Relevant genotype	gRNA	Target IR	Median survival ^a	Relative survival ^b	Fraction inverted duplications	Inverted duplication frequency ^c	Relative inverted duplication frequency
sae2∆	gRNA-17	Natural	0.081	1	0.91	0.074	1
mre11-H125N	gRNA-17	Natural	0.178	2.18	ND	ND	ND
mre11∆	gRNA-17	Natural	0.093	1.14	0.87	0.081	1.08
WT	gRNA-17	Natural	0.0004	0.0048	0.09	3.54 x10⁻⁵	4.7 X 10 ⁻⁴
sae2∆	gRNA-17	Scrambled	0.0035	0.044	0.16	0.0006	0.008
sae2∆ rad1∆	gRNA-17	Natural	0.087	1.07	0.86	0.075	1.01
sae2∆ pol3-01	gRNA-17	Natural	0.0068	0.084	0.65	0.004	0.06
sae2∆ pol3-01 rad1∆	gRNA-17	Natural	0.0039	0.048	0.76	0.003	0.04
sae2∆ mus81∆	gRNA-17	Natural	0.089	1.01	0.87	0.077	1.04
sae2∆	gRNA-17	Perfect	0.102	1.25	0.93	0.095	1.28
sae2∆ rad1∆	gRNA-17	Perfect	0.308	3.79	0.93	0.288	3.97
sae2∆ pol3-01	gRNA-17	Perfect	0.016	0.20	0.41	0.007	0.09
sae2∆ pol3-01 rad1∆	gRNA-17	Perfect	0.026	0.32	0.42	0.011	0.15
sae2∆	gRNA-48	Natural	0.011	0.13	0.59	0.006	0.087
sae2∆ rad1∆	gRNA-48	Natural	0.0082	0.10	0.53	0.004	0.059
sae2∆	gRNA-160	Natural	0.0017	0.021	0.48	0.0008	0.011
sae2∆ rad1∆	gRNA-160	Natural	0.0013	0.016	0.15	0.0002	0.003
sae2∆ pol32∆	gRNA-17	Natural	0.0039	0.048	0.13	0.0005	0.007
sae2∆ rad51∆	gRNA-17	Natural	0.0029	0.0357	0.83	0.002	0.032
sae2∆	НО	Natural	0.264	3.25	0.92	0.24	3.28
WT	НО	Natural	0.0033	0.012	0.025	8.26 X 10 ⁻⁵	0.001

Supplementary Table 1. Survival and inverted duplication frequencies

^a Median survival value from at least 6 independent cultures

^b Cell survival normalized to the *sae2* Δ mutant with the natural IR and gRNA-17 ^c Frequency of inverted duplications was derived from the fraction of survivors with a CNV value of >1.5.

Strain	N	Inverted duplications	Target IR	Non-target IR (telomeric)	Non-target IR (centromeric)
<i>sae2</i> ∆ gRNA-48	60	38	27	3	8
<i>sae2</i> Δ <i>rad1</i> Δ gRNA-48	60	40	17	21	2
<i>sae2</i> ∆ gRNA-160	110	52	6	12	34
<i>sae2</i> Δ <i>rad1</i> Δ gRNA-160	104	28	7	11	10

Supplementary Table 2. Analysis of survivors using gRNA-48 and gRNA-160

Strain	Relevant Genotype ¹	gRNA	IR	Nuclease
W1588-4C	MATa	n/a	Native	n/a
LSY4708	MATa	n/a	Native	Plexo-Cas9-ER
LSY4713	MATa	gRNA-17	Native	Plexo-Cas9-ER
LSY4714	ΜΑΤα	gRNA-17	Native	P _{lexO} -Cas9-ER
LSY4751-11C	MAT α sae2::KanMX6	gRNA-17	Native	Plexo-Cas9-ER
LSY4752-4C	MATα mre11::HIS3MX6	gRNA-17	Native	Plexo-Cas9-ER
LSY4763-7D	MATa mre11-H125N	gRNA-17	Native	P _{lexO} -Cas9-ER
LSY4903	MATa	gRNA-17	Scrambled	Plexo-Cas9-ER
LSY4913-2D	MAT α sae2::KanMX6	gRNA-17	Scrambled	Plexo-Cas9-ER
LSY4616	MATa rad1::HphMX6	n/a	Native	n/a
LSY4762-6A	MAT α rad1::HphMX6	gRNA-17	Native	P _{lexO} -Cas9-ER
LSY4762-45D	MAT α sae2::KanMX6 rad1::HphMX4	gRNA-17	Native	Plexo-Cas9-ER
LSY5068-8D	MAT a sae2::KanMX6 pol3-01	gRNA-17	Native	P _{lexO} -Cas9-ER
LSY5068-14D	MAT α sae2::KanMX6 pol3-01	gRNA-17	Native	Plexo-Cas9-ER
	rad1::HphMX4			
LSY5052	MATa	gRNA-48	Native	Plexo-Cas9-ER
LSY5054	MAT α sae2::KanMX6	gRNA-48	Native	Plexo-Cas9-ER
LSY5056	MATa rad1::HphMX4	gRNA-48	Native	Plexo-Cas9-ER
LSY5193	MAT α sae2::KanMX6 rad1::HphMX4	gRNA-48	Native	Plexo-Cas9-ER
LSY5053	MATa	gRNA-160	Native	Plexo-Cas9-ER
LSY5055	MAT α sae2::KanMX6	gRNA-160	Native	Plexo-Cas9-ER
LSY5057	MATa rad1::HphMX4	gRNA-160	Native	Plexo-Cas9-ER
LSY5059	MATa sae2::KanMX6 rad1::HphMX4	gRNA-160	Native	P _{lexO} -Cas9-ER
LSY4904	MATa	gRNA-17	Perfect	Plexo-Cas9-ER
LSY5171-23B	MAT α sae2::KanMX6	gRNA-17	Perfect	Plexo-Cas9-ER
LSY5171-44C	$MAT\alpha$ sae2::KanMX6 rad1::HphMX4	gRNA-17	Perfect	Plexo-Cas9-ER
LSY5171-46A	MAT a sae2::KanMX6 pol3-01	gRNA-17	Perfect	Plexo-Cas9-ER
LSY5235-1	MAT α sae2::KanMX6 pol3-01	gRNA-17	Perfect	Plexo-Cas9-ER
	rad1::HphMX4			
LSY5169	MAT α rad51::NatMX4	gRNA-17	Native	Plexo-Cas9-ER
LSY5000-6D	MATa sae2::KanMX6 rad51::NatMX4	gRNA-17	Native	Plexo-Cas9-ER
LSY4880	MATa pol32::NatMX4	gRNA-17	Native	Plexo-Cas9-ER
LSY4999-3A	MATa sae2::KanMX6 pol32::NatMX4	gRNA-17	Native	P _{lexO} -Cas9-ER

Supplementary Table 3. Yeast Strains

LSY5750-6C	MATa mus81::HphMX4	gRNA-17	Native	P _{lexO} -Cas9-ER
LSY5751	MAT α sae2::KanMX6 mus81::HphMX4	gRNA-17	Native	P _{lexO} -Cas9-ER
LSY5732-37D	MAT a -inc hml∆ hmr∆ leu2::P-GAL-HO- LEU2 ChrV-32878-32897::HOcs	HOcs	Native	P _{GAL} -HO
LSY5744-2A	MAT a- inc hml∆ hmr∆ leu2::P-GAL-HO LEU2 ChrV-32878-32897::HOcs sae2::KanMX6	HOcs	Native	P _{GAL} -HO

Supplementary Table 4. Oligonucleotides

Oligo	Sequence
RF-gRNA-S	20xNGTTTTAGAGCTAGAAATAGCAAGT
RF-gRNA-AS	20xNAAAGTCCCATTCGCCACCCGAAGG
pCeASY-gRNA-S	ttt20xNgttttagag
pCeasy-gRNA-AS	CTAGctctaaaac20XNAaaa

Oligos used to make gRNA constructs

The sequences of gRNAs used in this study

Oligo	Sequence	Coordinates ¹
gRNA-17	ACGTCCAAAATTGAATGACT	ChrV:32878-32897
gRNA-48	ATACTAATCCATGCCGCCAG	ChrV:32847-32866
gRNA-160	GTATATTAGAAACCCGATAA	ChrV:32735-32754
gRNA_mut1	TTGGACGTACAAAGTTCCAC	ChrV:32885-32866
gRNA_mut2	GCCAACTACACTAAGTTCCA	ChrV:32900-32919
pol3-01	ACCAGCACACTCGATATCAA	ChrIV:277840-277830

¹The coordinate listed are based on the S288C reference genome

Oligos use to make the repair templates for CRISPR-Cas9 gene editing

Oligo	Sequence
IR_500_upstream_ F	TGTTAGTTTAGGGTCATTGTAT
IR_500_downstrea m_R	GAAGCATATGTACAATGAGC
Left_IR_perfect_R	AATCACTTTTGCCCaaGAACTTAGTGTAGT
Right_IR_perfect_F	ACTACACTAAGTTCttGGGCAAAAGTGATT
Left_scrambledIR_ R	ttTGCAttCGatCTCcAtATTcAGCGgGCTTAGTGTAGTTGGCCAAGTC
Right_scrambledIR _F	CcCGCTgAATaTgGAGatCGaaTGCAaaAACCAATACATGTAACCATT G
pol3-01_middle	ATCCTACCAGCACACGCGATAGCAAAGGACATGATACGCAATGGA GCTGT
pol3-01_left	CCTAATAGCACATCCTGCTGAGGGTGATTGGTCTCATACAGCTCC ATTGC
pol3-01_right	GTGTGCTGGTAGGATTGGCGTCTTTCCGGAACCTGAATACGATCC CGTCA
pol3-01_mut_F	GTTTCAATTAATTATCGTAACCTAATAGCACATCCTGCTG
pol3-01_mut_R	CACAACGTTGGCAATTTGGATGACGGGATCGTATTCAGG
HOcs_gRNA2_mut _F3	AGTTTCAGCTTTCCGCAACAGTATAATTTTATAAACAAGTTCCAGG GCAAaagtgat
HOcs_gRNA2_mut R3	GTTGCGGAAAGCTGAAACTAAAGTTCCACTGGCGGCA

Oligos used for screening survivors

Oligo	Sequence	Coordinates ¹
P1	CATCACCCTGTGCGTTTTACAAG	ChrV:8772-8794
P2	AATGAGTCAGCTGGATCTATTGCT	ChrV:9199-9176
P3	AGGAAACCCAACCTAAGAAC	ChrV:32602-32621
P4	GTGGGCGCTCTTATATCAT	ChrV:33109-33091
P5	CGGGTGTTATGCCAACGTTG	ChrV:60074-60093
P6	GGCAACTGTCTACCTATTTCCAT	ChrV:60140-60118
P7	TGATGGCTCTTGGAACGGAT	ChrV:32503-32522
P8	CGCTCTTTCCCGACGAGA	ChrV:33310-33293

Other oligos

Oligo	Sequence	Coordinates
P9 (ADH1 F)	TAAGGGCTGGAAGATCGGTGAC	ChrXV:160355-160334
P10 (ADH1 R)	CGTCGTGGGTGTAACCAGACA	ChrXV:160225-160245
P11 (17bp upstream F)	AATGACTTGGCCAACTACAC	ChrV:32891-32910
P12 (17bp downstream R)	TTTATCCACACCTCTGACCAACG	ChrV:33140-33118
P13 (CAN1 control F)	GACCTGTACCAATAGTACCACC	ChrV:33151-33172
P14 (CAN1 control R)	ACAGAGTAAACCGAATCAGGG	ChrV:33677-33657
P15 (MEC1 control F)	GAGTACAGGCATGTGATGT	Chrll:504971
P16 (MEC1 control R)	CCGAGTTCAGGTCTTTTATTGC	Chrll:505728

Supplementary Table 5. Plasmids used in this study

Plasmid	Description	Marker	Source
pML107	<i>P</i> _{TDH3} -CAS9-NLS with gRNA expression cassette	LEU2	(Laughery, Hunter et al. 2015)
pAA1	<i>P</i> _{GAL1} -CAS9-NLS with gRNA expression cassette with Bael site for gRNA cloning	LEU2	This study
pAA3	<i>P_{GAL1}-CAS9-NLS-FLAG</i> in pRG203MX backbone	HIS3	This study
pCAS	P _{GAL1} -CAS9-NLS with P _{tRNA-LYS} -HDV_ribozyme- sgRNA-T _{sNR52}	Kan	(Ryan, Poddar et al. 2016)
pCeASY	P_{GAL1} -CAS9-NLS with $P_{tRNA-LYS}$ -HDV_ribozyme- sgRNA- T_{sNR52} , with Zral-Xbal gRNA cloning sites	Kan	R. Gnügge
pAA9	<i>P</i> _{tRNA-LYS} -HDV_ribozyme-sgRNA-T _{sNR52} , with ZraI-XbaI gRNA cloning sites in pRG205MX backbone	LEU2	This study
pRG634	<i>lexO-HO</i> in pRG205MX background	LEU2	R. Gnügge
pRG635	<i>P_{ACT1}-LEXA-ER-B112-T_{CYC1}</i> in pRG203MX background	HIS3	R. Gnügge
pAA12	IexO-linker-T _{ADH1} P _{ACT1} -LEXA-ER-B112-T _{CYC1}	HIS3	This study
pAA13	<i>P</i> _{tRNA-LYS} -HDV_ribozyme-sgRNA17-T _{sNR52} in pRG205MX	LEU2	This study
pAA16	<i>lexO-CAS9-NLS-FLAG-T_{ADH1} P_{ACT1}-LEXA-ER-B112-T_{CYC1}</i> in pRG203MX	HIS3	This study
pAA18	<i>lexO-CAS9-ER-NLS-FLAG-T_{ADH1} P_{ACT1}-LEXA- ER-B112-T_{CYC1}</i> in pRG203MX	HIS3	This study
pAA19	<i>IexO-CAS9-NLS-FLAG-T_{ADH1} P_{ACT1}-LEXA-ER-B112-T_{CYC1}</i> in pRG203MX (CAS9 and LEXA-ER-B112 tail to tail)	HIS3	This study
pAA20	<i>lexO-CAS9-ER-NLS-FLAG-T_{ADH1}</i> P_{ACT1} - <i>LEXA-ER-B112-T_{CYC1}</i> in pRG203MX (CAS9 and LEXA-ER-B112 tail to tail)	HIS3	This study
pAA21	<i>P</i> _{tRNA-LYS} -HDV_ribozyme-sgRNA48-T _{sNR52} in pRG205MX	LEU2	This study
pAA22	<i>P</i> _{tRNA-LYS} -HDV_ribozyme-sgRNA160-T _{sNR52} in pRG205MX	LEU2	This study
pAA23	P_{GAL1} -CAS9-NLS with $P_{tRNA-LYS}$ -HDV_ribozyme- sgIR-gRNA_mut2- T_{sNR52}	Kan	This study
pAA24	P_{GAL1} -CAS9-NLS with $P_{tRNA-LYS}$ -HDV_ribozyme-sgRNApol3-01- T_{sNR52}	Kan	This study

Supplementary Figure 1. Leaky expression of Cas9. a, Spontaneous mutation rate of *CAN1* in WT cells carrying the indicated the Cas9 constructs with a gRNA targeting the *CAN1* locus or without gRNA. Cas9 expression was not induced during the experiment. P values were determined using a two-tailed t-test. *PGAL1-CAS9*, *n*=6; *Plex0-CAS9*, *n*=6; *Plex0-CAS9-ER*, *n*=9; no gRNA, *n*=5; 2-4 biological replicas. **b**, Constructs used to express Cas9. Source data are provided as Source Data Supplementary Figure 1.

Supplementary Figure 2. Molecular analysis of survivor types from WT cells. a, The P3/P4 primer PCR products from select WT clones were sequenced and show evidence of indels. **b**, Schematic of the left arm of Chr V showing the location of the DSB and inverted repeats (yellow arrows). Primer pairs to detect retention of terminal sequence, NHEJ events and *LYP1* conversions are shown in red, blue and purple, respectively. **c**, Clones that had P1/2 but not P3/4 PCR bands were amplified using the P7/P8 primer pair to detect the presence of sequences further away from P3/P4. **d**, Sanger sequence of P7/P8 primer PCR products shows evidence of *LYP1* conversions.

Supplementary Figure 3. HO-induced inverted duplications and analysis of survivors from the scrambled IR strain. a, Sequence of the original gRNA target (top) and the HO cut site that replaces it (bottom). In both, red denotes the nuclease recognition sequence. Underlined in red: the HO cut site. In purple, the inverted repeat sequence. **b**, Survival frequencies of WT and *sae2* Δ either expressing HO or Cas9. P values were determined using a two-tailed t-test. WT HO, *n*=12; *sae2* Δ HO, *n*=12; *sae2* Δ Cas9, *n*=3; 3 biological replicas except *sae2* Δ Cas9. **c**, Colony PCR using the indicated primers of cells surviving a DSB by HO adjacent to the IR. **d**, Copy number analysis by qPCR (primers P5/P6) of independent clones with the indicated genotypes surviving the HO-induced DSB. **e**, Sequence of the original IR and scrambled IR located 17 bp from the gRNA target sequence. **f**, The sequence at the center of the inverted duplications of two *sae2* Δ clones with the scrambled IR. Mismatches in the inverted repeat are shown in lower case. In red is the gRNA target sequence. For GCR_72, the position of the scrambled IR within the unrearranged sequence is shown for reference. **g**, 32 independent clones from *sae2* Δ cells with scrambled inverted repeat were analyzed using P3/4 primers to detect NHEJ events. Source data are provided as Source data Supplementary Figure 3.

Supplementary Figure 4. Analysis of sae2 Δ rad1 Δ and sae2 Δ pol3-01 clones. a, 30 independent clones from sae2 Δ rad1 Δ and sae2 Δ pol3-01 cells were analyzed using P3/4 and P1/2 primers to detect NHEJ events or loss of Chr V terminal sequence. "P" denotes the parental strain. b, Nine inverted duplication clones from the sae2 Δ pol3-01 mutant and 11 clones from the sae2 Δ pol3-01 rad1 Δ mutant used the PAM IR directly adjacent the cut site. Note: the latter IR is the same used in the inverted duplications in WT clones (Figure 2F). c, The sequence of the inverted repeat (purple font) mutated to correct the mismatches (underlined, lower case). d, The position of the gRNA-17, gRNA-48 and gRNA-160 relative to the inverted repeat.

100 kbps

Supplementary Figure 5. NGS analysis of inverted duplication clones. a, Derivative Chr V in $sae2\Delta rad1\Delta$, $sae2\Delta pol3-01$ and 10 $sae2\Delta rad1\Delta pol3-01$ clones . **b**, Derivative Chr V in WT clones, including those without inverted duplications.

Supplementary Figure 6. Complex rearrangements. Clones that exhibit quadruplications centromeric to the target IR in a $sae2\Delta$ (a) and in two $sae2\Delta$ $rad1\Delta$ clones (b and c). Left: log2 ratios of genome-wide copy number relative to parental reads. Right: relative copy number of junctions between the higher order duplication order copy number and duplication sequence, and between the latter and non-duplication sequence. In each case, a naturally occurring IR occurs at the junction of the drop in copy number. Below each panel is the IR sequence highlighted in the right panels and occur at the center of an inverted duplication.

Supplementary Figure 7. Inverted duplications spanning most of the sequences centromeric to the DSB with a centromere loss. Genome-wide copy number analysis of 6 independent $sae2\Delta rad1\Delta pol3-01$ clones that survived a DSB targeted by gRNA17. Below each copy number plot is the sequence at the junction of the rearrangement that spans a deleted *CEN5* and aligned to the parental sequence (coordinates are from the S288C genome published on SGD).

Supplementary Figure 2c

Supplementary Figure 3c

Supplementary Figure 3f

Supplementary Figure 4a

