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Supplementary Table 1. Parameters of the DBR substrate. The first layer is attached 
to a glass substrate. 
 

 

 

 



Supplementary Table 2. Quantitative comparison among the proposed CODE, the 
pure CO imaging technique (i.e., CO-TV) and the pure DE imaging techniques (i.e., 
DE-1 and DE-2), where TV refers to total variation. DE-1 and DE-2 are also known as 
MST++ and HRNet, respectively. The smaller the value of RMSE and SAM, the better 
the reconstruction fidelity (boldfaced number indicates the best performance). See 
Supplementary Note 4 and Supplementary Note 5 for more details. 
 

 

 

 
  



 

Supplementary Figure 1. Fabrication processes of multi-resonant metasurface.  
  



 

Supplementary Figure 2. Optical setup for the imaging characterization of multi-
wavelength off-axis focusing meta-mirror. a A supercontinuum laser (NKT Photonics 
FIU-15) combined with an acousto-optic tunable filter (AOTF, SuperK SELECT) is 
utilized to select the wavelength in the visible. In this case, resolution targets with 
different-shaped apertures are used as the object. b To demonstrate the snapshot 
hyperspectral imaging capability of the MOFM, full-color images from a projector are 
used as the objects. A half-wave plate (Thorlabs AHWP05M-600), a linear polarizer 
(Thorlabs LPVISE100-A), and a quarter-wave plate (Thorlabs AQWP05M-600) are 
used to determine the polarization state. M: mirror; I: iris; λ/2: half-wave plate; P: linear 
polarizer; λ/4: quarter-wave plate; O: objective (Mitutoyo 10× magnification with 0.28 
numerical aperture); RT: resolution targets; L: Lens. c The optical spectrum of the laser 
beams emitted by the AOTF. The wavelength range shown is limited to 530-650 nm 
due to the capabilities of the used micro-spectrometer (Phekda Series, PD) for 
measurement. d The peak-fitting FWHM of the laser beams carried out from (c). 



 

 
Supplementary Figure 3. Imaging demonstration of the MOFM using laser source. 
Experimentally captured images at 4 wavelength bands. The left panel presents the 
optical microscopic image of the object. λ1 = 513 nm, λ2 = 549 nm, λ3 = 593 nm, λ4 = 
633 nm.  
  



 

Supplementary Figure 4. Ground truth of the hyperspectral images. The original 
single wavelength images of two objects. Each ground truth is obtained by using a 10-
nm-width band-pass spectral filter. The center wavelengths from left to right and top to 
bottom are 480, 490, 500, 510, 520, 532, 540, 550, 560, 570, 580, 590, 600, 610, 620, 
632.8, 640, 650 nm. Top panel: potted flower. Bottom panel: hatchet.   
  



 

Supplementary Figure 5. Snapshot hyperspectral imaging for the hatchet. a 
Experimentally demonstrated hyperspectral imaging dataset with a single metasurface 
chip. The center wavelengths are 480, 490, 500, 510, 520, 532, 540, 550, 560, 570, 580, 
590, 600, 610, 620, 632.8, 640, 650 nm. b Reconstructed image of the hatchet. c, d 
Spectral data at two pixels highlighted in (b). The ground truth (GT) spectral results are 
provided for comparison. 
  



 

Supplementary Figure 6. Hyperspectral imaging for the potted flower. The top-left 
panel shows the acquired 4-band multispectral image with band pass spectral color 
filters. The bottom panel shows the computed hyperspectral imaging dataset using the 
4-band multispectral image with the CODE small-data learning theory. The center 
wavelengths of the hyperspectral image dataset are 480, 490, 500, 510, 520, 532, 540, 
550, 560, 570, 580, 590, 600, 610, 620, 632.8, 640, 650 nm.  
 
 

 

Supplementary Figure 7. Hyperspectral imaging performance for the potted 
flower. a Reconstructed image of the potted flower, which is carried out from 
Supplementary Fig. 6. b-e Spectral data at four pixels highlighted in (a). The ground 
truth (GT) spectral results are provided for comparison. 
 
 
  



 

Supplementary Figure 8. Hyperspectral imaging for the hatchet. The top-left panel 
shows the acquired 4-band multispectral image with band pass spectral color filters. 
The bottom panel shows the computed hyperspectral imaging dataset using the 4-band 
multispectral image with the CODE small-data learning theory. The center wavelengths 
of the hyperspectral image dataset are 480, 490, 500, 510, 520, 532, 540, 550, 560, 570, 
580, 590, 600, 610, 620, 632.8, 640, 650 nm.  
 
 

 

Supplementary Figure 9. Hyperspectral imaging performance for the hatchet. a 
Reconstructed image of the hatchet, which is carried out from Supplementary Fig. 8. b, 
c Spectral data at two pixels highlighted in (a). The ground truth (GT) spectral results 
are provided for comparison. 
   
  



 
 
Supplementary Figure 10. Computational process for the hyperspectral imaging. 
The left plot  is acquired by the proposed MOFM. Our imaging technique applies 
the CODE learning theory, which blends the advantages of CO and DE, to perform the 
spectral super-resolution to computationally obtain the deblurred hyperspectral image 

 (the right plot). The CODE technique is detailed in Fig. 4 in the main article. 
  



 
 
Supplementary Figure 11. Optical spectrum of the multi-resonant meta-atom and 
the DBR substrate. The blue curve shows the numerical LCP-to-RCP reflection 
spectrum of the designed multi-resonant meta-atom. An Al nano-rod (length = 170 nm, 
width = 90 nm, thickness = 50 nm, period = 200 nm, thickness of SiO2 spacer = 135 
nm) array standing on a DBR substrate is optimized to possess multiple high-Q resonant 
peaks across the spectral window from 450 nm to 930 nm. The black curve represents 
the reflection spectrum of the bare DBR substrate. 
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Supplementary Note 1: Implementation of transverse chromatic aberration 
In the case of a regular metalens or a focusing meta-mirror, which exhibits longitudinal 
chromatic aberration, capturing color images in a single-shot measurement is not 
suitable due to the multispectral images appearing at different focal planes for different 
wavelength channels (refer to Supplementary Figure 12a). To overcome this limitation, 
we propose incorporating transverse chromatic aberration into the focusing meta-mirror. 
To achieve this, a multi-wavelength meta-mirror is specifically designed with an off-
axis focusing effect. By introducing transverse chromatic aberration, we can enable the 
capture of color images in a single-shot measurement, improving the imaging 
capabilities of the meta-mirror. Building upon previous research conducted1, the phase 
distribution of an off-axis meta-mirror/metalens can be simplified as follows: 

𝛷metalens ቀ𝑟𝑝, 𝜑𝑝ቁ ൌ  
2𝜋

𝜆𝑑
൬𝑓 െ ට𝑓2 ൅ 𝑟𝑝

2 െ 2𝑟𝑝𝑓 sin 𝜃𝑓 cos 𝜑𝑝൰       ሺS1ሻ 

where λd is the designed central wavelength, f is the focal length for λd, and θf represents 
polar angle. rp represents the distance between the meta-mirror center and an arbitrary 
position on the meta-mirror surface. φp denotes the angle between the x-axis and the 
line connecting the center of the meta-mirror to the arbitrary position on the meta-mirror 
surface. In our specific case, the focusing meta-mirror is designed to operate at a central 
wavelength of 593 nm with a focal length of 7.5 mm. This design enables the formation 
of color images with different wavelength channels that are away from the central 
wavelength. As a result, these color images appear on the screen along the dispersion 
direction, as shown in Supplementary Figure 12b. This characteristic is advantageous 
for the development of snapshot multispectral imaging, where multiple wavelength 
channels can be captured simultaneously in a single shot. 
 

  

Supplementary Figure 12. Schematic illustration of the chromatic meta-mirror. a 
On-axis dispersive meta-mirror. b Off-axis dispersive meta-mirror. The θf is designed 
at 45° for 593 nm. 
  



Supplementary Note 2: Impact of the incident angle on the 4-band multispectral 
imaging 
 
The incident angle is a critical factor in 4-band multispectral imaging as it affects the 
reflected angles, lateral separation between color channels, and overall image quality. 
Supplementary Figure 13 shows additional computed images for various incident 
angles, clearly demonstrating that larger incident angles lead to increased reflected 
angles and greater separation between multispectral images. It is notable that at larger 
incident angles, the images corresponding to longer wavelengths become more blurred 
due to the presence of strong aberrations. Conversely, for negative incident angles, the 
images at shorter wavelengths appear blurrier compared to the longer wavelengths that 
are closer to the central wavelength of the meta-mirror, despite having smaller angles 
of reflection. These observations emphasize the collective influence of the incident 
angle, intrinsic characteristics of the meta-mirror, and optical aberrations on the 
observed blurring effect in multispectral imaging. 
 

 

Supplementary Figure 13. Calculated images of a number “2” at 4 wavelength 
bands under various angles of incidence. The θin and θr represent the incident and 
reflected angles, respectively, for the central wavelength 593 nm. 
 
  



Supplementary Note 3: Light sources used for white balance 
 
Supplementary Figure 14 provides a comparison of the optical spectra emitted by two 
different light sources used for white balance. The projector shows a lower intensity in 
the green color range compared to the blue and red colors, causing channel 3 (593 nm) 
in Fig. 3d to appear more reddish. On the other hand, the white LED exhibits a more 
consistent intensity across the wavelength range corresponding to green to red colors, 
resulting in the color at channel 3 in Fig. 3c being closer to its true representation. 
Importantly, we emphasize that the observed color discrepancy does not compromise 
the accuracy of the multispectral/hyperspectral imaging results. This is because the 
spatial distribution of wavelength channels in free space ensures that each captured 
color image corresponds to the specific wavelength channel at its designated spatial 
position. Additionally, the small-data learning theory employed for obtaining the 
hyperspectral imaging data cubes reconstructs individual color images for each 
wavelength band based on the CIE 1931 color space, guaranteeing accuracy in the 
results regardless of any color differences observed between the images. 
 

 
Supplementary Figure 14. The spectrum of different light sources. The intensity 
spectrum of the projector is represented by the blue curve, while the white LED is 
represented by the olive curve. A white background is used when measuring the optical 
spectrum of the projector. 
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Supplementary Note 4: CODE-based computational imaging 
Let   be the metasurface-acquired  -pixel  -band multispectral image, 
from which we aim to reconstruct the corresponding deblurred hyperspectral image 

 (i.e., the target image), where  is the number of hyperspectral bands. 
Mathematically,  can be regarded as the blurred low-spectral-resolution counterpart 
of , and this relation can be concisely modeled as 

                             (S2)  
where the spectral response matrix   performs spectral downsampling2, and  
describes the blurring effect caused by the multi-wavelength meta-mirror. 

We aim to infer the target image  from the metasurface-acquired information 
 computationally. Two commonly seen approaches for solving this imaging inverse 

problem are convex optimization (CO) and deep learning (DE). However, purely using 
CO would lead to a math-heavy optimization procedure3 and thus a slow algorithm, 
especially under the hardly tractable blurring effect . Also, purely using DE requires 
the support of big data collection, which is expensive or even unavailable. In our 
application, collecting big data is not economical because of the need for a bunch of 
color filters. Therefore, we will employ the very recently proposed CODE machine 
learning theory3 not only to avoid heavy math but to achieve small-data learning. 

As its name suggested, CODE blends the advantages of CO and DE, thereby 
avoiding the big data required in DE and avoiding the heavy math often encountered in 
CO. CODE was originally invented for advanced hyperspectral satellite tasks3 by 
introducing the so-called -quadratic norm  to bridge CO and DE. For the first 
time, the CODE learning theory will be employed for hyperspectral metasurface 
imaging; surprisingly, extremely little data (only 18 images, each containing just 484
×192 pixels) is sufficient for high-quality hyperspectral imaging. 

 
CODE Formulation 
This subsection will briefly recall the most critical parts of the CODE theory3, including 
the design of the convex data-fitting term and the design of deep  -quadratic 
regularization, etc. As the sophisticated metasurface system leads to a non-convex 
blurring effect, the original version of CODE is not directly applicable. So, DE will be 
employed to reformulate the MOFM imaging problem. The corresponding CODE-
based imaging problem will be formulated hereinafter. 

Due to the complicated mechanism of the metasurface system, it is difficult to 
describe the blurring effect  using an explicit mathematical function. Even with the 
function , the naive data-fitting term  is non-convex and hard to be 
efficiently addressed, where  is the Frobenius norm. Thus, we propose to learn 
the inverse blurring procedure   using the deep Transformer model, as will be 

detailed in CODE Implementation. This provides the quantity , which can 

then be used to design a neat convex data-fitting term, i.e., , leading to the 

following CODE-based formulation: 

               (S3)  



where the convex regularization term will be designed later. 
 Recovering  from  (or ) is an ill-posed problem; the regularization term 

  is needed to encourage a physically interpretable solution  . To achieve 
effective regularization, a mathematically sophisticated function is often needed. For 
example, the challenging super-resolution imaging task for the Sentinel-2 satellite 
requires a graph-embedded regularization function to encourage a self-similarity 
solution4. In CODE small-data learning3, the deep -quadratic regularization function 

 , with regularization strength controlled by  , is employed to design the 
convex regularization scheme  

       (S4) 

as illustrated below. First,  is a convex function defined as  with  

being some properly designed positive semidefinite (PSD) matrix5. Second, as 
demonstrated in Ref. 3, CODE can use the deep regularizer to extract useful features 
embedded in the small data; specifically, even if small data can yield a weak DE 
solution  (viewed as a rough imaging result), the CODE theory believes 
that the weak solution still contains meaningful texture information, and adopts the 
regularizer  to extract the information to be injected into the final target image 

. Overall,  can be viewed as a spectrally upsampled version of , and can be 
obtained just using a simple deep learning network as a rough solution   is 
sufficient for CODE to yield a good learning result3. This simple deep network for 
mapping  to  will be detailed in CODE Implementation. As a side remark, 
though CODE has achieved numerous challenging hyperspectral signal processing 
tasks in very recent literature, including the tensor completion (i.e., image inpainting)3 
and satellite change detection12, the naïve version of CODE is far from being applicable 
to the hardly tractable hyperspectral metasurface imaging, for which we further 
introduced the deep data-fitting (besides the deep regularization in the naïve CODE); 
this can be graphically illustrated using the notation system built above, as displayed in 
the Supplementary Figure 15. 



 
Supplementary Figure 15. The naïve CODE (bottom panel) involves only deep -
norm regularization. To address the hardly tractable hyperspectral metasurface imaging, 
another Transformer-based deep data-fitting term has been further introduced into the 
newly designed CODE (top panel).  
 
CODE Implementation 
In this subsection, we need to explain the following implementation details: 

 How to design the deep network for learning the inverse blurring procedure 
 using the deep Transformer model? How to design the deep network 

for mapping  to ? 
 How to train deep networks using small data? Note that the original CODE 

theory achieves advanced hyperspectral satellite mission using hundred-scale 
small data, while we now have just 18 data points; that said, besides CODE, 
other tricks are needed for effective small-data learning. 

 How to design   and accordingly derive the algorithm with closed-form 
solutions for the CODE formulation? 

The three questions are respectively answered below. 
 First, considering that the blurring effect caused by the MOFM is intractable and 
expected to be highly non-linear, we learn the inverse procedure   using the 
advanced Transformer technique. The proposed Transformer is deployed using the U-
Net structure, as detailed in Figure 4 in the main article, where each Transformer block 
(T-Block) is also depicted. The T-block revises the Restormer6 to have better interaction 
among the feature maps. This upgrades the QKV attention effectiveness gained by 
interchanging the ordering of the depthwise convolution (Dconv) and the typical 
convolution block. After the last T-Block that focuses more on spectral attention, we 
further enhance the spatial features by the novel technique called spatial-spectral 
domain learning (SDL) module7, whose output is the desired deblurred multispectral 
image . Next, we explain how to map the multispectral image  to the 
hyperspectral image . As previously discussed, the CODE learning theory does 



not require big data and can accept a roughly estimated solution  obtained from 
small data. For this reason, a simple two-branch convolution neural network (CNN) 
deployed like Fig. 4 in the main article is sufficient to obtain   for effectively 
supporting the subsequent deep regularization to be implemented by Algorithm 1. 
 Second, we explain how to achieve effective small-data learning with the standard 
root mean squared error (RMSE) loss function. The CODE theory works well for 
hundred-scale data3, but we now have only 18 data points. So, we invent a new data 
augmentation technique to support the CODE learning. We first recall that the most 
commonly seen data augmentation would be based on the image rotation transform 
(RT). However, RT mainly enhances spatial features and is outside our application. In 
our application, the most challenging part lies in increasing the number of spectral 
bands; specifically, the output of the meta-mirror has just 4 bands, and we aim to 
upsample it to the 18-band hyperspectral image. Based on this observation, we propose 
to use the color transform (CT), which better captures the problem’s nature compared 
to the RT. Mathematically, given the available small dataset , we 
can augment it to   in which   is just a row-
shifted version of . Note that in this paper, the rows of the image  correspond to 
spectral bands (colors), and columns correspond to pixels; thus, row shift exactly 
implements the desired CT data augmentation. Our dataset contains 20 pairs of images, 
each composed of a blurred 4-band multispectral image and a clean 18-band 
hyperspectral image, both having a spatial size of 484×192. The 18-band hyperspectral 
images’ spectral wavelengths are 480, 490, 500, 510, 520, 532, 540, 550, 560, 570, 580, 
590, 600, 610, 620, 632.8, 640, 650 nm. As discussed above, we use CT to augment the 
dataset to 40 pairs in , of which 36 are for training, 2 for validation, and 2 for 
testing. 

 

Third, we propose a fast imaging algorithm (i.e., Algorithm 1) to implement the 
formulation Eq. (S3) with all the algorithmic steps solved by closed-form solutions. To 
this end, we first explain how to design the PSD matrix . It is known that pixels of a 
hyperspectral image often concentrate on a hyperspectral simplex (i.e., convex hull of 
the affinely independent hyperspectral signatures of the underlying materials in a given 
image). This hyperspectral geometry then implies that those hyperspectral pixels often 
distributed in a low-dimensional hyperspectral subspace8, motivating us to design  
using the basis vectors of the subspace. Let  be an orthogonal basis of the 
hyperspectral subspace, which can be obtained by applying principal components 
analysis to the roughly estimated imaging result . Then, we have  for 



some eigen-image4 , whose number of parameters is , which is much 
fewer than that of the target image  in Eq. (S3) and leads to a faster 
algorithm. Therefore, a trickily designed geometry-driven PSD matrix  allows us to 
reformulate the -norm into the commonly seen (and more easily tractable) L2 norm. 
To be mathematically rigorous, let  be the vectorization operator and  be 
the inverse operator, and select the geometry-driven  to build the 

relation that  is proportional to , which allows us to concisely 

reformulate Eq. (S3) into the eigenspace as the convex problem: 

                  (S5)  

where   is the Kronecker product,  ,  ,  , 
, and the data-fitting term  will be derived below. Starting from 

the data-fitting term of Eq. (S3), we have 
         (S6)  

where we used the Kronecker product property of  in the 
second equality. With Eq. (S6), we can further recast the CODE imaging problem into 
the standard form of alternating direction method of multipliers (ADMM)5, i.e., 

          (S7)  

Then, the ADMM algorithm for solving Eq. (S7) is presented in Algorithm 1, where  
is the iteration number,   is the newly introduced scaled dual variable, 

 , and 

  is the augmented 

Lagrangian of Eq. (S7) with  being the penalty parameter. Note that we have 
derived the closed-form solutions for all the algorithmic steps, as presented in 
Algorithm 1. 
 
We give four remarks to conclude this section: 

1. [Remark 1] Although the standard ADMM convergence conditions (see, e.g., 
Ref. 9) are not straightforwardly seen, the tricky reformulation of Eq. (S7) 
ensures the full rankness of the linear association between the two primal 
variables. According to Ref. 5, such a full rankness can directly build the 
desired convergence guarantee, as theoretically guaranteed as follows: 

Theorem 1 Our metasurface-empowered hyperspectral imaging algorithm (i.e., 
Algorithm 1) is guaranteed to converge to an optimal global solution of Eq. (S7). 
 
2. [Remark 2] Thanks to the closed-form solutions in Lines 3-5 of Algorithm 

1, the CODE learning theory3 leads to speedy computational time. Training 
and inference are executed on the computer facility equipped with a Core-i9-
10900K CPU with 3.70-GHz speed, 64-GB random access memory, and 
NVIDIA GeForce RTX-3090 GPU. The deep learning parts are trained on 
Python 3.7 with PyTorch 1.10.1, while the convex optimization part is solved 



on MATLAB R2021b. With the above facility, including the DE part (about 
2.94 seconds) and the CO part (about 0.78 seconds), the overall 
computational time to complete the metasurface hyperspectral imaging (for a 
484×192 image; cf. Supplementary Figure 10) is just around 3.72 seconds. 
 

3. [Remark 3] One may wonder how such a mathematically simple CODE 
theory could be so powerful, but by noticing that the -norm function (used 
to bridge CO and DE) is actually a more generalized version of the classical 
Tikhonov regularization function3, the good performance becomes not so 
surprising. Note also that the line of blending CO and DE has become a recent 
trend in solving hardly-tractable challenging imaging inverse problems (e.g., 
metasurface hyperspectral imaging). Besides our CODE theory, the most 
remarkable technique in this line is deep plug-and-play (deep PnP)10, 11. 
However, unlike CODE that just needs small data, the deep PnP technique 
requires big data to implement the deep proximal operator in the convex 
ADMM algorithm10, 11. With this regard, the CODE theory is quite appealing 
and promising for other challenging imaging applications. 

 
4. [Remark 4] For hardly tractable inverse problems (e.g., restoration of 

damaged hyperspectral satellite data), merely using either CO or DE is far 
from being sufficient especially in the absence of big data, as recently 
demonstrated in the first CODE paper3. Merely using DE yields rather weak 
solution due to the small scale of the available data, but CO (the convex -
norm regularization, in particular) can employ such a weak solution to 
regularize the final solution thereby obtaining high-quality hyperspectral 
imaging results. ADMM (resp., ADAM) is not the key and can be replaced 
by any other suitable CO optimizers (resp., DE optimizers). That’s exactly 
why “ADMM-Adam” has been renamed “CODE” in recent works. For 
example, the algorithm for hyperspectral satellite change detection (HCD) 
has been named as CODE-HCD12, where the detection result obtained by 
merely using DE was also proven to be rather weak. The value of the CODE 
framework can indeed be effectively highlighted by comparing the imaging 
results obtained from CODE with those from other approaches, as can be seen 
in Supplementary Table 2. We added some new results to illustrate the value 
of CODE, by showing that directly using only CO or only DE cannot achieve 
good spectrum recovery imaging. In order to use DE alone, we employ two 
state-of-the-art spectrum recovery DE techniques, known as MST++ (i.e., 
DE-1)13 and HRNet (i.e., DE-2)14, both of which are trained using exactly the 
same small data as CODE. To directly use CO only, we need to remove the 
DE-based -norm regularization; thus, for this demonstration, we replaced 

-norm by the prestigious CO-based total variation (TV) regularization. The 
resulting algorithm, named CO-TV, is derived and detailed in Supplementary 
Note 5. The results are summarized in the Supplementary Table 2. One can 
see that results gained by using only CO or DE individually (i.e., CO-TV, 



DE-1 and DE-2) are far from being satisfactory for both the filtered and non-
filtered cases. Also, the much more complicated form of TV leads to 
significantly longer computational time, compared to the -norm of 
mathematically simple form. 

  



Supplementary Note 5: CO-TV computational imaging algorithm 
 
As discussed in Supplementary Note 4, we replaced the DE-based  -norm 
regularization by the CO-based TV regularization, and the resulting CO-TV algorithm 
will be derived below. Specifically, the new imaging criterion becomes 

     (S8) 

where the data-fitting term remains the same, while the regularization term becomes 
 (i.e., the prestigious total variation function)15. Then, let us reformulate Eq. (S8) 

into the standard ADMM-form as 
               (S9) 

where  is the Kronecker product, , and . We can then solve 
Eq. (S9) through the ADMM algorithm, as detailed in Algorithm 2 given below, where 
the augmented Lagrangian is defined as 

 with  being the 

penalty parameter,  is the iteration number,  is the scaled dual variable, and 
the matrix . Note that Line 3 in Algorithm 2 is nothing but the TV 
denoising operator with   being the noisy input image. So, the denoising 
operator of Line 3 can be implemented by using the split Bregman method, whose 
implementation is freely available online16. Thus, the derivation of the CO-TV 
hyperspectral imaging algorithm has been completed. 
 

 

 

 
 

 
  



Supplementary Note 6: Definition of root-mean-square error (RMSE) and 
spectral angle mapper (SAM) 
 
The RMSE is described as:  

RMSE ൌ  ඨ∑ ∑ ∑
ൣூ౟ౣ౗ౝ౛ሺ௫,௬,ୠୟ୬ୢሻିூృ౐ሺ௫,௬,ୠୟ୬ୢሻ൧

మ

ேౘ౗౤ౚ౩ൈௐൈு
ேౘ౗౤ౚ౩
ୠୟ୬ୢୀଵ

ு
௬ୀଵ

ௐ
௫ୀଵ    (S10) 

where W and H are the total pixels along x-direction and y-direction, respectively. Iimage 
and IGT are the intensity on the reconstructed hyperspectral images and ground truth, 
respectively. Nbands indicates the total number of wavelength bands. 
 
The SAM is described as:  

 SAM ൌ  ∑ ∑ ఏሺ௫,௬ሻ

ௐൈு
ு
௬ୀଵ

ௐ
௫ୀଵ       (S11) 

where W and H are the total pixels along x-direction and y-direction, respectively.  
 

𝜃 ൌ cosିଵ ൬
ఔ౟ౣ౗ౝ౛∙ఔృ౐

|ఔ౟ౣ౗ౝ౛| |ఔృ౐|
൰      (S12) 

𝜈୧୫ୟ୥ୣ ൌ  ൣ𝐼୧୫ୟ୥ୣ
ୠୟ୬ୢ ଵ 𝐼୧୫ୟ୥ୣ

ୠୟ୬ୢ ଶ ⋯ 𝐼୧୫ୟ୥ୣ
ୠୟ୬ୢ ௡൧

்
; 𝜈ୋ୘ ൌ  ൣ𝐼ୋ୘

ୠୟ୬ୢ ଵ 𝐼ୋ୘
ୠୟ୬ୢ ଶ ⋯ 𝐼ୋ୘

ୠୟ୬ୢ ௡൧
்
  (S1

3) 
 

 

  



Supplementary Note 7: Discussion of the possibility for increasing the number of 
wavelength bands and the spectral range 
 
To achieve multiple resonant peaks in the optical spectrum without interleaving 
multiple meta-atoms or metasurfaces, it is essential to consider the design of the DBR 
substrate, the eigenmodes present in the nanostructure, and the coupling between the 
plasmonic nanostructure and the DBR substrate. The spectral range in which the multi-
wavelength meta-atom can exhibit resonant behavior is primarily determined by the 
bandwidth of the reflection window of the DBR substrate. A wider reflection window 
allows for a broader working spectral range, enabling the meta-atom/MOFM to operate 
over a greater range of wavelengths. 

The number of wavelength bands in the system is influenced by two key factors: 
the number of eigenmodes supported by the nanostructure and the cavity-like coupling 
between the nanostructure and the DBR substrate. Increasing the number of 
eigenmodes can be achieved by employing freeform nanostructures. Freeform 
nanostructures17, 18, characterized by their anisotropic shape, adhere to the geometric 
phase method for phase modulation and enable a higher number of eigenmodes to be 
supported. Additionally, the number of wavelength bands can be extended by tuning 
the cavity-like coupling condition. Supplementary Figure 16a shows the simulation 
results of the LCP-to-RCP reflection spectrum for different thicknesses of the dielectric 
spacer SiO2. In comparison to the original design with a 135-nm-thick SiO2 spacer, 
which produced 4 peak wavelengths ranging from 480 nm to 650 nm (refer to 
Supplementary Figure 11), the number of wavelength bands increased to 8 and 12 with 
the 2000-nm-thick and 5000-nm-thick SiO2 spacers, respectively. Notably, the 
simulations revealed the emergence of multi-resonant peaks in the blue spectral region 
below 480 nm, effectively filling the previously unexplored wavelength bands in the 
original design. Supplementary Figure 16b presents the simulated phase shift as a 
function of the structural rotation angle. It is evident from the plot that all the newly 
generated peak wavelengths align with the expected geometric phase profile. This 
observation confirms the effectiveness of the proposed method in increasing the number 
of wavelength channels, which reinforces the potential of the metasurface approach in 
expanding the spectral range and enhancing the versatility of 
multispectral/hyperspectral imaging systems. 
 



 

Supplementary Figure 16. Simulated results of the designed meta-atom with 2000-
nm-thick and 5000-nm-thick SiO2 spacers. a Numerical reflection spectrum of the 
designed meta-atom with different thicknesses of SiO2. The DBR substrate and physical 
sizes of the Al nano-rod are the same as those listed in the main article. b The circularly 
cross-polarized phase spectrum as a function of structural rotation angle. All resonant 
peaks satisfy the geometric phase condition. 
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