Supporting Information

Identification of Small Molecule Inhibitors of RNase L by Fragment-Based Drug Discovery

Jinle Tang^{1#}, Beihua Dong^{2#}, Ming Liu¹, Shuyan Liu³, Xiaogang Niu⁴, Christina Gaughan², Abhishek Asthana², Huan Zhou⁵, Zhengshuang Xu¹, Guoliang Zhang³, Robert H. Silverman^{2*}, Hao Huang^{1*}

¹State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug

Discovery, School of Chemical Biology and Biotechnology, Peking University Shenzhen

Graduate School, Shenzhen 518055, China

²Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH

44195, USA

³National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital,

Southern University of Science and Technology, Shenzhen 518112, China

⁴College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance

Center, Peking University, Beijing 100871, China

⁵Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201214, China.

These authors contributed equally to this work.

*To whom correspondence should be addressed: E-mail:

Hao Huang - (Email: huang.hao@pku.edu.cn)

Robert H. Silverman - (Email: SILVERR@ccf.org)

Table of Contents

	Item	Page
1	Inhibition constants (IC ₅₀) and ligand efficiencies (LE) of fragments identified in activity-based screening against human (H-) and porcine (P-) RNase L proteins. (Table S1)	83, 84
2	The potency of AC40357 derivatives against human (H-) and porcine (P-) RNase L (Table S2)	S 5
3	The inhibition rates of several fragments against porcine RNase L (Figure S1)	S 6
4	Co-crystal structure of the dimeric P-RNase L in complex with the fragment KM05073 (Figure S2)	S 6
5	The Fo-Fc electron density omit map of fragments and the 2D Ligand interaction diagrams (Figure S3)	S 7
6	Critical residues in the fragments binding pocket are conserved in both human and porcine RNase L (Figure S4)	S8
7	The potency of six myricetin derivatives against human and porcine RNase L (Figure S5)	S8
8	RNA substrate concentration does not affect the inhibition of hyperoside against porcine RNase L (Figure S6)	S 9
9	STD-NMR showed vitexin directly binds to P-RNase L (Figure S7)	S 9
10	The density map of myricetin and structural comparison (Figure S8)	S10
11	The potency of hyperoside was not affected by 2-5A binding (Figure S9)	S10

NO.	Fragment	ening against human (H-) 2D-structure	$IC_{50}~(\mu M)$	LE	$IC_{50}(\mu M)$	LE
			H-RNase L	H-RNase L	P-RNase L	P-RNase L
1	CC39814		202	0.40	405	0.37
2	KM05073		108	0.40	117	0.39
3	AC39661		1518	0.36	3236	0.32
4	MAY00266	N N N N N N N N N N N N N N N N N N N	790	0.36	3091	0.29
5	RF03759	он он	1777	0.35	1725	0.35
6	CC22101	O OH S N	580	0.35	617	0.35
7	KM01280		2571	0.33	613	0.41
8	CD11333		826	0.33	1926	0.29
9	SEW05732	O OH	399	0.32	272	0.33
10	KM05951	O S V V V V V O H	209	0.27	372	0.25
11	AC40357	но	2369	0.26	NA	-
12	BTB10184	OH OH	2245	0.25	2228	0.25

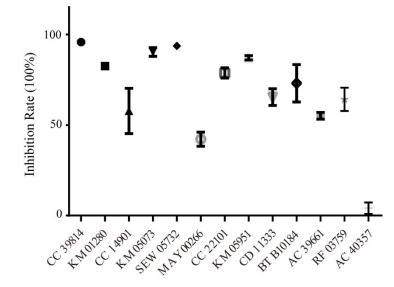
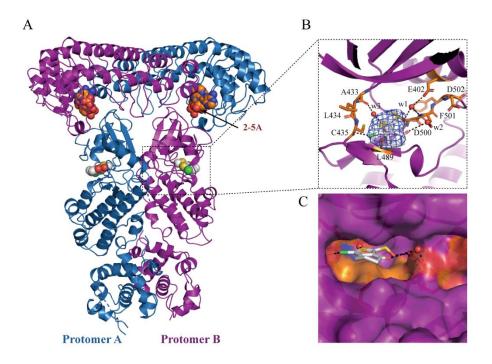
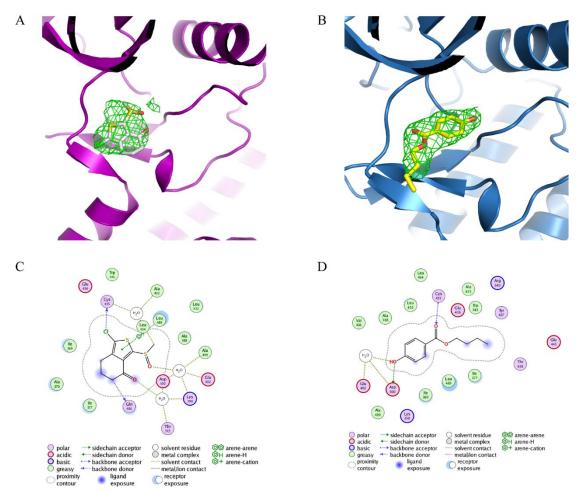
Table S1. Inhibition constants (IC_{50}) and ligand efficiencies (LE) of fragments identified in activity-based screening against human (H-) and porcine (P-) RNase L proteins.

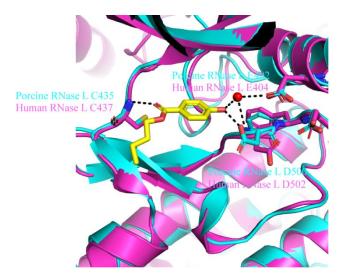
13	CC14901	С	3924	0.23	2681	0.24
----	---------	---	------	------	------	------

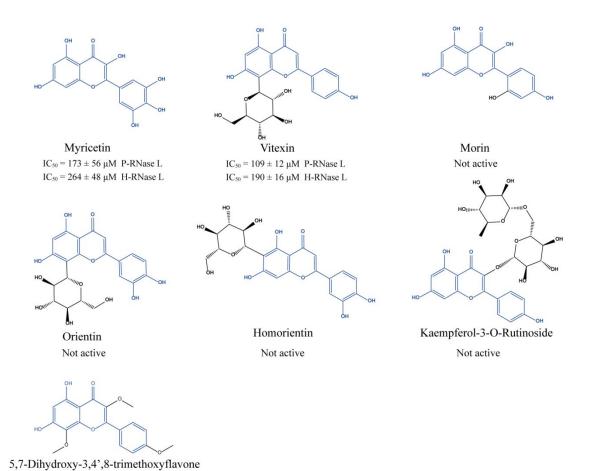
The IC₅₀ was determined using a FRET-based assay on human or porcine RNase L. Ligand efficiency was calculated using the formula: $LE = 1.4 \times (-LogIC_{50})$ /HAC. HAC is the number of heavy atoms (or non-hydrogen atoms). NA, not active.

Compounds	2D-Structure	IC ₅₀ (μM) H-RNase L	IC ₅₀ (μM) P-RNase L
Phloretin	ОН О НО ОН ОН	883	Not active
Liquiritin		Not active	Not active
Myricetin		264	173
Hyperoside		1.63	1.26

Table S2. The potency of AC40357 derivatives against human (H-) and porcine (P-) RNase L


Figure S1. The inhibition rates of several fragments against P-RNase L.


Figure S2. Co-crystal structure of the dimeric P-RNase L in complex with the fragment KM05073. (A) The dimer structure of P-RNase L in complex with 2-5A and KM05073. KM05073 bind to the PK domain in both protomers. (B) Stick model of KM05073 in P-RNase L, where the 2Fo-Fc density map of KM05073 is shown as blue mesh and contoured at 1 σ . Hydrogen bonds are shown as dotted black lines, and water molecules as red spheres. (C) The surface model KM05073 in P-RNase L.

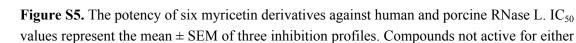
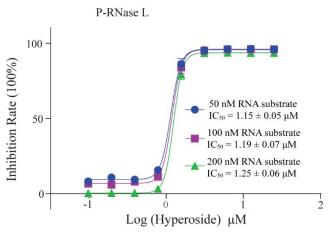


Figure S3. The Fo-Fc electron density omit map of fragments and the 2D Ligand interaction diagrams. The Fo-Fc density maps of KM05073 (A) and AC40357 (B) before refinement were shown. Interactions between RNase L and KM05073 (C) or AC40357 (D) were calculated using the MOE software.


Figure S4. Critical residues in the fragments binding pocket are conserved in both human and porcine RNase L. The compound in yellow is AC40357. The ribbon structure in magenta is H-RNase L (PDB 4OAV) with ADP and Mg²⁺ removed and the structure in cyan is P-RNase L in complex with AC40357 (PDB 7DTS). The binding of AC40357 has caused swing of the side chain of D500 of P-RNase L.

Not active

H- or P-RNase L were labelled with Not active.

Figure S6. RNA substrate concentration does not affect the inhibition of hyperoside against P-RNase L. IC_{50} values represent the mean \pm SEM of three inhibition profiles.

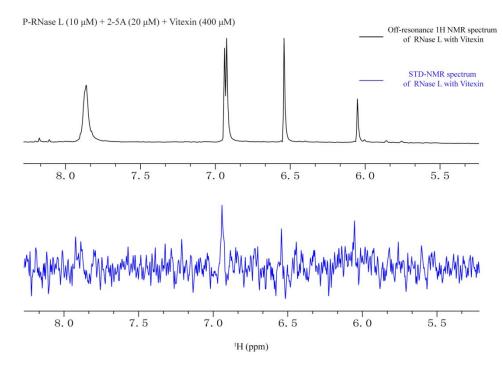
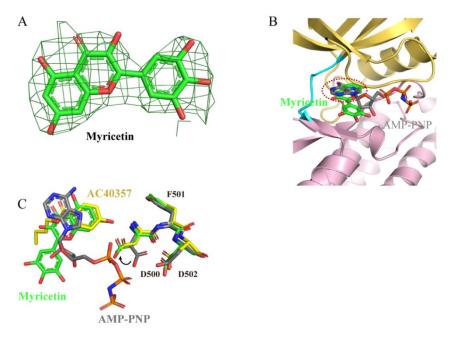
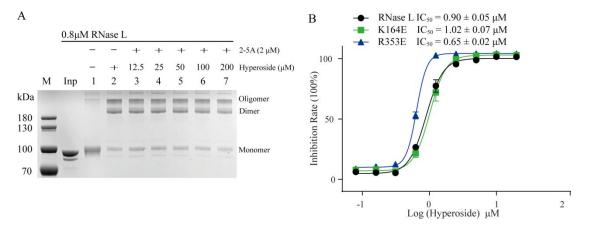




Figure S7. STD-NMR showed that vitexin directly binds to P-RNase L.

Figure S8. The density map of myricetin in the co-crystal structure with P-RNase L and structural comparison. (A) The Fc-Fo density map of myricetin (PDB 7ELW) before refinement was shown as forest green mesh and contoured at 3.0σ . (B) Ribbon plot of P-RNase L showing the superposition of AMP-PNP (PDB 401P; gray stick model; nitrogen atoms in blue) and myricetin (green, in this study) on porcine RNase L (PDB 7ELW). (C) Compared with the structure of RNase L/AMP-PNP (PDB 401P), myricetin (PDB 7ELW) and AC40357 (PDB 7DTS) in the same binding pocket both induced slight swing of the side chain of D500.

Figure S9. The potency of hyperoside was not affected by 2-5A binding. (A) Hyperoside did not affect 2-5A induced P-RNase L oligomerization. (B) Hyperoside displayed similar inhibitory activity against wt-P-RNase L and its two mutants (K164E and R353E).