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SI 1.1  Molecular descriptors. 

The behavior and properties of non-strongly-correlated molecular systems (e.g. solvation free 
energies and ligand-protein binding), are primarily determined by intermolecular interactions. 
Trying to simultaneously represent the spectra of atomization, bonded interactions, and 
intermolecular ones can wash out the accuracy of the last set as their energetic range is lowest. 
Therefore, to fit QM dimer interaction energies in our NN model we choose descriptors assigned 
to each intermolecular atom-atom contact within a certain distance cutoff (currently 5 Å). These 
differ from commonly used atom-centered descriptors that describe the environment of each 
atom in the molecular system and are thus more appropriate for accurate fitting of 
intramolecular energies and describe properties such as torsional barriers and vibrational 
spectra.  Furthermore, intermolecular interactions depend primarily on the geometries of 
intermolecular contacts, to a lesser extent, on the electron-density changes caused by the 
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monomer distortions, mostly adjacent, of the interacting molecules. Consequently, our 
interaction fingerprint (Fig. 2a) is coupled to these two geometric factors. 

We design the descriptors or Atom Pair Symmetry Functions (APSF)  to represent an atom-
atom contact (an intermolecular bond). They consist of 2/r_ij function ( r_ij - the distance of the 
contact) and sum of terms dependent on relative coordinates of atoms of the contact and 
environment atoms covalently bound to atoms of the contact versus geometrical center  of the X
contact (see Fig. 2a).   APSF are obtained by summing over the participating atoms j,k in the 
following manner: 

pnl =
2l + 1

4π
∑

j
∑

kgn - l,l(|rj -  X|)gn - l,l(|rk -  X|)Pl(cos γjk)
where , 0 ≤ n ≤ nmax, 0 ≤ l ≤ lmax

 is the Legendre polynomial of order  and  is the triplet angle between atoms i, j and k,Pl l γjk

radial basis functions  are linear combinations of spherical Bessel functions of the first kind   gnl(r)

  with expansion coefficients chosen satisfy the conditions of orthogonality and zero first jl(r
uln

rc
)

and second derivatives of   vs r at the cutoff radius  1,2. By construction these descriptors gnl(r) rc
are invariant to permutations of atoms of the atomic contact and environment atoms. For 
systems considered in this paper we used spherical Bessel descriptors with = = 6, but nmax lmax
we use them to encode pair-specific intermolecular interactions (APSF in Fig 2a). The spherical 
Bessel-based APSF are twice-differentiable with respect to atomic positions, which is necessary 
to make forces continuous.  They also satisfy the condition for optimal completeness [Kocer, et 
al., 2020] which permits us to encode a local atomic environment with fewer descriptors [Kocer, 
et al. 2020].  We avoid the sensitivity to the cutoff radius rc by including a transition ƛ-layer that 
smoothly tapers the correction to zero beyond a chosen distance between the two atoms. 

SI 1.2  Pair Interaction Neural Network.

The generated APSF are fed into a neural net specific to each typed interaction (Fig 2b 
illustrates this approach for water dimers).  For example, interactions between an aromatic 
carbon CA and a water hydrogen HW are specific to the (CA HW) pair. By construction the (HW 
CA) interaction is handled by the same network.  For more complex molecules, e.g toluene 
C6H5-CH3 - water dimer with different carbon (aromatic CA/methyl C3) and hydrogen (HCA in 
benzene and HW in water) types, there will be several interaction pairs (CA-HW, C3-HW, etc.)

In the ARROW-NN methodology the energy of a molecular system appear as a sum of EFF term 
computed with the analytical Arrow2 force field and neural network term ENN 

computed for close intermolecular atom contacts (atom pairs) of the system. 
 (1)EARROW - NN = EFF + ENN

, ENN = ∑
abEab

NN

(2)
where   - NN energy correction term for the intermolecular atom pair A-B. Eab

NN
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 is computed by feedforward Neural Network taking as an input an array of APSF described Eab
NN

in section SI 1.1.
      (3)Eab

NN = ∑f2(W2(f1(W1 xab) + b1)) + b2).

 - is an input array of APSF functions for the intermolecular atom pair ab.xab
 and  - matrix of weights and biasing vector for L-th layer of the Neural Network. WL bL

- vector of activation functions ( tanh ) for the L-th layer of the Neural Network. fL 
In the current version of NN, 2 hidden layers each with 20 elements were used.
ARROW accurately describes intermolecular interactions at large distances, and so we would 
like to apply the neural network corrections to short range only (Fig 2b center). This also speeds 
up the calculations.  Although the symmetry functions do decay to zero, we prefer to truncate 
the correction in the neural net itself. The output of the 2-layer perceptron (ΔE) is followed by a 
scaling lambda layer designed to smoothly suppress the output (correction to the analytical 
energy) to zero beyond a chosen cutoff: 

   ,    (4)ESL = Eab
NN

1
2tanh( - α(Rab - R0))

where - atom-atom distance of the atom pair, -  cutoff distance ( ) , -1 - distance Rab R0 5 Å α =  5 Å
decay parameter. 
   
Elements of and  are parameters of the Neural Network and adjusted to create an energy WL bL
agreement EQM = EFF + ENN on molecular dimers using backpropagation algorithm and Adam 
stochastic gradient optimization  (Kingma et al., 2014).3  and  are the same for atom pairs WL bL
of a given type (having the same ARROW types of atoms defining the atom pair). This 
preserves the symmetry of NN energy correction  versus atom permutations. For example, ENN
the network shown in Fig 2b that represents an interaction correction between two water dimers 
has 9 subnets corresponding to 9 intermolecular atom contacts, but only 3 distinct ones ( HW-
HW, OW-OW, HW-OW). 

SI 1.3  Training dataset(s) generation.

The NN corrections to the ARROW force field are trained on multiple conformations of 
molecular dimers. To cover the space of intermolecular orientations we combined several 
procedures to generate dimer geometries - ‘grid’, ‘liquid’ MD and ‘vacuum’ MD dimers. 
For a given molecular dimer a regular grid of molecular conformations is generated by the 
CamCASP program 4  which produces a uniform sampling of the relative orientation and 
distance of one monomer vs another.

Internal geometries of monomers are kept fixed at the respective ground states. 
‘Liquid’ MD dimers for molecules A and B are sampled from MD simulations of A solvated in a 
box of B monomers and vice versa.  As atom replicas in PIMD calculations sample significantly 
different geometries than atoms in MD simulations, we  augment the ‘liquid’ set  with one taken 
from analogous PIMD calculations (about 20% of total).  We select dimers by extracting from 
simulation trajectories those that have the closest-atom monomer-monomer distance in the 
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range of 1.5 to 5 A. To avoid gaps and biases in covering the Euclidean group the extracted MD 
dimers are also filtered to be within a certain threshold value of RMSD to the grid dimers. The 
value is chosen so that the coverage of grid dimers by MD dimers is no less than 80%. To 
further ensure a uniform sampling of grid dimer space by MD dimers, a cap is set that limits the 
number of MD dimers that are associated with a given grid dimer.

The purpose of the ‘vacuum’ MD dimers is to augment the ‘liquid’ MD dimers by generating 
support for the part of the conformational (i.e. training) space that is missed by grid dimers 
and/or by liquid MD dimers before RMSD filtering. These are usually high-overlap high repulsive 
energy configurations. Vacuum MD dimers are generated by running MD simulations of 
molecule A in a box containing a few molecules B, but the non-bonded interactions between A 
and B are either completely removed, or reduced down to 1-10% of true to sample significant 
overlap regions. For convenience this is facilitated by running TI annihilation simulation, but only 
for lambdas=0.9-0.99. The ‘vacuum’ dimers are then extracted from the trajectories. As there 
are energies so high that they will never be visited at room temperature and pressure, we 
further filter out those possessing an ARROW intermolecular energies of greater than 40 
kcal/mol. We use the silver standard, described below to compute the energetics of all the 
dimers generated for the training sets to be used as inputs in the neural nets (ARROW-NN).
The trained interaction model ARROW-NN is very close to the reference QM energies. 

Dimer(s) Training 
MAE 

(kcal/mol)

Test MAE 
(kcal/mol)

Training 
Set

Test
Set

Energy
Range 

(kcal/mol)

H2O - H2O 0.014 0.016 70400 17600 [-6,6]

Acetate - Phenol/Benzene 0.14 0.2 129202 32301 [-30.4, 34.3]

Acetate-H2O 0.08 0.075 57600 14400 [-20.0,5.3]

N-methyl-acetamide-H2O 0.07 0.06 52000 13000 [-8.1,2.2]

Acetamide-H2O 0.05 0.045 60000 15000 [-10.1,-7.5]

Napthalene-H2O 0.042 0.031 21524 5381 [-3.5,3]

Pyrrole-imidazole 0.05 0.047 25600 6400 [-2.5,2]

Pyrrole-toluene 0.042 0.039 28000 7000 [-2.0,3.0]

pyrrole-guanidinium 0.083 0.076 25600 6400 [-1.7,2.5]

thiophene-ethanol 0.072 0.066 28000 7000 [-2.0,4.0]

chlorobenzene-toluene 0.083 0.077 28000 7000 [-3.5,4]
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chlorobenzene-propane 0.06 0.054 24000 6000 [-3.0,3]

chlorobenzene-NMA 0.065 0.059 24000 6000 [-4.5,5]

chlorobenzene-acetate 0.11 0.103 28000 7000 [-12,6.2]

fluorobenzene-acetate 0.121 0.115 32000 8000 [-10,4.2]

Li+ - H2O 0.0347 0.0350 55934 13984 [-34.7;13.8]

Na+ - H2O 0.01776 0.01839 42806 10702 [-24.0;9.5]

Cl- - H2O 0.01829 0.01884 40342 10085 [-17.6;8.9]

Table SI 1 Representative MAE for various dimer pairs. Also provided is the training/test set 
data and the energy range for the various interactions. The energy range corresponds to [min-
max] dimer energetics obtained from QM-silver standard. 

Figure SI 1 Training and Test MAE for water-water, left panel, and acetate-phenol, right panel, 
NN vs. number of dimers used for training. Train/Test split was set to 80/20%. Total number of 
dimers generated for water-water dimers is 88K and 48K for acetate-phenol.

In Figure SI 1 we show a convergence of MAE of NN as a function of the number of water-water 
and acetate-phenol dimers used for training. These two cases are representatives of the 
extreme cases from “simple” to “complicated” to correct interaction with. For both pairs the 
convergence is reached for a number of dimers much smaller than used in the production. 
Overall the convergence plots show “healthy” convergence dynamics. The lower the number of 
training data the lower the training MAE and higher the testing MAE, i.e. classical overfitting 
regime. The increase of the training dataset increases and stabilizes the training MAE and 
lowers the test MAE, both MAEs converging to certain values.

SI 2 Implementation of NN inference in the MD package Arbalest. 

The total overhead of calculating the NN correction to the analytical energy is approximately the 
same as the ARROW polarizable force-field itself. 
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The calculation of NN corrections is performed in the program code independently of the 
calculation of FF energies. Such a separation was made for several reasons:

● As different interaction cut-off radii can be chosen for FF and NN, separate atomic pair 
lists speed up the calculations. 

● The typification of atoms for the calculation of NN-corrections may potentially be different 
than for the calculation of FF-energies (see the typification paragraph in the main text). If 
it is so, splitting lists gives additional flexibility in their processing.

● For technical or other purposes, NN corrections may be applied not to the entire 
molecular system, but only to its part(s).

● To increase the efficiency of using neural network libraries such as TensorFlow [ 
https://www.tensorflow.org ], it is advisable to calculate NN corrections for large chunks 
of initial data (sets of descriptors, or APSF), which requires grouping atomic pairs by NN 
types and temporarily storing the calculated descriptors for each of the pairs.

● Calculation of FF energies and NN corrections can be performed simultaneously in 
parallel.

The calculation of the spherical Bessel descriptors proceeds in the manner described in 1;2. Our 
APSF routines have the following capabilities: 

● Calculation of APSF spatial gradients.
● The possibility of temporary storage and reuse of intermediate results for recurrence 

relations to avoid their recalculation.
● Separate recurrence relations have been replaced by their direct analytical counterparts 

where this did not lead to a noticeable rounding error, including the case when 
simulation is performed in single precision.

● Code for calculating the descriptors on the NVIDIA GPU.

In addition to the Bessel functions a calculation of descriptor functions (e.g. 1/r) based on the 
Coulomb potential were added to the set of descriptors. In our opinion this allows neural 
networks to better capture the spatial scale of interactions.

 Thus, the procedure for calculating NN-energies consists of the following steps:

● Creation of pair lists of atoms for which pairwise NN-energies will be calculated. For 
each pair of NN-types of atoms, a separate list is created. Lists are filled based on the 
distance between atoms, with some margin relative to the cutoff radius of NN 
interactions. This allows lists to be reused over several steps of molecular dynamics 
without recreating them.

● Calculation of descriptors for interacting atomic pairs (pairs falling out of the cutoff radius 
at a current step of the dynamics are skipped). For each pair, APSF based on spherical 
Bessel functions take into account both the interacting atoms themselves and their 
nearest [covalent] environment. Thus, for different pairs, the number of atoms in such 
"clusters" can be different. In addition to descriptors, their spatial gradients are also 

https://www.tensorflow.org/
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calculated. Like NN-pairs, the calculated APSF are stored in separate lists for each pair 
of NN types.

● Calculation of NN-corrections and their derivatives. This calculation in the current 
version of the code is performed using the TensorFlow library. Each library call is made 
using one neural network, i.e. for one descriptor list (or a chunk of it if the list is too long). 
On the one hand, this minimizes the library initialization overhead, and on the other 
hand, it allows to perform several calculations in parallel for different pairs of NN types. 
In the latter case, a separate procedure performs load balancing of computational 
modules.

● Use of the calculated NN-corrections and their derivatives to obtain the energies of 
atoms and contributions to the forces acting on them. The NN energies correspond 
directly to the NN corrections. [Additional] NN-forces on atoms are calculated as the 
products of the derivatives of the NN-correction with respect to descriptors and the 
spatial gradients of these descriptors (with the appropriate sign).

Method Speed (steps per 
second)

Num Mols/atoms Processor

ARROW (MD)+ 77.16          (/ 1) 1092 mols H2O GPU 3080 TI

ARROW-NN (MD)+ 39.984        (/ 1) 1092 mols H2O GPU 3080 TI

ARROW-NN (MD) 17.384        (/1) 27 K atoms 
CDK2+water

GPU 3080 TI

MBPol (our estimate 
LAMMPS)

2.31         (/ 4 = 0.58) 256 mols H2O 4 cores

PEANN* 500          (/ 8 = 62.5) 64 mols H2O Unknown
+Arbalest speeds include free energy features that makes it more expensive than comparable 
water models regular MD. e.g. typical calculation for Gromacs for free energy is ~3 times slower 
than regular MD.
*Exact simulation protocol is unknown (i.e. number of cores). Accuracy of the water model is 
unknown. Long range cutoff is a short 7.75 Å without PME or any long range correction5. 
***Step per second per core

Table SI 2: Comparative speeds of different water models.

SI 3 ARROW2 force field functional form and QM levels.

The ideas behind ARROW 6,7 and its predecessors QMPFF 8–11  are as follows: to create a 
functional form that is sufficiently complex to fit QM energies well; to include polarization to allow 
one to obtain many-body contributions from relatively small QM calculations and therefore have 
transferability to bulk; similarly, for economy of QM calculations, to have a lightweight monomer-
based parameterization for the various linkers that connect functional groups together.  ARROW 

https://paperpile.com/c/ur2YZc/uOVzm
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is atom-typed for the same reasons that all other analytical FF’s are, e.g. an alkene and alkane 
carbons have different enough atomic properties to necessitate a separate model for each. 
Some of the less important features such as diffuse charge densities in both ES and EX assist 
in fitting the QM PES better. 

The many-body energy can contribute ~20% of the total energy; a breakdown of the energies is 
on pages 183-184, Fig. 10.1 and Fig. 10.2 of The Theory of Intermolecular Forces (Second 
Edition) by Anthony Stone.12. Therefore, an accurate representation of polarizability / induction 
is a necessary component of reproducing the quantum potential energy surface of molecular 
ensembles. It allows the transferability of models parameterized on small molecular clusters (i.e. 
dimers, trimers) to ensembles of arbitrary size. A proper description of polarization is also 
needed to reproduce systems’ behavior under applied electric fields. In ARROW the polarization 
is anisotropic which aids in reproducing the many-body components properly (Figure 3b (right)). 
Because the local charge distributions are responsible for inducing a response in neighboring 
atoms electron density, the atomic multipoles introduced in force-fields like QMPFF, AMOEBA 
and ARROW also aid in getting the many-body energy components right. 

Elsewhere we 6,7 have discussed the advantages of parameterizing a Force Field solely from 
ab-initio calculations.  Because our group has identified many of the factors needed 6,7,13,14 to do 
this accurately, we are now able to conclude that some empirical adjustment is still required. 
Specifically, the screening of the dispersion interaction in the intermediate and far range is a 
many-body phenomenon and is difficult to obtain from ab-initio calculations. Therefore, we take 
the close-range dispersion interaction from a decomposition of dimer QM calculations, and then 
we smoothly scale it down by a factor that is a property of the two interacting elements 15.  The 
treatment of the dispersion interaction15 in the intermediate range follows with a crossover at 4 Å 
from the vacuum form to a screened asymptotic coefficient of 0.5 * C6 of vacuum. We feel that in 
order to be more accurate the screening model may need to be refined for various bulk 
environments, or perhaps, by some empirical fits to experimental values of density etc.  
However, in our work, we took the universal non-empirically derived screening values 
suggested by Fiedler et al. 15 which were adequate.  

Generally the proper treatment of dispersion is a complex and evolving field, and is still not fully 
settled. The reader may benefit from reviews 16–21  on the topic.  We used almost the simplest 
possible form, similar to many common FF’s. Some of our thoughts on this choice are as 
follows: 

● While we do not have an explicit, many-body dispersion (DS), some of it is implicitly 
included in the FF as some of the major many-body DS contributions (Axilrod-Teller) 
come from chemically bonded atom pairs + 1 non-bonded atom which included in 
CCSD(T) calculation.  This is true for all ab-initio parameterized FF’s and even for 
empirically parameterized ones that utilize functional groups and atom types.  

● Nonetheless, in our tests, despite the explicit representation of the DS many-body 
contributions, the agreement to total energies of multimers is below 2%. Perhaps it is not 

https://www-stone.ch.cam.ac.uk/timf.html
https://www-stone.ch.cam.ac.uk/timf.html
https://paperpile.com/c/ur2YZc/JgxQ
https://paperpile.com/c/ur2YZc/YCPJH+TCz4r
https://paperpile.com/c/ur2YZc/eHpvt+lEtPO+YCPJH+TCz4r
https://paperpile.com/c/ur2YZc/Ay3q7
https://paperpile.com/c/ur2YZc/Ay3q7
https://paperpile.com/c/ur2YZc/Ay3q7
https://paperpile.com/c/ur2YZc/DUXg+tHlh+yOuz+f9S3+4brS+Xzrj
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0.2% as it is for the 2-body (2-molecule rather) term exactly because of the discrepancy 
in the description of many-body DS. 

● We use a fairly standard, atom-typed DS functional form, with the simplest possible 
modification for medium-long range screening. The DS component is essentially an 
isotropic ‘garbage collector’ of the total CCSD(T) energy minus the ES and EX and IND 
components extracted from DFT-SAPT

● While not addressed in this manuscript, the biggest clear error in dispersion for us is not 
typifying aromatic carbons with 3 heavy-atom neighbors (fused rings) to have some 
dispersion anisotropy (they clearly do). Hyper, non-linear polarizability may also be worth 
considering. 

The QM data underlying the force-field ARROW and ARROW-NN parameterization has a direct 
impact on the quality of the final predictions.  In ARROW and ARROW-NN the total dimer 
energies are calculated with silver standard 22 i.e. MP2/CBS, calculated with Helgaker cubic 
extrapolation 23 from aug-cc-pVTZ->aug-cc-pVQZ + CCSD(T)/aug-cc-pVDZ - MP2/aug-cc-
pVDZ.  To improve transferability and ease our optimization we use DFT-SAPT24–26 
decomposition with dHF correction 25 at aug-cc-pVTZ level with PBE0 functional asymptotically 
corrected25. We employ four parts of DFT-SAPT decomposition which have corresponding 
manifestation in our FF : ES (electrostatic E1pol), EX (exchange-repulsion E1exch), IND 
(induction, E2ind + E2ind-exch + δHF), DS (dispersion, E2disp+E2disp-exch + Esilver-standard 
- DFT-SAPTtotal_energy). The dispersion term accumulates all disagreements between total 
energy described by the “silver standard” and DFT-SAPT+δHF energies. We use the silver 
standard to compute the energetics of all the dimers generated for the training sets to be used 
as inputs in the neural nets (ARROW-NN). 
  

SI 4 Many-body energy agreement for ion-water clusters

Figure SI 2  Ion-water multimer non-additive energy errors. In ion-water systems the error of the non-
additive terms is below 2% of the total multimer QM energy. 

https://paperpile.com/c/ur2YZc/7Qi3Y
https://paperpile.com/c/ur2YZc/j9B6H
https://paperpile.com/c/ur2YZc/dTRjK+19nRZ+Ck6Jx
https://paperpile.com/c/ur2YZc/19nRZ
https://paperpile.com/c/ur2YZc/19nRZ
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SI 5.1 Water properties and simulation details. 

The convergence of the test and training set is shown in Fig. SI 3. The water-water dimers are 
split into training and test sets (80% training set and 20 % test set). We train the neural network 
on about 70K water-water dimer interaction energies and obtain a MAE of 0.014 kcal/mol for the 
training set (red line). The trained neural network predicts a MAE of 0.016 kcal/mol for the 
resulting test set ~18 K water-water dimers (shown in blue), also see Table SI 1.  The 2-body 
dimer interaction energies as a function of intermolecular distances is shown in Fig. 3b.

The dissociation energies for the various low-energy hexamers are computed using ARROW-
NN and compared to MBPol predictions, see Table SI 3. 

The water molecules were placed in a cubic box of size 32 X 32 X 32 Å3. Particle-Mesh Ewald 
(PME) algorithm was used to compute the long-range electrostatic interactions. 32 x 32 x 32 
grid mesh and 5th power spline interpolation order were used to compute the inverse PME sum. 
9 Å cutoffs were used to compute the direct PME sum as well as the exchange and dispersion 
interactions. The trained neural network is read into ARBALEST. A NN cutoff radius of 4.5 Å is 
used in the simulations (close contact molecules interactions follow the NN). Beyond 4.5 Å the 
interactions are governed by the ARROW analytical force field. Bulk corrections were applied to 
account for distance cutoff of dispersion interactions. Solvation free energies were computed by 
decoupling the interactions between the solute and the solvent molecules. Electrostatic, 
exchange-repulsion and dispersion interactions were switched off simultaneously using a 
lambda-dependent scaling ( a scaling factor power = 2 was used )  and a soft-coring algorithm 
(maximal soft-coring radius = 1.5 Å, soft-coring radius scaling factor power = 1). 15 lambda 
points unequally spaced (λ = 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 
1.0) were used to decouple the solute-solvent intermolecular interactions.

Energy minimization (10,000 steps) using the steepest descent algorithm was initially performed 
on all the simulation systems. This was followed by a 50 ps equilibration and 1 ns production 
runs in the isothermal-isobaric ensemble (NPT).  The temperature was maintained at 298 K 
using a Nose-Hoover thermostat ( chain length =6, relaxation time = 1ps ). Pressure was 
maintained at 1 atm using a MTTK  barostat  ( relaxation time = 5 ps ).  A Multiple Time Step 
(MTS) algorithm was used to integrate the equations of motion both for the classical and path-
integral runs. Bonded and PIMD 8 beads interactions were integrated with the time step of 
0.125 fs, while intermolecular interactions were integrated with a time step of 2 fs. All the 
calculations were performed with our in-house ARBALEST program.  The  intra- and 
intermolecular energies and forces are computed using NVIDIA GPUs, and integration of the 
extended equations of motion is done on the CPU. We compute the solvation free energies 
using both the Bennett acceptance ratio (BAR) and thermodynamic integration method with 
<dH/dλ> values interpolated by cubic splines. Further simulation details and protocols have 
been discussed at length in our previous publications7 27 .  One deviation, under current 
development and not in the current results, is scaling the NN correction in one or several 

https://paperpile.com/c/ur2YZc/TCz4r
https://paperpile.com/c/ur2YZc/6SNU
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starting and ending λ-points to save computational effort.  In the presented results the NN 
correction is scaled in unison with the FF as the total interaction energy. 

The data is extracted from the simulated trajectories and the bulk water properties were 
computed. The density of water as predicted by ARROW-NN is within 0.1 % of the experiment. 
The heat of vaporization is underpredicted by ~ 2.5 % and the free energy of self-hydration is 
within 0.1 kcal/mol of experiment, see Table SI 4. 

(H2O)6 E(CCSD(T)/CBS) E(ARROW-NN) E(MB-Pol)

Prism 45.92 45.80 45.73

Cage 45.67 45.26 45.46

Book 1 45.20 44.72 44.59

Book 2 44.90 44.27 44.36

Bag 44.30 43.89 43.71

Ring 44.12 43.57 43.30

Cyclic Boat 1 43.13 42.50 42.45

Cyclic Boat 2 43.07 42.35 42.48

MAE 0.49 0.53

Table SI 3. Dissociation energies for known hexamers of water 28,29. All energies in kcal/mol. 

H2O Density 
(g/cc)

Hvap 
(kcal/mol)

Hydration
 (kcal/mol)

Experiment 0.997 10.51 -6.30

 ARROW-NN (MD) 0.999 11.16 -6.59

ARROW-NN(PIMD8) 0.997 10.24 -6.20

Table SI 4: Neat properties and hydration/solvation of water as predicted by classical simulations and 
with inclusion of Nuclear Quantum Effects for ARROW-NN water model. 

Source NaCl LiCl Na+ Li+ Cl- 

Schmid 30 177.8 202.92 88.67 113.78 89.14

https://paperpile.com/c/ur2YZc/Ga1eH+WNKSG
https://paperpile.com/c/ur2YZc/PR79l
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Friedman 31 174.1 199.3 98.3 123.5 75.8

Tissandier 32 174.0 199.28 101.29 126.58 72.70

Marcus 33 168.49 194.79 87.23 113.53 81.26

Salomon 34 172.7 198.1 72.4 97.8 100.3

Average 
Experiment

173.42±3.3 198.9±2.9 89.57±11.3 115.04±11.2 83.84±11.1

ARROW NN 
MD

176.11±0.65 201.73±0.75 92.65±0.35 118.27±0.51 83.46±0.55

ARROW NN 
PIMD8

176.74±0.64 201.23±0.79 92.08±0.37 116.57±0.60 84.66±0.52

Table SI 5: Experimental and calculated free energies for ion dehydration. All units are in kcal/mol. The 
numbers show that experimental data for salt with two ions together are more conservative (errors ~ 2 
kcal/mol) than independent ions (errors ~11 kcal/mol), which means that it is better to compare total salt 
numbers. 

Figure SI 3 The mean square error convergence plot for 88K water-water dimers. The water-water 
dimers are split into training and test sets (80% training set and 20% test set). We train the neural 
network on about 70K water-water dimer interaction energies and obtain a MAE of 0.014 kcal/mol for the 
training set (red line). The trained neural network predicts a MAE of 0.016 kcal/mol for the resulting test 
set ~18 K water-water dimers (shown in blue). 

SI 5.2 Protein - ligand simulation details

We use non-equilibrium methods to compute the relative binding free energies of ligands in 
protein. To ensure adequate sampling we apply a novel enhanced sampling technique - HREX 
with a conformation reservoir generated through potential softening and non-equilibrium MD. 
The protocols used for ARROW-NN binding free energetic computation are analogous to that 
for ARROW-FF. All the details pertaining to the relative binding free energies for the protein-

https://paperpile.com/c/ur2YZc/9fPVb
https://paperpile.com/c/ur2YZc/s6EHa
https://paperpile.com/c/ur2YZc/e4VYx
https://paperpile.com/c/ur2YZc/KU13L
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ligand systems including alchemical ligand transformations, enhanced sampling techniques 
used for the ARROW-FF and ARROW-NN are described at length in the Supporting Information 
of “Protein-ligand binding free energy calculations with ARROW - a purely first principle 
parametrized polarizable force field”27. All the inputs required to reproduce the results presented 
here are on github in a conda package  https://github.com/freecurve/interx_arrow-nn_suite

As stated in the main text, we described the ligand-protein, ligand-water and protein-protein 
(within 6A of the  binding pocket) interactions by ARROW-NN, and the rest by ARROW.  In the 
MCL1 and the Thrombin systems these interactions were sufficiently well represented by the 
original ARROW. Nonetheless, energetic improvements did produce a slightly more accurate 
overall binding affinity prediction.  We were already aware that the CDK2 system requires a 
more accurate description of certain interactions that ARROW is capable of.  These are the 
energetically prominent  mutations of 1h1q to 1oi9, 1h1r, and 1oiy ligands that mutate a 
benzene ring into phenol, chlorobenzene, and benzamide. We found that the dominant reason 
for the low accuracy of ARROW in these complexes is in the interaction of the ligand with the 
residue ASP87.  We also showed that the FF energies of the phenol, benzamide, and 
chlorobenzene - acetate (aspartate analogue) dimers deviate highly from the QM values.  
Below, as an illustrative example,  we describe in detail how these interactions were improved 
by ARROW-NN, and how the more accurate energetics bring about changes in microscopic 
behavior  that result in a correct binding free-energy prediction. 

Let us describe in depth the application of NN correction to ARROW for ligand 1oi9, i.e. 
correcting phenol-acetate interaction. Following the procedure described in SI1.3 we generated 
an initial training set of ~ 48,000 phenol-acetate ‘liquid’ dimers. We saw, however, that these 
dimers do not cover the whole configurational space. In other words, most of the dimers 
containing the hydroxyl group interacting with carboxylate group of the acetate that occur in the 
liquid phase occupy a conformational basin characterized by a ‘classical’ hydrogen bond, i.e. 
OPH…OOC distance in the range of 2.5 Å to 3.5 Å, and OPH-HOPH…OOC angle of 150 to 
180. It became clear to us that conformations with lower hydrogen bond angles are omitted, due 
to the nature of the source of the dimers, i.e. such conformations are unlikely to occur in liquid 
phase. We therefore generated ‘vacuum’ dimers of phenol-acetate by simulating a box of 8-10 
phenol molecules and an acetate molecule at low density with non-bonded interactions between 
acetate and phenol reduced down to 1-10%. This procedure allowed higher energy dimers to 
occur in the simulations.  We then extracted from the resulting trajectories 14,000 ‘dimers’ 
dimers that, along with the ‘liquid’ dimers, sample the configurational space around the hydroxyl 
and carboxyl groups more evenly. 

We also established that in order to obtain better NN stability and accuracy,  it is useful to 
present the neural net with other phenol types. This forces the model to better distribute the 
weights of the interactions among the phenol types and, i.e. between aromatic ring and hydroxyl 
group, and not overfit for one specific fragment.  For this purpose we have added 50,000 
benzene-acetate dimers to the NN training dataset.

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00930/suppl_file/ct2c00930_si_001.pdf
https://paperpile.com/c/ur2YZc/6SNU
https://github.com/freecurve/interx_arrow-nn_suite
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We computed QM dimer energies of above mentioned 48,000 ‘liquid’ and 14,000 ‘vacuum’ 
dimers of phenol-acetate, as well as for the 50,000 ‘liquid’ dimers of benzene-acetate. This 
dataset was then used to train NN for phenol-acetate interaction correction. The NN resulted in 
ARROW-NN Train MAE=0.14 and Test MAE=0.2, while ARROW MAE=0.68, see Figure SI 4 for 
MAE convergence plot.

Figure SI 4: Convergence plot of NN training on Phenol/Benzene - Acetate dimers

As a first test of the NN correction we obtained 20 phenol-acetate dimers from the ARROW 
simulation of the CDK2 protein with 1oi9 ligand, i.e. minimum energy conformation monomers of 
acetate and phenol were overlapped onto the aspartate residue and phenyl of the 1oi9 ligand 
respectively. For these dimers we computed QM, ARROW and ARROW-NN energies. The 
errors relative to QM are as follows ARROW MAE = 1.01, ARROW-NN MAE = 0.19. Figure SI 4 
shows a difference (QM - ARROW) and (QM - ARROW-NN) vs. QM energies. 
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Figure SI 5: Difference in the interaction energy determined with ARROW/ARROW-NN and QM for 
ASP87 of CDK2 and 1oi9 (phenol) ligand.

Next, we have applied the NN corrected ARROW and simulated the CDK2 1oi9 ligand system. 
As was noted before the phenol side of the ligand does not form direct hydrogen bonds with 
aspartate in ARROW simulations. Application of NN correction to ARROW resulted in 
stabilization of the conformation, see Figure SI 6. One can see that one molecule of water 
mediates the interaction between Aspartate residue and Phenol of the ligand. Such 
conformation is observed in the 1oi9 crystal structure, see Figure SI 6. 

Figure SI 6: Representative Phenol - Acetate conformation observed in ARROW-NN simulation. 

Figure SI 7: Phenol-Acetate hydrogen bond geometry, h-bond angle vs. distance, observed in 
ARROW, shown in red circles, and ARROW-NN, shown in blue circles, simulations. The black 
lines represent the polar contacts between the phenol oxygen (OPH) of the ligand and two 
oxygens of ASP87 observed in 1oi9 crystal structure.

Finally, we applied the NN corrected ARROW, first, to the 1h1q->1oi9 mutation, we used HREX 
with a reservoir from NEQ. The latter has provided the ΔΔG value of the mutation within ~0.3 
kcal/mol error, see Table SI 6. While as stated before, the biggest change in free energies were 
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observed for corrections to the charged interactions as in the case of the CDK2 system for 
ARROW-NN. However such a significant change in free energies were not observed for MCL1 
and Thrombin protein-ligand complexes, see Table SI 6.

CDK2
mutation ΔΔG (exp) ARROW ARROW NN

1h1q->1h1r 0.51 -1.77 0.35

1h1q->1oi9 -1.56 0.29 -1.23

1h1q->1oiy -1.61 0.32 -1.72

1h1q->20 -0.54 -1.35 -1.2

1h1q->21 0.35 -0.25 -0.3

1h1q->22 0.32 0.12 0.51

1h1q->26 -0.25 0.02 0.14

r 1 -0.50 0.88

MAE 1 0.81 0.33

MCL1 
mutation ΔΔG (exp) ARROW ARROW-NN

27->28 -0.5 -1.63 -1.13

27->30 -1.73 -1.26 -1.31

27->35 -2.69 -2.44 -2.41

27->38 -0.85 -1.34 -1.17

27->43 -0.91 -1.16 -1.19

27->46 -1.48 -2.25 -1.85

27->52 -3.11 -2.39 -3.41

27->36 -2.06 -3.11 -1.82

27->44 -2.55 -2.85 -2.65

27->42 -2.78 -2.67 -2.49

27->45 -2.83 -2.75 -2.95

27->41 -1.01 -1.12 -0.96

27->32 -0.46 0.15 -0.22

27->33 -0.76 -0.85 -0.86
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27->37 -2.83 -2.75 -2.91

27->39 -0.91 0.84 -0.28

27->53 -3.84 -2.5 -3.28

r 1 0.75 0.94

MAE 1 0.47 0.28

Thrombin
mutation ΔΔG (exp) ARROW ARROW NN

5 -> 1a -0.61 0.35 0.22

5 -> 3a -1.32 -0.97 -0.76

5 -> 1b -2.45 -1.75 -2.1

5 -> 6a -3.1 -3.14 -2.97

5 -> 6e -1.84 -2.6 -2.5

5 -> 7a -0.82 -1.76 -1.22

5 -> 3b -0.46 -0.59 -0.24

5 -> 6b -2.23 -2.14 -1.82

r 1 0.81 0.90

MAE 1 0.525 0.405

Table SI 6: Relative binding free energy of ligands to CDK2, MCL1 and Thrombin.

SI 6 On the representation of the non-additive terms via explicit 3,4 and higher analytical 
functions vs. by the induction/polarization model.    

Much excellent work 35 has been done on extremely precise short and intermediate range 
reproduction of the QM PES on water, and similar limited systems 36–38.  Most of these 
approaches utilize an explicit 3 and frequently 4 body representation of each many-body term 39. 
We present a few thoughts on the pros and cons of this vs representing the many-body terms 
via a SCF polarizable model: 

i) The feasibility of generating training sets for ab-initio parameterized models: The 
use of explicit terms for many-body non-additive interactions requires orders of 
magnitude more computational quantum mechanics to be performed. While large 
numbers of 4-mers of homogeneous H2O computed via, say, CCSD(T) are 
relatively easy to obtain, the situation changes drastically for a general all-
purpose force-field whose construction requires much larger 

https://paperpile.com/c/ur2YZc/izKsz
https://paperpile.com/c/ur2YZc/eenHj+F2oP4+kPRMj
https://paperpile.com/c/ur2YZc/5AUEQ
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fragments/molecules and a vast diversity of chemical space.  Protein models 
need to describe the interaction of entities of the size of Tryptophan (10 heavy 
atoms) and the dipeptide backbone (9 heavy atoms), which is a weighty 
calculation for even a single dimer.  Moreover, the parameterization of explicit 
many-body terms requires a significant number of training configurations, 
compounded by a factorial permutational factor for heterogeneous multimers.  
Therefore, extending the explicit accounting of many-body effects to cover all of 
chemistry will be very difficult.  If, in contrast, one uses physics and a polarization 
model rather than brute force, one can extract fairly accurate (in bulk) non-
additive energies from even monomer polarization calculations (see for example 
AMOEBA40 and Stone-Misquitta41) and / or, as we do, from a proper 
decomposition of dimerization energies.  

ii) Because polarization terms are iterated to self-consistency (SCF), formally they 
actually contain the major part of all terms of the many-body inductive expansion. 

iii) This is a minor point, but much of the 3-atom non-additive energy is contained in 
the 2-body term of a typed force-field. Let us use the H2O molecule example  
familiar to the referees: as the terminal H is always adjourned by a neighboring 
O, the H-H interaction actually contains the H-H-O 3-atom term, etc.  The 
argument generally extends to all typed atom pair interactions. 

iv) Explicit 4 and 5 body terms will undoubtedly be computationally costly. 
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