1	Supplementary Materials for
2 3	Gli1 marks a sentinel muscle stem cell population for muscle
4	regeneration
5	
6	Jiayin Peng, Lili Han, Biao Liu, Jiawen Song, Yuang Wang, Kunpeng Wang, Qian Guo,
7	XinYan Liu, Yu Li, Jujin Zhang, Wenqing Wu, Sheng Li, Xin Fu, Cheng-le Zhuang,
8	Weikang Zhang, Shengbao Suo, Ping Hu [#] , Yun Zhao [#]
9	
10	Correspondence to: yunzhao@sibcb.ac.cn (Y.Z.), hup@sibcb.ac.cn (P.H.)
11	
12	
13	This PDF file includes:
14	Figs. S1 to S10
15	Tables S1 to S3

16 Supplementary Fig. 1 scRNA-seq analysis of Gli1⁺ cell distribution.

17 a Representative profile of FACS-sorted tdT⁺ (Gli1⁺) cell populations from Gli1-CreERT2; 18 R26-tdT mice for scRNA-seq (n = 3). Box represented the tdT⁺ (Gli1⁺) cell populations. **b** 19 Distribution of gene for *Gli1* across all subpopulations. c Distribution of genes for 20 fibro/adipogenic progenitors (FAPs) (*Pdgfra* and *Pdgfrβ*) across all subpopulations. **d** 21 Distribution of genes for tenocytes (Tnmd and Scx) across all subpopulations. e Distribution of genes for endothelial cells (ECs) (Cdh5 and Pecam1) across all 22 23 subpopulations. f Distribution of gene for smooth muscle cells (SMCs) (My/9) across all 24 subpopulations. g Representative profiles of FACS-sorted MuSCs from C57 WT mice for 25 scRNA-seq (n = 3). Box represented the MuSC populations.

26 Supplementary Fig. 2 Gli1-CreERT2 heterozygous does not affect muscle 27 regeneration.

a RT-qPCR for *Gli1* in MuSCs from Gli1-CreERT2 heterozygous compared to WT control mice (n = 3). **b** H&E-stained sections of injured TA muscles at different time point from WT control and Gli1-CreERT2 heterozygous mice (n = 3). Scale bars, 50 μ m. Data are presented as mean ± SEM; Statistical significance was determined by two-tailed unpaired Student's *t* test (**a**). All numbers (n) are biologically independent experiments. Source data is provided in the Source Data File.

35 Supplementary Fig. 3 Characterization of Gli1⁺ cells in skeletal muscles and 36 myofibers.

37 **a** Left panel: Immunofluorescence staining for tdT (red), PDGFRα (green) and DAPI (blue) 38 on TA muscle sections from Gli1-CreERT2; R26-tdT mice (n = 6). Arrow heads indicated 39 the tdT⁺ (Gli1⁺) PDGFRα⁺ cells. Scale bars, 20 μm. Right panel: Quantification of the 40 percentage of PDGFR α^+ cells expressing tdT (n = 6). **b** Immunofluorescence staining for 41 tdT (red), Pax7 (green) and DAPI (blue) in isolated single EDL myofibers (n = 13) from Gli1-CreERT2; R26-tdT mice. The boxed regions are magnified in the panels below with 42 43 split channels. Scale bars, 20 µm. c Left panel: Quantification analysis of the per fiber of 44 Pax7⁺ MuSCs cells expressing tdT⁺ (Gli1⁺) (n = 13). Right panel: Quantification analysis of the per fiber of Pax7⁺ MuSCs not expressing tdT⁻ (Gli1⁻) (n = 13). Data are presented 45 as mean ± SEM. All numbers (n) are biologically independent experiments. Source data 46 47 is provided in the Source Data File.

48

50 Supplementary Fig. 4 Generation and characterization of Pax7-DreERT2 mouse 51 allele.

52 a Scheme of knock-in strategy for generation of Pax7-DreERT2 mouse. b Scheme of 53 genetic lineage tracing strategy by Pax7-DreERT2; R26-RSR-tdT mice. c Scheme of the 54 experimental strategy. d Left panel: Representative flow cytometry plots and the percentage of MuSCs expressing tdT with oil or TAM treatment (n = 8). Right panel: 55 Quantification of the percentage of MuSCs expressing tdT (n = 8). e Immunofluorescence 56 57 staining for tdT (red) and DAPI (blue) on TA muscle sections of Pax7-DreERT2; R26-RSR-tdT mice at day 14 with oil or TAM treatment (n = 6). Scale bars, 50 µm. f Left panel: 58 59 Immunofluorescence staining for tdT (red), Pax7 (green) and DAPI (blue) on TA muscle sections from Pax7-DreERT2; R26-RSR-tdT mice (n = 6). Scale bars, 50 µm. Right panel: 60 Quantification of the percentage of $Pax7^+$ cells expressing tdT (n = 6). g 61 Immunofluorescence staining for tdT (red) and DAPI (blue) on TA muscle sections of Gli1-62 CreERT2; Pax7-DreERT2; Ai66 mice at day 14 with oil or TAM treatment (n = 5). Scale 63 64 bars, 50 μ m. h Representative flow cytometry plots of MuSCs expressing tdT (n = 5). The percentage of tdT⁺ (Gli1⁺ Pax7⁺) MuSCs was 7.9%. Data are presented as mean ± SEM; 65 66 Statistical significance was determined by two-tailed unpaired Student's t test (d). All numbers (n) are biologically independent experiments. Source data is provided in the 67 68 Source Data File.

Pax7 β-Gal β-Gal

С

70 Supplementary Fig. 5 Gli1 is expressed in MuSCs.

a Representative histological images of X-Gal-stained TA muscle sections from Gli1-LacZ 71 72 mice (n = 6). Scale bars, 200 μ m. **b** Left panel: Immunofluorescence staining for β -Gal 73 (red), PDGFR α (green) and DAPI (blue) on TA muscle sections (n = 6). Scale bars, 10 74 μ m. Right panel: Quantification of the percentage of PDGFRa⁺ cells expressing β -Gal (n 75 = 6). **c** Left panel: Immunofluorescence staining for β -Gal (red), Pax7 (green) and DAPI (blue) on TA muscle sections from Gli1-LacZ mice (n = 6). Scale bars, 10 µm. Right panel: 76 77 Quantification of the percentage of Pax7⁺ cells expressing β -Gal. The percentage of β -78 Gal⁺ (Gli1⁺) Pax7⁺ cells was ~11.6% (n = 6). Data are presented as mean ± SEM. All 79 numbers (n) are biologically independent experiments. Source data is provided in the 80 Source Data File.

Supplementary Fig. 6 The expression levels of the Hh signal pathway and myogenic genes in Gli¹⁻ MuSCs and Gli¹⁺ MuSCs.

a Immunofluorescence staining for MyoD/Myf5/CD34 (white), tdT (red) and DAPI (blue) 84 85 on tdT⁻ (Gli1⁻) and tdT⁺ (Gli1⁺) MuSCs (n = 3). Scale bars, 20 µm. **b** Principal component 86 analysis (PCA) of the transcriptome data. **c** Heatmap of of the Hh signal pathway genes 87 and myogenic genes. n = 3 mice for tdT⁻ (Gli1⁻) MuSCs, n = 4 mice for tdT⁺ (Gli1⁺) MuSCs. **d**, **e** Relative mRNA levels of the Hh signal pathway genes (**d**) and myogenic genes (**e**) 88 89 were measured by RT-qPCR (n = 3). The red histogram represents gene expression level 90 in tdT⁺ (Gli1⁺) MuSCs. The blue histogram represents gene expression level in tdT⁻ (Gli1⁻) 91 MuSCs. Data are presented as mean ± SEM. All numbers (n) are biologically 92 independent experiments. Source data is provided in the Source Data File.

93

95 Supplementary Fig. 7 Gli1⁺ MuSCs undergo distinct numbers changes in vitro.

a, b Equal numbers (1,000 cells) of FACS-isolated tdT⁺ (Gli1⁺) or tdT⁻ (Gli1⁻) MuSCs were 96 97 cultured for 96 h (\mathbf{a} , tdT: red) and quantification of the numbers of cells (\mathbf{b}) (n = 4). Scale 98 bars, 50 µm. c Schematic showing the experimental strategy. d FACS-sorted MuSCs 99 were continuously passaged, and cell count determined at every passage is plotted. Flow 100 cytometry analysis of the percentage of MuSCs expressing tdT (n = 3). e Quantifications 101 of the percentage of tdT⁺ (Gli1⁺) (Left panel) or tdT⁻ (Gli1⁻) (Right panel) MuSCs (n = 3). fImmunofluorescence staining for tdT (red), Pax7 (green), and DAPI (blue) on the single 102 103 EDL myofibers isolated from Gli1-CreERT2; R26-tdT mice and cultured for 0 h, 24 h, 48 104 h and 72 h (n = 5). Scale bars, 20 µm. g Immunofluorescence staining for tdT (red), Gli1 105 (green), and DAPI (blue) on the single EDL myofibers isolated from Gli1-CreERT2; R26-106 tdT mice and cultured for 0 h, 24 h, 48 h and 72 h (n = 5). Scale bars, 20 µm. h 107 Immunofluorescence staining for tdT (red), MyoG (green), and DAPI (blue) on the single 108 EDL myofibers isolated from Gli1-CreERT2; R26-tdT mice and cultured for 0 h, 24 h, 48 109 h and 72 h (n = 5). Scale bars, 20 μ m. i Quantifications of the number of Pax7⁺tdT⁺ (Gli1⁺) 110 or Pax7⁺tdT⁻ (Gli1⁻) MuSCs per clone on muscle fibers (n = 5). **i** Fusion index of MvHC⁺ 111 myotubes differentiated from tdT⁺ (Gli1⁺) or tdT⁻ (Gli1⁻) MuSCs. Cells were collected 2 112 days post differentiation (n = 5). Data are presented as mean \pm SEM; Statistical significance was determined by two-tailed unpaired Student's *t* test (**b**, **i**, **j**) or one-way 113 114 ANOVA (e). All numbers (n) are biologically independent experiments. Source data is 115 provided in the Source Data File.

117 Supplementary Fig. 8 Gli1⁺ MuSCs are important for muscle regeneration *in vivo*.

118 a Scheme of the experimental strategy. b Left panel: Fluorescence-activated cell sorter 119 analysis of the percentage of muscle cells expressing tdT (n = 5). Right panel: 120 Quantifications of the percentage of tdT^+ (Gli1⁺) cells (n = 5). c Left panel: Fluorescence-121 activated cell sorter analysis of the percentage of MuSCs expressing tdT (n = 5). Right 122 panel: Quantifications of the percentage of tdT⁺ (Gli1⁺) MuSCs (n = 5). d Scheme of the experimental strategy. e Reconstructed 3D images of the EDL of Gli1-CreERT2; R26-123 eGFP; Pax7-DreERT2; R26-RSR-tdT mice at 14 days after TAM treatment (n = 3). 124 125 Images were obtained by Leica TCS SP8 confocal microscope (z-stack: 1 µm/slice, 200 126 slices). White arrows indicate the GFP+tdT+ (Gli1+) cells. Scale bar, 20 µm. f 127 Fluorescence-activated cell sorter analysis of the percentage of muscle cells expressing tdT and the percentage of tdT⁺ (Pax7⁺) cells expressing GFP(Gli1) (n = 3). g128 129 Quantification of the mean myofiber cross-section area (CSA μ m², n = 3). **h** Left panel: 130 Immunofluorescence staining for tdT (red), GFP (green), Pax7 (gray) and DAPI (blue) in 131 TA muscle sections from NOD-SCID mice at day 30 after transplantation (n = 5). Scale bars, 50 µm. Right panel: Quantification of the percentage of Pax7⁺Gli1⁺ and Pax7⁺Gli1⁻ 132 133 cells at 30 days after transplantation (n = 5). Data are presented as mean \pm SEM; 134 Statistical significance was determined by two-tailed unpaired Student's *t* test (**b**, **c**, **h**) or 135 one-way ANOVA (d). All numbers (n) are biologically independent experiments. Source 136 data is provided in the Source Data File.

138 Supplementary Fig. 9 Gli1⁺ MuSCs display elevated mTOR signaling.

139 a Relative mRNA levels of the mTOR signal pathway genes were measured by RT-qPCR 140 (n = 3). The red histogram represents gene expression level in tdT^+ (Gli1⁺) MuSCs. The 141 blue histogram represents gene expression level in tdT⁻ (Gli1⁻) MuSCs. b 142 Immunofluorescence staining for tdT (red), Pax7 (green), p-S6 (gray) and DAPI (blue) on 143 the freshly isolated single EDL myofibers from Gli1-CreERT2; R26-tdT mice (n = 5). White 144 arrows indicate the tdT⁺pS6⁺ cells. Scale bars, 10 µm. c Western blot for Puromycin and 145 GAPDH (loading control) from tdT⁺ (Gli1⁺) and tdT⁻ (Gli1⁻) MuSCs using a capillary-based 146 western blot automated system. d FACS analysis of the percentage of CD45⁻CD31⁻Sca1⁻ 147 Vcam1⁺tdT⁺ MuSCs in total MuSCs from Gli1-CreERT2; R26-tdT mice at different time 148 points after CTX injury (n = 3). dpi, days post-injury. e Quantification of the percentage of 149 tdT⁺ (Gli1⁺) and tdT⁻ (Gli1⁻) MuSCs from Gli1-CreERT2; R26-tdT mice at different time 150 points after CTX injury. The red histogram represents the percentage of tdT⁺ (Gli1⁺) 151 MuSCs (n = 3). The blue histogram represents the percentage of tdT^{-} (Gli1⁻) MuSCs. dpi, 152 days post-injury. f FACS analysis of the percentage of CD45⁻CD31⁻Sca1⁻Vcam1⁺tdT⁺ MuSCs in total MuSCs from Gli1-CreERT2; Pax7-DreERT2; Ai66 mice at different time 153 154 points after CTX injury (n = 3). dpi, days post-injury. Data are presented as mean \pm SEM. 155 All numbers (n) are biologically independent experiments. Source data is provided in the 156 Source Data File.

i

158 Supplementary Fig. 10 Gli1⁺ MuSCs are function as rapid response cells after injury.

159 **a** Scheme of the experimental strategy. **b** Particular numbers (5,000 cells) of freshly 160 isolated tdT⁻ (Gli1⁻) MuSCs from Gli1-CreERT2; R26-tdT mice were transplanted into pre-161 injured TA muscle of the NOD-SCID mice. TA muscles were harvested 30 days after 162 transplantation. Immunofluorescence staining for tdT (red), Laminin (green) and DAPI 163 (blue) on TA muscle sections from NOD-SCID mice (n = 3). The boxed regions are magnified in the panels 1 and 2 with split channels. Scale bars, 50 µm. c The diameter of 164 from tdT⁻ (Gli1⁻) and tdT⁺ (Gli1⁺) CSCs were measured using a Coulter Multisizer 4e. n = 165 166 1,000 cells from 3 mice per group. **d** Representative plots of tdT⁺ (Gli1⁺) and tdT⁻ (Gli1⁻) 167 CSCs stained with MitoTracker Deep Red (MTDR) (n = 5). The blue represents the tdT⁻ (Gli1⁻) CSCs stained with MTDR. The red represents the tdT⁺ (Gli1⁺) CSCs stained with 168 MTDR. The gray represents unstained. e Time to the first division in tdT⁺ (Gli1⁺) and tdT⁻ 169 170 (Gli1⁻) CSCs was measured by time-lapse microscopy. n = 60 cells from 3 mice per group. 171 f Equal numbers of FACS-isolated tdT⁺ (Gli1⁺) and tdT⁻ (Gli1⁻) CSCs were cultured and 172 labeled with EdU for 40 h, then immunofluorescence stained for tdT and EdU (n = 5). Quantification of the percentage of tdT⁺ (Gli1⁺) and tdT⁻ (Gli1⁻) CSCs with incorporated 173 174 EdU (n = 5). g Left panel: Immunofluorescence staining for p-S6 (green), tdT (red), Pax7 175 (white) and DAPI (blue) on TA muscle sections (CSC) (n = 7). Scale bars, 10 µm. Right 176 panel: Quantification of the percentage of tdT⁺ (Gli1⁺) and tdT⁻ (Gli1⁻) CSCs expressing 177 p-S6 (n = 7). h Immunofluorescence staining for tdT (red), Pax7 (green), p-S6 (gray) and 178 DAPI (blue) on the cultured for 24 h single EDL myofibers (n = 5). White arrows indicate 179 the tdT⁺pS6⁺ or tdT⁻pS6⁺ cells. Scale bars, 10 µm. i Immunofluorescence staining for Pax7 180 (red), GFP (green) and DAPI (blue) on TA muscle sections of uninjured or 1 day after 181 CTX injury (n = 8). Scale bars, 20 µm. j Left panel: Quantification of the percentage of 182 tdT⁺ (Gli1⁺) and tdT⁻ (Gli1⁻) QSCs from Gli1-CreERT2; R26-tdT mice without injury. The blue histogram represented the percentage of tdT⁻ (Gli1⁻) QSCs. The red histogram 183 represented the percentage of tdT⁺ (Gli1⁺) QSCs. Right panel: Quantification of the 184 185 percentage of tdT⁺ (Gli1⁺) and tdT⁻ (Gli1⁻) CSCs from the contralateral TA muscle of 186 injured Gli1-CreERT2; R26-tdT mice 1 day after CTX injury. The blue histogram 187 represented the percentage of tdT⁻ (Gli1⁻) CSCs. The red histogram represented the 188 percentage of tdT⁺ (Gli1⁺) CSCs. Data are presented as mean ± SEM; Statistical 189 significance was determined by two-tailed unpaired Student's *t* test (**c**, **f**). All numbers (n) 190 are biologically independent experiments. Source data is provided in the Source Data File.

192 Supplementary Table 1: The absolute number of Gli1⁻ and Gli1⁺ MuSCs from Gli1-

193 CreERT2; R26-tdT mice at different time points after CTX injury.

	Number (via FACS)			The absolute number			
Sample name	Beads	MuSCs	Gli1⁺ MuSCs	Gli1 ⁻ MuSCs	MuSCs	Gli1⁺ MuSCs	Gli1 ⁻ MuSCs
mouse #1-D0	23621	525	79	446	822	124	699
mouse #2-D3	166	4447	1300	3144	991199	289759	700771
mouse #3-D5	318	4233	1183	3045	492519	137645	354292
mouse #4-D7	518	3341	770	2571	238643	55000	183643
mouse #5-D14	7218	1978	304	1670	10139	1558	8561

194

Sample name	The number of MuSCs/All event (%)	Gli1 ⁺ MuSCs/All MuSCs (%)	Gli1 ⁻ MuSCs/All MuSCs (%)	
mouse #1-D0	2.64	15	85	
mouse #2-D3	61.1	29.2	70.7	
mouse #3-D5	44.7	27.9	71.9	
mouse #4-D7	26	23	77	
mouse #5-D14	5.93	15.4	84.4	

195

Primary	Species	Dilution	Applications	Source	Catalog
antibody					number
Laminin	rabbit	1:250	IF	Abcam	ab11575
Laminin	rat	1:100	IF	Abcam	ab11576
Pax7	mouse	1:100	IF	DSHB	AB_528428
PDGFRα	goat	1:100	IF	R&D	AF1062
DsRed	rabbit	1:500	IF	Clontech	632496
mcherry	goat	1:500	IF	SICGEN	AB0081-200
β-gal	rabbit	1:250	IF	Abcam	ab221199
MyHC	rabbit	1:500	IF, WB	Sigma	05-716
MyoD	mouse	1:100	IF, WB	Santa cruz	Sc-377460
MyoG	mouse	1:100	IF, WB	DSHB	AB_2146602
Myf5	rabbit	1:100	IF	Sigma	SAB4501943
eMHC	mouse	1:20	IF	DSHB	AB_528358
CD34	rabbit	1:200	IF	Abcam	ab81289
GFP	goat	1:400	IF	Abcam	ab6662
(FITC-conjugated)					
Gli1	rabbit	1:200	IF	NOVUS	NB600-600
Gli1	rabbit	1:1000	WB	CST	2534S
p-S6	rabbit	1:200	IF, WB	CST	4858S
tubulin	rabbit	1:1000	WB	Abclonal	AC015
GAPDH	rabbit	1:1000	WB	CST	2118S
CD45	rat	1:100	FC	BioLegend	157214
(FITC-conjugated)					
CD31	rat	1:100	FC	BioLegend	160212
(FITC-conjugated)					
Sca1	rat	1:100	FC	BioLegend	108106
(FITC-conjugated)					
VCAM1	rat	1:100	FC	BioLegend	105717
(APC-conjugated)					
VCAM1	rat	1:100	FC	BioLegend	105720
(PE/cy7-conjugated)					

197 Supplementary Table 2: List of primary antibodies used for experiments

199	Supplementary Table 3: List of primer sequences used for RT-qPCR

Gene	Pimer sequences (5'-3')
Raf1	Fw - CTCTGAAGGTGAGAGGCCTG
	Rv - CGGCATCGGTGTTCCAATCT
Fzd3	Fw - GTTGCAGTGCAGAGGGACTA
	Rv - GGACATGGTGGCGAACAATC
lgf1	Fw - CTGGACCAGAGACCCTTTGC
	Rv - GGACGGGGACTTCTGAGTCTT
Stradb	Fw - CTTGACCTCTGTTCATCTTGCAC
	Rv - GGAGAAATAACCCAAAGCCAGC
Castor1	Fw - GAGTACTGAGCATTGCCCGT
	Rv - CAGGCTGAAGAACTTGCACC
Lpin1	Fw - CTCCGCTCCCGAGAGAAAG
	Rv - TCATGTGCAAATCCACGGACT
Slc3a2	Fw - GACACCGAAGTGGACATGAAA
	Rv - GCTCCTCCTTGGATAAGCCG
Stk11	Fw - TGGGCATGGACACCTTCATC
	Rv - AGGTCCCCCATCAGGTACTT
Vegfb	Fw - GCCAGACAGGGTTGCCATAC
	Rv - GGAGTGGGATGGATGATGTCAG
Pax7	Fw - TCTCCAAGATTCTGTGCCGAT
	Rv - CGGGGTTCTCTCTCTTATACTCC
МуоД	Fw - ATGATGACCCGTGTTTCGACT
	Rv - CACCGCAGTAGGGAAGTGT
МуоG	Fw - GCAGGCTCAAGAAAGTGAATGA
	Rv - TAGGCGCTCAATGTACTGGAT

Myf5	Fw - GCCTTCGGAGCACACAAAG
	Rv - TGACCTTCTTCAGGCGTCTAC
Cd34	Fw - AAGGCTGGGTGAAGACCCTTA
	Rv - TGAATGGCCGTTTCTGGAAGT
Hhip	Fw - TGAAGATGCTCTCGTTTAAGCTG
	Rv - CCACCACAGGATCTCTCC
Gli3	Fw - GAAGAAACGCAATCACTATGCAG
	Rv - GTCCCACGGTAAGGGAGAGA
Ptch1	Fw - AAAGAACTGCGGCAAGTTTTTG
	Rv - CTTCTCCTATCTTCTGACGGGT
Gli1	Fw - CCAAGCCAACTTTATGTCAGGG
	Rv - AGCCCGCTTCTTTGTTAATTTGA
Gapdh	Fw - AGGTCGGTGTGAACGGATTTG
	Rv - TGTAGACCATGTAGTTGAGGTCA