1 Appendix

2	Supplementary figures1
3	Appendix Figure S1: Inactivating BCL11B and NuRD subunits in human T cells2
4	Appendix Figure S2: ITNKs derived from NuRD-subunit-deficient cells are different from
5	BCL11B-deleted ITNKs
6	Appendix Figure S3: Suppressing mitochondrial fusion inhibits the reprogramming of T
7	cells into ITNKs and the antitumor effects of ITNKs4
8	Appendix Figure S4: Related genes express at multiple time points during reprogramming. 5
9	
10	

Appendix Figure S1

1 2

Appendix Fig. S1. Inactivating BCL11B and NuRD subunits in human T cells.

A. Representative western blot of BCL11B, MBD2, MTA2, and CHD4 protein levels in samples of purified CD8⁺ or CD4⁺ PBMC-derived T cells that were transduced with sgCtrl, sg*BCL11B*, sg*MBD2*, sg*MTA2*, and sg*CHD4*. The data represents the efficacy of the knockout experiment from Fig. 1B.

B. Representative flow cytometric detection of NKp30 and NKp46 in T cells transduced with sgCtrl and sg*MTA1*. Graph summarizing the NKp46⁺ in CD3⁺CD8⁺ T cells and NKp30⁺ in CD3⁺CD4⁺ T cells transduced with the indicated sgRNAs. Data were analyzed by two-tailed paired Student's t-test. Data represent mean \pm SD (N=3 individual healthy donors).

- 12
- 13

1

Appendix Fig. S2. ITNKs derived from NuRD-subunit-deficient cells are
 different from BCL11B-deleted ITNKs.

A. Bar chart indicating the numbers of up- and down-regulated genes from
differentially expressed genes (DEGs) between NuRD-subunit-deficient CD8⁺ ITNKs

and CD8⁺ BCL11B-deficient ITNKs. Gene differential expression analysis was
performed by R package DESeq2 (version 1.38.1). The number of differentially
expressed genes was counted as visualized by customed R scripts using ggplot2
(version 3.4.0).

B. Bar chart indicating the numbers of up- and down-regulated genes from DEGs
between NuRD-subunit-deficient CD4⁺ ITNKs and CD4⁺ BCL11B-deficient ITNKs.

C. Gene ontology analysis of up- and down-regulated genes from DEGs between
NuRD-subunit-deficient CD8⁺ ITNKs and BCL11B-deficient CD8⁺ ITNKs. GO
enrichment analysis was performed by R package clusterprofile (version 4.6.2). The
was visualized as heatmaps generated by customed R scripts using ggplot2 (version
3.4.0).

D. Gene ontology analysis of up- and down-regulated genes from DEGs between
 NuRD-subunit-deficient CD4⁺ ITNKs and BCL11B-deficient CD4⁺ ITNKs.

E. Representative flow cytometric detection of NKp30 and NKp46 in PBMC-derived T cells transduced with sgBCL11B, sgBCL11B/ID2, and sgBCL11B/JUND. Graph summarizing the NKp46⁺ in CD3⁺CD8⁺ T cells and NKp30⁺ in CD3⁺CD4⁺ T cells transduced with the indicated sgRNAs. Data were analyzed by one-way ANOVA with Tukey's multiple comparisons test. *P \leq 0.05 and **P \leq 0.01. Data represent mean ± SD (N=3 individual healthy donors).

20 21

22

23

24

Appendix Fig. S3. Suppressing mitochondrial fusion inhibits the reprogramming of T cells into ITNKs and the antitumor effects of ITNKs.

1

A. Representative western blots of BCL11B and OPA1 protein levels in samples of T
cells transduced with sgCtrl, sg*OPA1*, sg*BCL11B*, or the combination of sg*BCL11B*and sg*OPA1*.

B. CCCP (5 μM, mitochondrial fission inducer) was added to a culture of sg*BCL11B*transduced human T cells derived from PBMCs 24 hours after electroporation. OPA1
protein, Tomm20, and β-actin were detected by western blot assay.

C. Confocal microscopy images showing T cells, ITNK cells, and ITNK cells treated
with CCCP in which the mitochondria (MitoTracker, green) and nuclei (Hoechst; blue)
are stained. Scale bars: 5 µm. Relative lengths of the mitochondria, as analyzed by
confocal microscopy, are shown. The images were digitized using ImageJ software.
Each dot represents the mean relative length of the mitochondria in a sample.
****P≤0.0001, one-way ANOVA with Tukey's multiple comparisons test.

D. OXPHOS (OCR: O2 consumption rate) assays were performed in ITNKs and ITNKs treated with CCCP. The maximum OCR values were achieved after FCCP uncoupling (maximum respiration). The curves represent the mean \pm SD (N=5 individual healthy donors). ***P \leq 0.001, two-tailed paired Student's t-test. **Appendix Figure S4**

A. Time course of T cell-related genes expression by RT-qPCR. The results represent
mean ± SD (N=4 individual healthy donors); ****P≤0.0001, two-way ANOVA with
Dunnett's multiple comparisons test.

B. T cells transduced sgBCL11B (from (Fig. 6A)) were cultured in vitro. The makers
(NKp30 and NKp46) of CD4⁺ and CD8⁺ ITNKs were detected using flow cytometry
at multiple timepoints.

10