

Supporting Information

for Adv. Sci., DOI 10.1002/advs.202304149

Amphiphilic Polymer Capped Perovskite Compositing with Nano Zr-MOF for Nanozyme-Involved Biomimetic Cascade Catalysis

Qiuyu Ye, Enxian Yuan, Jin Shen, Mingli Ye, Qin Xu, Xiaoya Hu, Yun Shu* and Huan Pang*

Supporting Information

Amphiphilic Polymer Capped Perovskite Compositing with Nano Zr-MOF for Nanozyme-Involved Biomimetic Cascade Catalysis

Qiuyu Ye, Enxian Yuan, Jin Shen, Mingli Ye, Qin Xu, Xiaoya Hu, Yun Shu*, Huan

Pang*

Figure S1. (A) UV-vis absorption (purple) and fluorescence (green) spectra of OPA-CsPbBr₃NCs. (B) XRD, (C) FT-IR, and (D) XPS spectra of OPA-CsPbBr₃NCs.

Figure S2. (A) C 1s, (B) N 1s, (C) O 1s, (D) Cs 3d, (E) Br 3d, (F) Pb 4f XPS spectra

of OPA-CsPbBr₃ NCs.

Figure S3. Fluorescent stability diagrams of OPA-CsPbBr₃ NCs in water and HAc-NaAc buffer (pH=4). The inset shows the optical images of OPA-CsPbBr₃ NCs in water (left) and HAc-NaAc buffer (right) under 365 nm UV light at different time periods.

Figure S4. (A) Real-time UV-vis absorption spectra of the OPA-CsPbBr₃+H₂O₂+TMB system under N₂ environment. (B) Real-time UV-vis absorption spectra of the OPA-CsPbBr₃+H₂O₂+TMB system under air environment. (C) Time-dependent UV-vis absorbance of TMBox at 652 nm by OPA-CsPbBr₃ NCs catalyzing TMB in absence and presence of H₂O₂, respectively.

Figure S5. Real-time UV-vis absorption spectra of the catalyzed oxidation of different concentrations of TMB through the oxidase-like activity by OPA-CsPbBr₃ NCs. (A) 0.2 mM, (B) 0.4 mM, (C) 0.6 mM, (D) 0.8 mM, (E) 1.0 mM.

Figure S6. Steady-state kinetics for OPA-CsPbBr₃ catalytic oxidation of TMB in buffer (HAc-NaAc, pH = 4). (A) The Velocity as a function of [TMB]. (B) The Lineweaver-Burk plot.

Figure S7. Real-time UV absorption spectra of AA after autooxidation catalyzed by $OPA-CsPbBr_3$ nanozyme under (A) Air, (B) O_2 and (C) N_2 environment, respectively.

Figure S8. UV-vis absorption spectra of OPA-CsPbBr $_3$ +AA+TMB&HRP (a),

AA+TMB&HRP (b) and OPA-CsPbBr₃+AA+TMB (c).

Figure S9. (A) UV-vis absorption spectra of different concentrations of H_2O_2 added to TMB-HRP solution. (B) Standard calibration plot for detection of H_2O_2 by the colorimetric TMB-HRP method. (C) UV-vis absorption spectra of H_2O_2 -TMB-HRP solution, in which the H_2O_2 was produced by OPA-CsPbBr₃ catalytic oxidation of different concentrations of AA. (D) Calibration curve of the generated H_2O_2 during the CsPbBr₃ catalyzing oxidation of different concentration of AA.

Figure S10. (A) Detection of H_2O_2 by iodide method. a: KI, b: KI+ H_2O_2 , c: KI+AA, d: KI+OPA-CsPbBr₃+AA (50 μ M), e: KI+OPA-CsPbBr₃+AA (100 μ M). (B) Detection of H_2O_2 by FOX assay. a: FOX, b: FOX+ H_2O_2 , c: FOX+AA, d: FOX+OPA-CsPbBr₃+AA (50 μ M), e: FOX+OPA-CsPbBr₃+AA (100 μ M).

Figure S11. Real-time UV-vis absorption spectra of different concentrations of AA catalyzing oxidized by the OPA-CsPbBr₃ nanozyme. (A) 0.01 mM, (B) 0.05 mM, (C) 0.10 mM, (D) 0.15 mM, (E) 0.20 mM. (F) Time-dependent UV-vis absorbance at 259 nm of different concentrations of AA after catalyzing oxidized by OPA-CsPbBr₃ NCs.

Figure S12. Steady-state kinetics of AA oxidation catalyzed by OPA-CsPbBr₃ NCs in

HAc-NaAc buffer. (A) Velocity as a function of [AA]. (B) The Lineweaver-Burk plot.

Figure S13. (A) UV-vis absorption curves of AA catalyzed by OPA-CsPbBr₃ NCs at different pH (inset shows relative activity). (B) UV-vis absorption curves of AA catalyzed by OPA-CsPbBr₃ NCs at different temperature (inset shows relative activity).

Figure S14. (A) TEM image, (B) XRD spectrum, (C) Absorption spectrum of PB nanoparticles.

Figure S15. (A) UV-vis absorption spectra of PB-TMB- H_2O_2 system with different

concentrations of H_2O_2 . (B) Corresponding calibration curve.

Figure S16. Real-time UV-vis absorption spectra of the PB catalyzed oxidation of different concentrations of TMB through the peroxidase-like activity. (A) 0.2 mM, (B) 0.4 mM, (C) 0.6 mM, (D) 0.8 mM, (E) 1 mM. (F) Time-dependent UV-vis absorbance at 652 nm with different concentrations of TMB.

Figure S17. Steady-state kinetics for PB catalytic reaction with TMB and H_2O_2 (20 μ M) in HAc-NaAc buffer. (A) The velocity as a function of [TMB]. (B) The Lineweaver-Burk plot.

Figure S18. SEM images of (A) Zr-MOF and (B) CsPbBr₃@Zr-MOF nanocomposite. (C) FT-IR spectra of CsPbBr₃, Zr-MOF, and CsPbBr₃@Zr-MOF nanocomposite. (D) Fluorescence spectra of CsPbBr₃@Zr-MOF synthesized by adding different amounts of Zr-MOF. (E) Time-resolved FL decay curves of CsPbBr₃ at 520 nm for CsPbBr₃@Zr-MOF nanocomposite synthesized using different amounts of Zr-MOF.

Figure S19. (A) TEM image of CsPbBr₃@Zr-MOF nanocomposite after addition of AA (500 μ M). (B) The fluorescence intensity ratio variation of CsPbBr₃@Zr-MOF nanocomposite synthesized by adding different amounts of Zr-MOF before and after adding AA (0.1 mM).

Figure S20. UV-vis absorption curves of the oxidation of TMB by AA catalyzed by

CsPbBr₃ NCs and CsPbBr₃@Zr-MOF nanocomposite.

Figure S21. (A) The fluorescence intensity variation of CsPbBr₃@Zr-MOF nanocomposite in the presence of AA and other molecules (0.1 mM), respectively. (B) Image of the samples under 365 nm UV light irradiation. (C) The UV-vis absorbance of TMBox produced by the CsPbBr₃@Zr-MOF+PB nanozymes cascade reaction using AA and other molecules as the potential interference substrates. (D) Image of the samples.

Figure S22. (A) Fluorescence spectra of CsPbBr₃@Zr-MOF after addition different concentrations of AA (a: 0 μ M, b: 20 μ M, c: 50 μ M, d: 100 μ M) in human serum sample. (B) UV-vis absorption spectra of TMBox produced by the CsPbBr₃@Zr-MOF+PB nanozymes cascade reaction system after adding different concentrations of AA (a: 0 μ M, b: 20 μ M, c: 50 μ M, d: 100 μ M) in human serum sample.

Table S1. Detailed results for the BET surface area, pore volume and pore size of OPA-CsPbBr₃ NCs.

	Surface area	Pore volume	Pore size	
	(m^2/g)	(cm^3/g)	(nm)	
OPA-CsPbBr ₃	337.24	0.2835	2.3932	

Table S2. Comparison of the K_m and V_{max} values of OPA-CsPbBr_3 for catalyzing

Catalyst	Substrate	$K_{m}(mM)$	V _{max}	Ref.
Ascorbic acid oxidase	AA	0.050-0.064	23.70-26.82 µmol/min	[1]
Cholesterol oxidase	Chol	0.052	-	[2]
Glucose oxidase (GOx)	Glu	1.37	-	[3]
Glucose oxidase (GOx)	Glu	27		[4]
CeO_2	TMB	1.52	$2.5 \times 10^{-7} \text{ M} \cdot \text{s}^{-1}$	[5]
Fe-N/C	TMB	0.62	$5.26 \times 10^{-7} \text{ M} \cdot \text{s}^{-1}$	[6]
Co _{0.6} /NC-700	TMB	0.35	$3.08 \times 10^{-7} \text{ M} \cdot \text{s}^{-1}$	[7]
CuFe-PBA-NC	TMB	0.09	$25.62 \times 10^{-6} \text{ M} \cdot \text{s}^{-1}$	[8]
Heparin-OsNPs	TMB/Hg ²⁺	0.051	$3.28 \times 10^{-7} \text{ M} \cdot \text{s}^{-1}$	[9]
Polydopamine-Fe ³⁺ nanorod	TMB	0.095	$4.37 \times 10^{-8} \mathrm{M \cdot s^{-1}}$	[10]
MOF-818	3,5-DTBC	0.81	$3.17 \times 10^{-6} \text{ M} \cdot \text{s}^{-1}$	[11]
Mn/Fe-MIL(53)-2	TMB	0.34	-	[12]
CeO ₂ NPs-MOF	Cr(VI)	0.11	$5.86 \times 10^{-7} \text{ M} \cdot \text{s}^{-1}$	[13]
OPA-CsPbBr ₃ NCs	TMD	0.095	$4.58 \times 10^{-7} \mathrm{M \cdot s^{-1}}$	This
	TND			work

substrate with other nature enzymes and mimetic oxidase.

Sample	Detection	Spiked		Recovery	RSD (%,
	method	(µM)	Found (µM)	(%)	n=3)
		0	2.42	0	0
	Ratiometric	20	24.09	108.4	2.7
	fluorescence	50	50.79	96.7	2.1
Human		100	106.41	104.0	1.9
serum	Colorimetry	0	2.51	0	0
		20	23.79	106.4	1.7
		50	55.11	105.2	2.2
		100	101.84	99.3	2.6

Table S3. Determination of AA in serum sample (dilute by 10-fold) by ratiometric

 fluorescent and colorimetric dual-mode sensor.

S-References:

- [1] S. Y. Leong, I. Oey, Food Chem. 2012, 134, 2075-2085.
- [2] P. R. Solanki, A. Kaushik, A. A. Ansari, A. Tiwari, B. D. Malhotra, Sens. Actuators B Chem. 2009, 137, 727-735.
- [3] J. Jung, S. Lim, Appl. Surf. Sci. 2013, 265, 24-29.

- [4] A. Umar, M. M. Rahman, S. H. Kim, Y. B. Hahn, J. Nanosci. Nanotechnol. 2008, 8, 3216-3221.
- [5] X. Cheng, L. Huang, X. Yang, A. A. Elzatahry, A. Alghamdi, Y. Deng, J. Colloid Interface Sci. 2019, 535, 425-435.
- [6] Y. Wang, Z. Zhang, G. Jia, L. Zheng, J. Zhao, X. Cui, *Chem. Commun. (Camb.)*2019, 55, 5271-5274.
- [7] Y. Li, Y. Lu, X. Zhang, H. Cao, Y. Huang, ACS Appl. Nano Mater. 2021, 4, 9547-9556.
- [8] R. P. Ojha, S. Pal, R. Prakash, Microchem. J. 2021, 171, 106854.
- [9] S. B. He, Q. Q. Zhuang, L. Yang, M. Y. Lin, Y. Kuang, H. P. Peng, H. H. Deng,X. H. Xia, W. Chen, *Anal. Chem.* 2020, 92, 1635-1642.
- [10]Y. Ai, H. Sun, Z. Gao, C. Wang, L. Guan, Y. Wang, Y. Wang, H. Zhang, Q. Liang, Adv. Funct. Mater. 2021, 31, 2103581.
- [11] M. Li, J. Chen, W. Wu, Y. Fang, S. Dong, J. Am. Chem. Soc. 2020, 142, 15569-15574.
- [12]L. Luo, Y. Ou, Y. Yang, G. Liu, Q. Liang, X. Ai, S. Yang, Y. Nian, L. Su, J.Wang, J. Hazard. Mater. 2022, 423, 127253.
- [13] Y. Wang, R. P. Liang, J. D. Qiu, Anal. Chem. 2020, 92, 2339-2346.