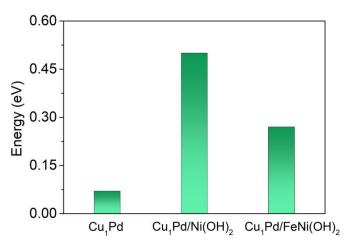
Supplementary Fig. 45. Elemental mapping profiles of Pd_4Cu_1 -FeNi(OH) $_2$ composite sample, Ni (red), Fe (cyan), Pd (green), Cu (yellow) and O (blue).


Supplementary Fig. 46. Infrared spectra of KBr, Pd_4Cu_1 -Ni(OH)₂ and Pd_4Cu_1 -FeNi(OH)₂ after trace water adsorption.

Notes: As H_2O molecule tends to adsorb on $Pd_4Cu_1/Ni(OH)_2$ interface by forming $Ni^{\delta+}\cdots O^{2-}H\cdots Pd_4Cu_1$ interaction, the bending mode of H–OH shifts to higher energy region. As shown in Supplementary Fig. 46, infrared spectra of adsorbed H_2O on KBr, $Pd_4Cu_1-Ni(OH)_2$ and $Pd_4Cu_1-FeNi(OH)_2$ composite samples confirm this conclusion.

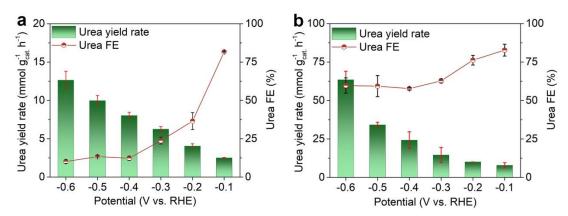

Supplementary Fig. 47. (a) LSV curves and (b) the corresponding Tafel plots of Pd₄Cu₁-Ni(OH)₂ and Pd₄Cu₁-FeNi(OH)₂ composite samples.

Notes: Supplementary Fig. 47 shows hydrogen evolution reaction (HER) of Pd_4Cu_1 -Ni(OH)₂ and Pd_4Cu_1 -FeNi(OH)₂ composite catalysts carried out in 0.1 M KOH. LSV curves and Tafel plots indicate that HER is really promoted by Fe³⁺ doping in Ni(OH)₂ carrier.

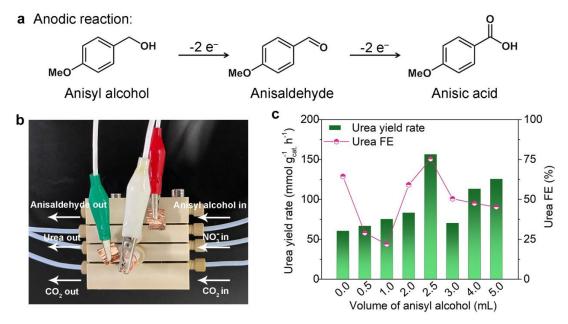


Supplementary Fig. 48. The comparison of FeNi(OH)₂ and Ni(OH)₂ nanosheets in (a) urea production, (b) solo CO₂RR and (c) NO₃RR. (a-c) Error bars in accordance with the standard deviation of at least three independent measurements.

Notes: In order to reveal the role of Fe doping in Ni(OH)₂ nanosheets on the final urea production, some control experiments were performed. As shown in Supplementary Fig. 48, urea yield rates and urea FE for FeNi(OH)₂ nanosheets are 2.7 mmol g_{cat.}⁻¹ h⁻¹ and 23.4% at -0.5 V, respectively. The urea yield rate and FE are comparable with that of Ni(OH)₂ nanosheets (0.7 mmol g⁻¹ h⁻¹, 5.5%), much lower than that of Pd₄Cu₁-Ni(OH)₂ (18.8 mmol g_{cat.}⁻¹ h⁻¹, 76.2%). The results indicate that Fe-doped Ni(OH)₂ are not the active site for electrochemical C-N coupling toward urea formation. Then, the solo NO₃RR and CO₂RR were also carried out (Supplementary Fig. 48b, 48c). FeNi(OH)₂ and Ni(OH)₂ nanosheets are inert for CO₂RR to CO. NH₃ yield rate and NH₃ FE are all increased after Fe doping in Ni(OH)₂, but still much lower than that of Pd₄Cu₁-Ni(OH)₂, suggesting that Pd₄Cu₁ clusters are the real active sites for CO₂RR, NO₃RR and C-N coupling. The results also indicate that Fe doping in Ni(OH)₂ has minimal impact on solo CO₂RR, NO₃RR, but promotes water dissociation to produce more active H atoms on Pd₄Cu₁ surface. As such, more *NH₂ and *CO are formed on surface and then urea yield rate is greatly improved.

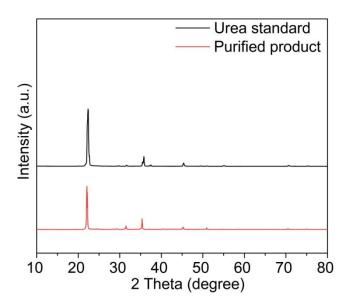


Supplementary Fig. 49. Adsorption configurations of the first C–N coupling of $*NH_2$ and *CO to form $*CONH_2$ on (a,b) Cu_1Pd surface, (c,d) $Cu_1Pd/Ni(OH)_2$ and (e,f) $Cu_1Pd/FeNi(OH)_2$ interface.



Supplementary Fig. 50. The energy barriers of the first C–N coupling of *NH₂ and *CO to form *CONH₂ on Cu_1Pd surface, $Cu_1Pd/Ni(OH)_2$ and $Cu_1Pd/FeNi(OH)_2$ interface.

Notes: To clarify whether the possibility of C–N coupling occurred on $Pd_4Cu_1/Ni(OH)_2$ interface as $Ni(OH)_2$ and Fe-doped $Ni(OH)_2$ have certain catalyze NO_3RR ability. As such, the produced *NH₂ on $Ni(OH)_2$ or $FeNi(OH)_2$ has a possibility to couple with adjacent *CO adsorbed on Pd_4Cu_1 surface on the interface. As shown in Supplementary Fig. 49, 50. The energy barriers for the first C–N coupling of *NH₂ and *CO to form *CONH₂ on the $Cu_1Pd/Ni(OH)_2$ and $Cu_1Pd/FeNi(OH)_2$ interface are 0.50 and 0.27 eV, respectively, higher than that on Cu_1Pd surface (0.07 eV). The result indicates that C–N coupling tends to occur on Pd_4Cu_1 surface.



Supplementary Fig. 51. Urea yield rates and FEs using Pd_4Cu_1 -FeNi(OH)₂ composite catalyst with different amounts of NaBH₄ assessed in H-cell, (a) 6 μ mol, (b) 18 μ mol. (a, b) Error bars in accordance with the standard deviation of at least three independent measurements.

Supplementary Fig. 52. (a) Oxidation of anisyl alcohol at anode, (b) photograph of an actual GDE for urea electrosynthesis coupled with anisyl alcohol oxidation at anode. (c) The relationship of urea yield rates and FEs with different volumes of anisyl alcohol at anode using Pd_4Cu_1 -FeNi(OH)₂ as a catalyst.

Notes: The oxidation of anisyl alcohol coupled with urea electrosynthesis at anode not only can acquire high-value anisaldehyde, but also lower cell voltage of the whole electrolysis. The total FE for anode and cathode can be greatly enhanced. As shown in Supplementary Fig. 52c, urea yield rate and FE are all enhanced with coupling oxidation of anisyl alcohol (2.5 mL) at anode using Pd₄Cu₁-FeNi(OH)₂ as a catalyst.

Supplementary Fig. 53. XRD pattern of purified urea product from the electrolyte.

Supplementary Table 1. The molar ratios of Pd to Cu in Pd_xCu₁-Ni(OH)₂ composite samples determined by ICP-MS.

Catalyst	Molar ratio of Pd:Cu
Pd ₁ Cu ₁ -Ni(OH) ₂	1.1:1
Pd_2Cu_1 -Ni(OH) ₂	2.0:1
Pd_3Cu_1 -Ni(OH) ₂	3.0:1
Pd_4Cu_1 -Ni(OH) ₂	3.8:1
Pd_5Cu_1 -Ni(OH) ₂	5.1:1
Pd_6Cu_1 -Ni(OH) ₂	5.9:1

Supplementary Table 2. EXAFS fitting parameters at the Pd, Cu and Ni K-edge for various samples $(S_0^2=1.0)$.

Sample	Path	N^a	$R(\mathring{A})^b$	$\sigma^2(\mathring{A}^2)^c$	$\Delta E_0(\text{eV})^d$	R factor	
Cu foil	Cu-Cu	12.00	2.54	0.0098	4.21	0.0076	
CuO	Cu-O	6.00	1.95	0.0061	7.45	0.0163	
CuO	Cu-Cu	7.92	2.89	0.0153	2.22	0.0103	
Pd foil	Pd-Pd	11.66	2.74	0.0051	-6.20	0.0033	
Sample	Cu-O	3.05	2.05	0.0157	9.07	0.0191	
Cu	Cu-Pd	10.71	2.61	0.0120	-5.09	0.0191	
Sample	Pd-Cu	1.35	2.62	0.0040	-8.64	0.0067	
Pd	Pd-Pd	7.87	2.70	0.0102	-6.15	0.0007	
Ni foil	Ni-Ni	12	2.48	0.0062	5.9	0.0016	

^aCN, coordination number; ^bR, distance between absorber and backscatter atoms; ^c σ^2 , Debye-Waller factor to account for both thermal and structural disorders; ^d ΔE_0 , inner potential correction; *R* factor indicates the goodness of the fit. Fitting range: $3.0 \le k$ (/Å) ≤ 12.0 and $1.2 \le R$ (Å) ≤ 3.0 (Cu foil).; $3.0 \le k$ (/Å) ≤ 11.2 and $1.0 \le R$ (Å) ≤ 2.8 (CuO).; $3.0 \le k$ (/Å) ≤ 12.0 and $1.0 \le R$ (Å) ≤ 3.0 (Pd foil).; $3.0 \le k$ (/Å) ≤ 15.7 and $1.0 \le R$ (Å) ≤ 3.0 (Sample Cu).; $3.0 \le k$ (/Å) ≤ 14.1 and $1.0 \le R$ (Å) ≤ 3.0 (Sample Pd).

Supplementary Table 3. Urea electrosynthesis from C–N coupling.

Catalyst	N-source	Electrolyte	FE (%)	Potential	Yield rate	$J_{ m urea}$	Stability (h)	Electrode configurati on	Ref.
Te-doped Pd	NO_2^-	0.1 M KHCO ₃ + 0.01 M KNO ₂	12.2	-1.1	/	0.10	5	H-Cell	S4
ZnO-V _o	NO_2^-	0.2 M NaHCO ₃ + 0.1 M NaNO ₂	23.3	-0.79	/	6.06	15	H-Cell	S5
Cu-TiO ₂ -V _o	NO_2^-	0.2 M KHCO ₃ + 0.02 M KNO ₂	43.1	-0.4	20.8	2.59	2	H-Cell	S6
Cd	NO_2^-	0.2 M KHCO ₃ + 0.02 KNO ₃	55	-0.6		/		GDE	S7
AuCu	NO_2^-	0.5 M KHCO ₃ + 0.01 M KNO ₂	24.7	-1.1	64.8	0.49		H-Cell	S8
Co-NiO _x @GDY	NO_2^-	0.01 M NaNO ₂	64.3	-0.7	15.2	3.86		H-cell	S9
TiO ₂ -V _o /PdCu	N ₂	0.1 M KHCO ₃	8.9	-0.4	3.4	0.05	12	GDE	S10
Bi/BiVO ₄	N_2	0.1 M KHCO ₃	12.6	-0.4	5.9	0.48	10	H-Cell	S11
BiFeO ₃ / BiVO ₄	N ₂	0.1 M KHCO ₃	17	-0.4	4.9	3.06	10	H-Cell	S12
$Ni_3(BO_3)_2$	N_2	0.1 M KHCO ₃	20.4	-0.5	9.7	0.33	20	H-Cell	S13
InOOH	N_2	0.1 M KHCO ₃	21.0	-0.4	6.9	0.13	5	H-Cell	S14
Co-PMDA-2- mbIM	N_2		48.97	-0.5	14.5	0.98		H-cell	S15
Zn NBs	NO	0.2 M KHCO ₃	11.3	-0.92	15.1	4.52	15	H-Cell	S16
Fe-Ni	NO ₃	0.1 M KHCO ₃ + 50 mM KNO ₃	17.8	-1.5	20.2	8.01		H-Cell	S17
XC72R-AuPd	NO_3^-	0.075 M KHCO ₃ +0.025 M KNO ₃	15.6	-0.6	3.4	1.40		H-cell	S18
V _o -CeO ₂ -750	NO ₃	/	/	-1.6	15.7	/	5	H-cell	S19
Fe(a)@C-Fe ₃ O ₄ /CNTs)	NO_3^-	0.1 M KNO ₃ +0.1 M KSO ₄	22.4	-0.65	16.5	0.72		H-cell	S20
Cu ₉₇ In ₃ -C	NO_3^-	0.1 M KHCO ₃ + 0.01 M KNO ₃			13.1	/		H-cell	S21
Cu ₁ -CeO ₂	NO ₃	0.1 M KHCO ₃ + 0.05 M KNO ₃			52.8	/		H-cell	S22
Zn	NO_3^-	0.2 M KHCO ₃ + 0.02 M KNO ₃	35	-1.75	/	7.11		GDE	S23
Ni-Pc	NO_3^-	0.2 M KHCO ₃ + 0.02 KNO ₃	40	-1.5	/	4.40		GDE	S24
TiO ₂ /Nafion	NO_3^-	0.1 M KNO ₃	40	-0.5	/	0.32	2.15	H-Cell	S25

In(OH) ₃	NO ₃	0.1 M KNO ₃	53.4	-0.6	8.9	0.53	12	H-Cell	S 3
V _o -InOOH	NO_3^-	0.1 M KNO ₃	51.0	-0.4	9.9	0.26	24	H-Cell	S26
Pd ₄ Cu ₁ -Ni(O H) ₂	NO ₃	0.1 M KHCO ₃ + 0.1 M KNO ₃	64.4	-0.5	60.4	2.30	380	GDE	This work
Pd ₄ Cu ₁ -FeNi(OH) ₂	NO ₃	0.1 M KHCO ₃ + 0.1 M KNO ₃	66.4	-0.6	436.9	7.05	1000	GDE	This work

Note: The units for urea yield rate and urea partial current density are mmol g_{cat.}⁻¹ h⁻¹ mA cm⁻², respectively.

Supplementary Table 4. Observed Raman frequencies and assignments for formamide and urea in Supplementary Fig. 31.

	Formamide	Urea			
Freq, cm ⁻¹	assignment	Freq, cm ⁻¹	assignment		
602	OCN bending	1000	ν(C-N)		
1091	NH ₂ rock				
1308	$\nu(C-N)$				
1390	C-H in-plane bending				
1598	δNH_2				
1668	H bonded formamide				

Supplementary Table 5. The Gibbs free energy change (ΔG) of reaction for CO₂RR to CO on Cu₁Pd(111) and Pd(111) at 0 V (vs. RHE).

Intermediates	$Cu_1Pd(111)$	Pd(111)
*+CO ₂	0	0
$*CO_2$	0.32	0.34
*COOH	0.27	0.24
*CO	-0.89	-0.86
*+CO	0.70	0.70

Supplementary Table 6. The Gibbs free energy change (ΔG) of reaction for urea formation on Cu₁Pd(111), Pd(111), Cu(111) and Ni(111) at 0 V (vs. RHE).

Intermediates	Cu ₁ Pd(111)	Pd(111)	Cu(111)	Ni(111)
*NO ₂	0	0	0	0
$*NO_2H$	0.39	0.39	0.57	0.50
*NO	-1.87	-2.17	-0.91	-1.10
*HNO	-1.13	-1.02	-0.46	-0.01
*H ₂ NO	-1.37	-1.60	-1.46	-1.56
*H ₂ NOH	-1.56	-1.96	-1.34	-1.68
$*NH_2$	-3.44	-3.55	-3.55	-3.04
*NH ₂ CO	-3.37	-3.36	-2.93	-2.72
*NH ₂ CONH ₂	-9.81	-9.82	-9.57	-9.50
*+NH ₂ CONH ₂	-10.36	-10.33	-10.27	-10.03

Reference:

- S1. M. Li, Y. Chen, W. Li, X. Li, H. Tian, X. Wei, Z. Ren, G. Han, Ultrathin anatase TiO₂ nanosheets for high-performance photocatalytic hydrogen production, *Small* **2017**, *13*, 1604115.
- S2. A. N. Mansour, C. A. Melendres, Characterization of α-Ni(OH)₂ by XPS, *Surf. Sci. Spectra* **1994**, *3*, 255–262.
- S3. C. Lv, L. Zhong, H. Liu, Z. Fang, C. Yan, M. Chen, Y. Kong, C. Lee, D. Liu, S. Li, J. Liu, L. Song, G. Chen, Q. Yan, G. Yu, Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide, *Nat. Sustain.* **2021**, *4*, 868–876.
- S4. Y. Feng, H. Yang, Y. Zhang, X. Huang, L. Li, T. Cheng, Q. Shao, Te-doped Pd nanocrystal for electrochemical urea production by efficiently coupling carbon dioxide reduction with nitrite reduction, *Nano Lett.* **2020**, *20*, 8282–8289.
- S5. N. Meng, Y. Huang, Y. Liu, Y. Yu, B. Zhang, Electrosynthesis of urea from nitrite and CO₂ over oxygen vacancy-rich ZnO porous nanosheets, *Cell Rep. Phys. Sci.* **2021**, 2, 100378.
- S6. N. Cao, Y. Quan, A. Guan, C. Yang, Y. Ji, L. Zhang, G. Zheng, Oxygen vacancies enhanced cooperative electrocatalytic reduction of carbon dioxide and nitrite ions to urea, *J. Colloid Interface Sci.* **2020**, *577*, 109–114.
- S7. M. Shibata, K. Yoshida, N. Furuya, Electrochemical synthesis of urea at gas-diffusion electrodes: III. Simultaneous reduction of carbon dioxide and nitrite ions with various metal catalysts, *J. Electrochem. Soc.* **1998**, *145*, 595–600.
- S8. S. Liu, S. Yin, Z. Wang, Y. Xu, X. Li, L. Wang, H. Wang, AuCu nanofibers for electrosynthesis of urea from carbon dioxide and nitrite, *Cell Rep. Phys. Sci.* **2022**, *3*, 100869.
- S9. D. Zhang, Y. Xue, X. Zheng, C. Zhang, Y. Li, Multi-heterointerfaces for selective and efficient urea production, *Nat. Sci. Rev.*, **2022**, *nwac209*.
- S10. C. Chen, X. Zhu, X. Wen, Y. Zhou, L. Zhou, H. Li, L. Tao, Q. Li, S. Du, T. Liu, D. Yan, C. Xie, Y. Zou, Y. Wang, R. Chen, J. Huo, Y. Li, J. Cheng, H. Su, X. Zhao, W. Cheng, Q. Liu, H. Lin, J. Luo, J. Chen, M. Dong, K. Cheng, C. Li, S. Wang, Coupling N₂ and CO₂ in H₂O to synthesize urea under ambient conditions, *Nat. Chem.* **2020**, *12*, 717–724.
- S11. M. Yuan, J. Chen, Y. Bai, Z. Liu, J. Zhang, T. Zhao, Q. Wang, S. Li, H. He, G. Zhang, Unveiling electrochemical urea synthesis by co-activation of CO_2 and N_2 with Mott–Schottky heterostructure catalysts, *Angew. Chem. Int. Ed.* **2021**, *60*, 10910–10918.
- S12. M. Yuan, J. Chen, Y. Bai, Z. Liu, J. Zhang, T. Zhao, Q. Shi, S. Li, X. Wang, G. Zhang, Electrochemical C–N coupling with perovskite hybrids toward efficient urea synthesis, *Chem. Sci.* **2021**, *12*, 6048–6058.
- S13. M. Yuan, J. Chen, Y. Xu, R. Liu, T. Zhao, J. Zhang, Z. Ren, Z. Liu, C. Streb, H. He, C. Yang, S. Zhang, G. Zhang, Highly selective electroreduction of N₂ and CO₂ to urea over artificial frustrated Lewis pairs, *Energy Environ. Sci.* **2021**, *14*, 6605–6615.
- S14. M. Yuan, H. Zhang, Y. Xu, R. Liu, R. Wang, T. Zhao, J. Zhang, Z. Liu, H. He, C. Yang, S. Zhang, G. Zhang, Artificial frustrated Lewis pairs facilitating the electrochemical N₂ and CO₂ conversion to urea, *Chem. Catal.* **2022**, *2*, 309–320.

- S15. M. Yuan, J. Chen, H. Zhang, Q. Li, L. Zhou, C. Yang, R. Liu, Z. Liu, S. Zhang and G. Zhang, Host-guest molecular interaction promoted urea electrosynthesis over precisely designed conductive metal-organic Frameworks. *Energy Environ. Sci.* **2022**, *15*, 2084–2095.
- S16. Y. Huang, R. Yang, C. Wang, N. Meng, Y. Shi, Y. Yu, B. Zhang, Direct electrosynthesis of urea from carbon dioxide and nitric oxide, *ACS Energy Lett.* **2022**, 7, 284–291.
- S17. X. Zhang, X. Zhu, S. Bo, C. Chen, M. Qiu, X. Wei, N. He, C. Xie, W. Chen, J. Zheng, P. Chen, S. Jiang, Y. Li, Q. N. Liu, S. Wang, Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst, *Nat. Commun.* **2022**, *13*, 5337.
- S18. H.Wang, Y. Jiang, S. Li, F. Gou, X. Liu, Y. Jiang, W. Luo, W. Shen, R. He, M. Li, Realizing efficient C-N coupling via electrochemical co-reduction of CO₂ and NO₃ on AuPd nanoalloy to form urea: Key C-N coupling intermediate, *Appl. Catal. B Environ.* **2022**, *318*, 121819.
- S19. X. Wei, X. Wen, Y. Liu, C. Chen, C. Xie, D. Wang, M. Qiu, N. He, P. Zhou, W. Chen, J. Cheng, H. Lin, J. Jia, X. Fu, S. Wang, Oxygen vacancy-mediated selective C–N coupling toward electrocatalytic urea synthesis, *J. Am. Chem. Soc.* **2022**, *144*, 11530–11535.
- S20. J. Geng, S. Ji, M. Jin, C. Zhang, M. Xu, G. Wang, C. Liang, H. Zhang, Ambient electrosynthesis of urea with nitrate and carbon dioxide over iron-based dual-sites, *Angew. Chem. Int. Ed.* **2023**, *62*, e2022109.
- S21. Y. Liu, X. Tu, X. Wei, D. Wang, X. Zhang, W. Chen, C. Chen, S. Wang, C-bound or O-bound surface: which one boosts electrocatalytic urea synthesis? *Angew. Chem. Int. Ed.* **2023**, 10.1002/anie.202300387.
- S22. X. Wei, Y. Liu, X. Zhu, S. Bo, L. Xiao, C. Chen, T. Nga, Y. He, M. Qiu, C. Xie, D. Wang, Q. Liu, F. Dong, C. Dong, X. Fu, S. Wang, Dynamic reconstitution between copper single atoms and clusters for electrocatalytic urea synthesis, *Adv. Mater.* **2023**, 2300020.
- S23. M. Shibata, K. Yoshida, N. Furuya, Electrochemical synthesis of urea at gas-diffusion electrodes: IV. simultaneous reduction of carbon dioxide and nitrate ions with various metal catalysts, *J. Electrochem. Soc.* **1998**, *145*, 2348–2353.
- S24. M. Shibata, N. Furuya, Electrochemical synthesis of urea at gas-diffusion electrodes: Part VI. Simultaneous reduction of carbon dioxide and nitrite ions with various metallophthalocyanine catalysts. *J. Electroanal. Chem.* **2001**, *507*, 177–184.
- S25. D. Saravanakumar, J. Song, S. Lee, N. H. Hur, W. Shin, Electrocatalytic conversion of carbon dioxide and nitrate ions to urea by a titania–nafion composite electrode, *ChemSusChem* **2017**, *10*, 3999–4003.
- S26. C. Lv, C. Lee, L. Zhong, H. Liu, J. Liu, L. Yang, C. Yan, W. Yu, H. H. Hng, Z. Qi, L. Song, S. Li, K. P. Loh, Q. Yan, G. Yu, A defect engineered electrocatalyst that promotes high-efficiency urea synthesis under ambient conditions, *ACS Nano* **2022**, *16*, 8213–8222.