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Appendix A: Derivation of the wave speed

1. Fitness speed relation

To derive the speed of the viral wave, we look for solutions of the form n(x, t) = n(x − vt, t). To this end, we
consider Eq. 5 in the frame of reference of the wave, u = x− vt, and we assume that it admits a stationary solution

D∂2un(u) + v∂un(u) + F (u)Θ(n− nc)n(u) = 0. (S.1)

The main assumption is that the behavior of the wave is driven only by the individuals at the front tip. If we define
uT = xT −vt the antigenic position at which n(uT ) = nc, we encode this assumption by considering only the behavior
around uT . In particular, the fitness is approximated is a linear function around it: F (u) ≈ F (uT )+∂uF (uT )(u−uT ) ≡
FT + sT (u− uT ).

The next step is to solve equation S.1 on the right and on the left of uT , and then to impose the continuity of the
infected host profile and its derivative. For u > uT the equation reduces to

D∂2un(u) + v∂un(u) = 0. (S.2)

solving this equation and imposing n(∞) = 0 and n(uT ) = nc, one can find

n(u) = nc exp
(
− v

D
(u− uT )

)
for u > uT . (S.3)

The behavior of the wave on the left of the tip can be obtained by solving

D∂2un(u) + v∂un(u) + (FT + sT (u− uT ))n(u) = 0. (S.4)

We consider the solution as n(u) = exp(−vu/(2D))ψ(u). By plugging it into Eq. S.4, the equation to solve becomes

D

sT
∂2uψ(u) +

(
FT

sT
− uT − v2

4DsT
+ u

)
ψ(u) ≡ c1∂

2
uψ(u) + (u− c2)ψ(u) = 0, (S.5)

where the coefficients c1 = D/sT and c2 = uT + v2/(4DsT )− FT /sT are introduced for a shorter notation. One can
then realize that the equation can be rewritten as an Airy equation with a simple change of variable y = c2 − u. The
solution can be then expressed as a linear combination of Airy functions:

ψ(y) = AAi
(
yc

−1/3
1

)
+BBi

(
yc

−1/3
1

)
. (S.6)

However, by knowing that the function decays to zero for u→ ∞, the coefficient B can be set to zero. This leads to
the following solution:

n(u) = A exp
(
− v

2D
u
)
Ai
(
(c2 − u)c

−1/3
1

)
for u < uT . (S.7)

Now we have to impose continuity and equality of the first derivative between the Eq. S.3 and Eq. S.7 at the
intersection point uT . After some algebra, the two conditions lead to the following expression:

Ai′
(
(c2 − uT )c

−1/3
1

)
Ai
(
(c2 − uT )c

−1/3
1

) =
v

2D
c
1/3
1 =

v

2(D2sT )1/3
. (S.8)

This dimensionless ratio diverges in the FKPP regime as the slope of the fitness profile vanishes, but could reach more
moderate values in the linear fitness regime. In a first approximation we assume that it is large enough for the Airy
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function at the denominator on the left-hand-side to be close to its first zero ξ0 ≈ −2.3381. We can then expand the
function around ξ0:

Ai′ (ξ0 + ϵ)

Ai (ξ0 + ϵ)
≈ Ai′ (ξ0 + ϵ)

Ai (ξ0) + ϵAi′ (ξ0)
≈ 1

ϵ
=

v

2D
c
1/3
1 . (S.9)

The value of ϵ can be found as ϵ+ ξ0 = (c2 − uT )c
−1/3
1 and, after some algebra, one can obtain

c2 − uT − ξ0c
1/3
1 =

2D

v
. (S.10)

Finally, by expliciting the coefficients c1 and c2, a relation between the speed of the wave, the fitness at the tip and
its derivative can be obtained:

v2

4D
= FT + ξ0

(
Ds2T

)1/3
+

2DsT
v

. (S.11)

The third term on the right handside isn’t a priori negligible in the linear-fitness regime for which we show in the
next section that v ∼ (D2sT )

1/3. However, we tested this fitness speed relation for different values of the cutoff nc in
Fig. S1A and observed that neglecting this term provides a very good approximate relation:

v2

4D
≃ FT + ξ0

(
Ds2T

)1/3
. (S.12)

A more thorough justification requires to calculate the exact speed in the linear-fitness regime to estimate the relative
contribution of each term and is provided in the next section. Overall, Fig. S1A shows that Eq. S.12 is satisfied
independently of the cutoff as well as for the stochastic model described in Sec. 4B.

We want to stress that the expression Eq. S.12 still depends on one unknown quantity: the position of the tip, uT .
As discussed also in the main text, this makes the expression only implicit and does not provide a direct prediction
of the wave speed from the model parameters. However, since we do not specify the shape of F (u), the validity of
the equation goes beyond the presented model and can be a valuable result for other frameworks that study traveling
wave dynamics, connecting the wave speed with interpretable quantities, i.e. FT and sT .

In general, to close this expression, one first step is to impose the normalization of the population profile∫ ∞

−∞
du n(u) = N. (S.13)

This integral needs the value of the function n(u) in the whole domain, which, in our case, is unknown and does not
allow us to close the expression for the wave speed. However, this can be done in the extreme regimes (see also the
main text): in the FKPP regime Eq. S.12 looses its dependence on uT and does not require Eq. S.13, while, in the
linear-fitness regime, the integral of Eq. S.13 can be solved. In this latter case N is still unknown, but the fitness
depends on it and the chain of conditions can be closed by imposing that the average fitness is zero (see next section
for the derivation).

However, in general, the value of the speed does depend on the cutoff value, as shown by Fig. S1B where the speed
is plotted as a function of the cross reactivity. This dependency is weak, as proven by the fact that varying the cutoff
for several order of magnitude leads to quite similar speeds In the two limit cases, this dependency can be analytically
understood. In the FKPP regime, there is no dependency on nc, while, in the linear-fitness case, the cutoff appears
as a factor dividing the population size, Eq. S.25. The stochastic simulations show a speed which is compatible with
an effective value of the deterministic cutoff.

2. Wave speed in the linear-fitness regime

Here we consider the system in the linear-fitness regime, where the wave feels an approximately linear fitness profile.
This regime is obtained for large values of r0 or, more precisely, for a small adimensional coefficient k ≪ 10−3. In
such a condition we assume that the fitness is linear and zero at the center of the wave: F (u) = su (so that u = 0
is the mean viral position in the co-moving frame). The explicit expression of the fitness slope s will be found later.
This allows us to write down the approximation of Eq. 5, which we consider at stationarity in the frame of reference
of the moving wave

D∂2un(u) + v∂un(u) + suΘ(n− nc)n(u) = 0. (S.14)
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FIG. S1: (A): Testing the fitness speed relation, Eq. S.12 for different deterministic simulations of Eq. 5 having different cutoffs
nc. The relation is tested also for a stochastic simulation (red dots) whose details are described in Sec. 3B. The threshold below
which the simulation is fully stochastic is nstoch = 105. In this latter setting, speed, fitness and selection at the tip fluctuates,
and to build the figure are averaged over a stationary trajectory. The other parameters of the simulations are: µx = 4 10−3

day−1, β = 0.12 day−1, γ + α = 0.1 day−1, M = 5, Nh = 1010. The panel (B) shows the wave speed as a function of r0. The
stochastic setting behaves like a deterministic one with a proper cutoff, in this case around nc ∼ 10. Panel (C) tests that the
value of the speed is approximately invariant for different values of ∆x if the antigenic space is taken in units of ∆x. This
confirms that Eq. 5 is approximately invariant by change of spatial units of measures, and allows us to fix them by choosing
∆x = 1.

As for the previous derivation of the fitness-speed relation, we want to solve the equations on the right and on the left
of the tip of the wave uT , where n(uT ) = nc, and then impose the continuity of the function and its derivative on the
junction point. On the right side, u > uT the solution is exactly equal to Eq. S.3. For u < uT , the structure of the
equation is the same as the previous section, but with different coefficients. The solution is then the Airy function S.7
with c1 = D/s and c2 = v2/(4Ds):

n(u) = A exp
(
− v

2D
u
)
Ai
(
(c2 − u)c

−1/3
1

)
for u < uT . (S.15)

Importantly, this population profile is valid in the whole antigenic space, while before we were considering only the
expression close to the tip. As before, we can impose the the continuity of the function and its derivative in uT and
get

c2 − uT − ξ0c
1/3
1 =

v2

4Ds
− uT − ξ0

(
D

s

)1/3

=
2D

v
. (S.16)

This provides a first equation connecting the speed with the model parameters, however we still have the unknown
uT . To find a second condition for fixing its value, we consider the normalization of the host population∫ uT

−∞
du n(u) ≈ N, (S.17)

where we consider the contribution to N given by the right side of the cutoff negligible. The expression of the number
of hosts for u < uT is known in this regime, Eq. S.15 (with the previously specified coefficients c1 and c2). This leads
to the following integral

nc

Ai
(
(c2 − uT )c

−1/3
1

) ∫ uT

−∞
du exp

(
− v

2D
(u− uT )

)
Ai
(
(c2 − u)c

−1/3
1

)
≈ N, (S.18)

where the coefficient A in Eq. S.15 has been fixed with n(uT ) = nc.

By making a change of variable in the integral ξ = ξ0 + (uT − u)/c
1/3
1 and using expression S.16 one obtains∫ ∞

ξ0

dξ c
1/3
1 exp

(
vc

1/3
1

2D
ξ

)
Ai

(
ξ +

2D

vc
1/3
1

)
=
N

nc
exp

(
vc

1/3
1

2D
ξ0

)
Ai

(
2D

vc
1/3
1

+ ξ0

)
, (S.19)
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ξ0

dξ exp

(
ξ

η

)
Ai (η + ξ) =

N

ncc
1/3
1

exp

(
ξ0
η

)
Ai (η + ξ0) , (S.20)

where in the second equation we just substituted η = 2Dc
−1/3
1 /v which is a small quantity since the diffusion coefficient

is much smaller than the speed. The next approximation is to extend the limit of integration from the first zero of the
Airy function to −∞, by knowing that in this domain the function is oscillating around 0 and therefore is expected
to give a negligible contribution. This allows us to use the following equality involving the Airy function [1]∫ ∞

−∞
eptAi(t)dt = exp

(
p3/3

)
(S.21)

which leads to the following expression if we neglect η in the Airy function argument

exp
(
η−3/3

)
=
Nc

−1/3
1

nc
exp

(
ξ0
η

)
Ai (η + ξ0) . (S.22)

The next steps is to take the logarithm of this expression and expand the Airy function around its zero

η−3

3
= log

(
Nc

−1/3
1

nc

)
+ ξ0η

−1 + log
(
ηAi′ (ξ0)

)
. (S.23)

We now consider the leading term η−3 and the logarithmic term containing the population size. This gives us the
following estimate of the speed in the linear fitness regime (shown in the main text)

v ≈ 2

(
3sD2 ln

(
N

nc

s1/3

D1/3

))1/3

. (S.24)

At this stage we can see that for a large enough population size N ≫ nc(D/s)
1/3 the third term on the right-hand-side

of Eq. S.11 is negligeable with respect to the second term ξ0(Ds
2)1/3 and Eq. S.12 is a good approximation to the

fitness speed relation. This condition is verified for the range of parameters considered in this paper as shown in
Fig. S1A.

To get a more precise estimate of the speed, one can consider also the order η−1, leading to

v = 2
(
sD2

)1/3 [(
3 ln

(
N

nc

s1/3

D1/3

))1/3

+ ξ0

(
3 ln

(
N

nc

s1/3

D1/3

))−1/3
]
. (S.25)

In fact, these expressions still depends on N and s which we derive in the following. We start by integrating the
equation for the density of immune receptors, Eq. 2, with a stationary number of infected hosts N(t) = N and defining
τ =MNh/N :

h(x, t) =
1

N

∫ t

−∞

dt′

τ
exp

(
− t− t′

τ

)
n(x, t). (S.26)

Then one makes the approximation that the wave has a very small width compared with the spatial scale vτ , which
characterizes the decay of the immune density. This allows us to consider n(x) as a delta function at u = 0:
n(u) = δ(u)/N , where u = x− vt, leading to the following expression

h(u) =
1

vτ
exp

( u
vτ

)
Θ(−u), (S.27)

where Θ(u) is the Heaviside function. With such an expression, the coverage, Eq. 3, can be computed explicitly,
leading to (for u > 0)

c(u) =
r0e

−u/r0

vτ + r0
. (S.28)

We can then compute the fitness felt by the wave

F (u) = β

(
1− r0e

−u/r0

vτ + r0

)M

− α− γ. (S.29)
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In this regime the fitness is assumed to be linear, F (u) ≈ F (0) + ∂uF (0)u, which is justified if the width of the wave
is much smaller than r0. By having assumed the stationary condition, we expect the fitness of the bulk of the wave
to be zero, i.e. F (0) = 0. The leads to the following condition that connects the wave speed with the population size
N and, together with Eq. S.25, closes the system having v and N as unknown

vτ =
vMNh

N
= r0

(
R

1/M
0 − 1

)−1

. (S.30)

Finally, the explicit value of the fitness slope s can be obtained from s = ∂uF (0)

s =
βM

r0 + vτ

(
vτ

r0 + vτ

)M−1

=
α+ γ

r0
M
(
R

1/M
0 − 1

)
. (S.31)

Appendix B: Derivation of the mutational load

To obtain the effect of deleterious mutations in our epidemiological context, we follow the approach proposed in [2],
which, in turn, refers to the classical results of mutation selection balance of population genetics [3, 4]. We consider
a population in which nk(t) is the number of individuals carrying k deleterious mutations. Mutations are assumed
to occur during the bottleneck of a transmission event. This is because harmful mutations arising within the very
few individuals that are transmitted are weakly subject to purifying selection, while, if they occur during the course
of an in-host infection, selection will tend to remove them. The number of mutations that can occur per genome
at transmission are assumed to follow a Poisson distribution with rate Ud. Moreover, we assume that each single
deleterious mutation affects the transmissibility of the population by a multiplicative factor (1 − sd), leading to the
following transmissibility for the population having k mutations:

βk = β0(1− sd)
k. (S.1)

Putting all the assumptions together, one obtain the following temporal evolution for the number of infected hosts:

∂tnk = S

k∑
j=0

βjnjPoiss(k − j|Ud)− γnk = Sβ0e
−Ud

k∑
j=0

(1− sd)
jnj

Uk−j
d

(k − j)!
− γnk (S.2)

where, for simplicity, the virulence α and the recovery rate γ are condensed together in a single parameter.
At equilibrium, one can impose the stationarity of the equation above and find the number of infected hosts

n∗k = N
e−Ud/sd

k!

(
Ud

sd

)k

. (S.3)

This expression can be verified by substituting it in Eq. S.2 and using the relation β0S = eUdγ that can be obtained
from ∂tn0 = 0.

As a final step, we can compute the average transmission rate that such a population has

⟨β⟩ =
∑
k

βk
n∗k
N

= β0e
−Ud/sd

∑
k

(1− sd)
k

k!

(
Ud

sd

)k

= β0e
−Ud ≈ β0(1− Ud). (S.4)

Using this expression, one can then obtain an effective growth rate for the population having a given deleterious
mutation rate

F (x) = ⟨β⟩S(x)− γ = β0S(x)e
−Ud − γ ≈ β0S(x)(1− Ud)− γ. (S.5)

In the main text, to discuss about evolutionary stability of the beneficial mutation rate or selection coefficient, the
deleterious mutation coefficient is expressed as the product of a constant and the beneficial mutation rate

Ud = aµx = λD (S.6)

where a = ∆x2λ/2 can be interpreted as a ratio between deleterious and beneficial mutations which cannot be
changed. What can be changed by viruses is the global mutation rate, which would increase the antigenic mutation
rate µx but, at the same time, would increase the deleterious rate though the relation above, leading to the mutational
trade-off.
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Appendix C: Evolutionary stability analysis

1. General stability condition

To derive the condition for the invasion of a mutant, we start by considering a resident population at a stationary-
wave state. We also consider a generic mutant that can have, in general, a new set of parameters labeled with a
prime, e.g. β′, D′, . . ., which are assumed to be close to the parameters of the resident. In the frame of reference of
the resident wave moving at speed v, the equation for the mutant dynamics reads

∂tn
′(u, t) = D′∂2un

′(u, t) + v∂un
′(u, t) + F ′(u)Θ(n+ n′ > nc)n

′(u)

F ′(u) = β′S(u)− γ′ − α′ ≈ F ′
T + s′T (u− uT ).

(S.1)

Note that the quantities not labeled with a prime are the wave speed v and the susceptibility of the resident population
S(u). We assume that the mutant is rare enough that it does not generate any significant immune response, and,
therefore, it does not contribute to the susceptibility. Moreover, the resident population number appears within the
theta function, which imposes the cutoff when the total number of individuals, n+n′, is smaller than the threshold nc.
This assumption allows us to identify the tip of the wave at the same position both for the resident and the invading
populations, greatly simplifying the calculations. Finally, as for the previous calculations, the fitness is linearized
around the tip, implying that, also for this derivation, the success or failure of an invasion depends only on what
happens at the tip.

We are going to look for solutions n′(u, t) = eρtϕ(u), i.e. a stationary profile that would grow or decay at rate ρ.
Here we also make the approximation that success or failure in the invasion depends only on the sign of this rho.
That is to say that we identify a successful mutant only by looking at its initial growth rate. By substituting this
solution in the equation above with a linearized tip we can solve the equation on the right and on the left of the tip
as performed in the previous paragraphs. For u > uT one has to solve

D′∂2uϕ(u) + v∂uϕ(u)− ρϕ(u) = 0, (S.2)

which leads to the solution

ϕ(u) = nc exp

(
− v

2D′

(
1 +

√
1 +

4D′

v2
ρ

)
(u− uT )

)
≈ nc exp

(
−
( v

D′ +
ρ

v

)
(u− uT )

)
(S.3)

On the left side of the tip, we can find an Airy equation like Eq. S.5 (but different coefficients c1 and c2)

D′

s′T
∂2uϕ(u) +

(
F ′
T − ρ

s′T
− uT − v2

4D′s′T
+ u

)
ϕ(u) ≡ c1∂

2
uϕ(u) + (u− c2)ϕ(u) = 0. (S.4)

Therefore leading to the solution S.7. As before we impose the continuity of the function and the derivative at the
intersection, leading to

Ai′ (ξ0 + ϵ)

Ai (ξ0 + ϵ)
=
( v

2D
+
ρ

v

)
c
1/3
1 ≈ v

2D
c
1/3
1 . (S.5)

where ρ is considered to be small. We can then carry out all the procedure of the sections before of approximating
the Airy function around its zero. This leads to

c2 − uT − ξ0c
1/3
1 =

ρ− F ′
T

s′T
+

v2

4D′s′T
− ξ0

(
D′

s′T

)1/3

= 0, (S.6)

ρ = F ′
T + ξ0

(
D′s′T

2
)1/3

− v2

4D′ = 0. (S.7)

If this last expression is larger than zero, we then expect a mutant that grows and invades the resident population,
Eq. 10 of the main text. This condition has been tested in figure S2, where, given a mutation coefficient D′ for
the mutant, we looked for the value of transmissibility β̃′ such that the mutant invades for β′ > β̃′ or does not for
β′ < β̃′. The equation above, i.e. ρ(β̃′, D′) = 0, provides a prediction for this value β̃′ as a function of D′. Despite
the numerous approximations in the computation above, the prediction of this transition point is very accurate. More
details on how the simulations are performed are in the caption of the figure.
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FIG. S2: Testing the invasion criteria S.7. A given resident population is first simulated in isolation until it reaches stationarity
with parameters D = 5 · 10−6, β = 2, γ + α = 1, M = 5, Nh = 1012 and r0 is indicated in the plot title. Then, a mutant with
given D′ = D + ∆D and β′ = β + ∆β is introduced with n′(x) = ϵn(x), ϵ = 0.05 (all the other mutant parameters are the
same of the resident). The system evolves until one of the two populations becomes 10/ϵ times bigger than the other or after

6000 units of time. This is repeated for different values of β′ using a bisection-like iteration until the point of transition, β̃,
between a successful or unsuccessful invader is found. Each black point in the plot is (β∗ − β)/β for a given D′. The red line
is the prediction of Eq. S.7 equal to zero.

The invasion condition S.7 simplifies considerably in the limits of small and large r0. For small r0, the fitness is
saturated, so that F ′

T = F ′
max = β′ − α′ − γ′ and σ′

T = 0. Using F ′
max = v′2/4D′, the invasion condition becomes:

v′2 − v2

4D
> 0. (S.8)

The evolutionary stable solution is the one that maximizes the speed of the wave.
For large r0 the fitness profile is approximately linear, so that s′T = s′ and F ′

T = F (0)′ + s′xT , FT = sxT . By
plugging these equations into the invasion condition one has

F (0)′ + s′xT + ξ0
(
D′s′2

)1/3 − v2

4D′ > 0. (S.9)

We can now use the speed-fitness relation, Eq. 7, and FT = sxT to obtain

F (0)′ + xT

(
s′ − D

D′ s

)
+ ξ0

((
D′s′2

)1/3 − D

D′

(
Ds2

)1/3)
> 0. (S.10)

The selection terms in s and s′ are subdominant, since s ∝ r−1
0 . The dominant term is therefore the fitness of the

mutant at the center of the wave,

F (0)′ = β′S(0)− α′ − γ′ =
β′(α+ γ)

β
− α′ − γ′ > 0. (S.11)

Using the definition of the reproductive ratio R0 = β/(α+ γ), this yields the condition

R′
0 > R0. (S.12)

To find a general criterion for the evolutionary stability of the viral population, we assume that the evolution acts
on a generic parameter θ from which all the other parameters can depend on: β(θ), α(θ), γ(θ), D(θ). As before, we
label with a prime the parameter of a mutant θ′. We also indicate the fitness and its derivative at the tip as FT (θ),
sT (θ) for the resident population and F ′

T (θ
′, θ) = β(θ′)S(θ) − α(θ′) − γ(θ′), s′T (θ

′, θ) = β(θ′)∂xS(θ) for the mutant
growing in the resident θ. The growth rate of a mutant can be then expressed as a function of θ and θ′: ρ(θ′, θ). The
evolutionary stability is reached at a value θ∗ such that the growth rate of a mutant having a slightly different value
is no larger. As shown in the main text, this translates into the condition ∂θ′ρ(θ′, θ)|θ′=θ=θ∗ = 0, where the derivative
acts only on the parameters labeled with a prime in equation S.7,[

∂θ′F ′
T (θ

′, θ) +
2ξ0
3

(
D(θ′)

s′T (θ
′, θ)

)1/3

∂θ′s′T (θ
′, θ) +

(
v(θ)2

4D(θ′)2
+
ξ0
3

(
s′T (θ

′, θ)

D(θ′)

)2/3
)
∂θ′D(θ′)

]∣∣∣∣∣
θ′=θ=θ∗

= 0. (S.13)
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FIG. S3: Panel (A): test of the evolutionary stability equation Eq. S.17. The left panel shows the deterministic setting with
cutoff with parameters β0 = 0.05 days−1, γ + α = 0.04 days−1, M = 5, Nh = 1010. The right panel A tests the equation for
the stochastic simulations as described in Sec. 4B with nstoch = 104 and parameters λ = 250 days/n.mutations2, β = 2 days−1,
γ + α = 1 days−1, M = 5, Nh = 1010. (B): same stochastic simulations of panel A-right but plotted as a function of r0. The
blue line is the temporal average over D∗ which fluctuates with a the standard deviation of the error bar. The continuous line
is the prediction of Eq. S.17. Panel (C) checks that the evolutionary stable antigenic mutation rate is independent of ∆x after a
proper rescaling of r0. This confirms that Eq. 5 is approximately invariant by spatial re-scaling. Parameters: β0 = 0.05 days−1,
γ + α = 0.04 days−1, a = 100 days, M = 5, Nh = 1010.

We now want to express the equation only as a function of the fitness and the selection at the tip by using Eq. S.12
for v(θ). We will also use the fact that D(θ)|θ=θ∗ = D(θ′)|θ′=θ∗[

∂θ′F ′
T (θ

′, θ) +
2ξ0
3

(
D(θ′)

s′T (θ
′, θ)

)1/3

∂θ′s′T (θ
′, θ) +

(
F ′
T (θ

′, θ) +
4ξ0
3

(
s′T (θ

′, θ)
2
D(θ′)

)1/3) ∂θ′D(θ′)

D(θ′)

]∣∣∣∣∣
θ′=θ=θ∗

= 0.

(S.14)
This expression can be rewritten in a more compact form by introducing σ′

T (θ
′, θ) = ξ0(D(θ′)s′T (θ

′, θ)2)1/3, which
leads to [

∂θ′F ′
T (θ

′, θ) + ∂θ′σ′
T (θ

′, θ)

F ′
T (θ

′, θ) + σ′
T (θ

′, θ)
+
∂θ′D(θ′)

D(θ′)

]∣∣∣∣
θ′=θ=θ∗

= 0. (S.15)

Recognizing logarithmic derivatives, this condition is equivalent to:

∂θ′ [(F ′
T (θ

′, θ) + σ′
T (θ

′, θ))D(θ′)]|θ′=θ=θ∗ = 0. (S.16)

2. Evolutionary stability of the mutation rate

The evolutionary stable antigenic diffusion coefficient D∗ under mutational load trade-off, where the fitness is
F (u) = β0S(u)(1−λD)−γ−α, from Eq. S.5, can be obtained by identifying θ = D in Eq. S.15. Note that the choice
∆x = 1 allows us to get the evolutionary stable antigenic mutation rate as U∗

x = 2D∗. After some algebra, one can
get the following formula

F ∗
T (1− 2λD∗) + σ∗

T

(
4

3
− 2λD∗

)
− γλD∗ = 0, (S.17)

where for simplicity we put α = 0 and we dropped the dependencies from θ∗, writing, for example, F ∗
T = FT (θ

∗).
This expression provides D∗ as a function of the fitness value and slope at the tip and it is tested in Fig. 3 and S3,
that prove its validity also in the stochastic setting.

It is interesting to study the limits of this expression in the FKPP and linear fitness regime. In the first, setting
σT = 0 and FT = β0(1− λD)− γ, one can obtain

D∗ =
β0 − γ

2β0λ
, (S.18)

under the condition that 1−λD = 1−Ud ̸= 0, which is satisfied since the deleterious mutation rate is a small quantity.
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FIG. S4: Panel (A): test of Eq. S.21. On the left in the deterministic setting with cutoff, where the transmissibility reads

β(α) = b
√
α and the parameters are b = 0.5 days−1/2, γ = 0.05 days−1, M = 5, Nh = 1010. On the right in the stochastic

setting with parameters: D = 10−5 n.mutations2/days, b = 2 days−1/2, γ = 0.5 days−1, M = 5, Nh = 1012. The simulations
are performed as described in Sec. 3B and Sec. 3C with nstoch = 105. The points are temporal averages of the quantity. Panel
(B): same stochastic simulation shown as a function of r0. The error bars quantifies the standard deviations of the temporal
fluctuations of α∗. The blue line is the prediction of Eq. S.21.

In the linear fitness regime, an explicit expression can be obtained only by considering λD ≪ 1, which leads to

F ∗
T + σ∗

T

4

3
− γλD∗ =

v∗2

4D∗ +
σ∗
T

3
− γλD∗ = 0, (S.19)

where we used the fitness-speed relation. We can now express the speed as v = A s1/3D2/3 using Eq. S.25, where
A contains logarithmic dependencies. This allows us to make also the approximation of considering A constant in D
and get

D∗ =
Mγ

r0

((
β0
γ

)1/M

− 1

)(
1

γλ

(
A2

4
− ξ0

3

))3/2

, (S.20)

where we used Eq. S.31 for the selection coefficient.

3. Evolutionary stability of the virulence

In a similar way of what we did for the evolutionary stable mutation rate, we can obtain the equation for the
evolutionary stable virulence, i.e. θ = α in Eq. S.15,

∂αβ(α
∗)

β(α∗)

(
F ∗
T + α∗ + γ +

2

3
σ∗
T

)
= 1, α∗ = F ∗

T + γ +
2

3
σ∗
T , (S.21)

where the expression on the right assumes the transmissibility trade-off as β(α) = b
√
α. The validity of this expression

is tested in Fig. 5 in a deterministic setting and Fig. S4 for a stochastic simulation.
We can also write explicitly the expression in the FKPP regime (in a general way and with our specific assumption

on the trade-off):

∂αβ(α
∗) = 1, α∗ = b2/4. (S.22)

Finally, in the linear fitness regime one can simply use the fitness-speed relation to express FT as a function of the
speed and get

∂αβ(α
∗)

β(α∗)

(
v∗2

4D∗ + α+ γ − σ∗
T

3

)
= 1. (S.23)

One can then express v from Eq. S.25, use s∗T given by Eq. S.31 and numerically solve for α∗ (which is the procedure
used to get the linear-fitness predictions in -Fig.5.)
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