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ABSTRACT

Rice (Oryza sativa) seeds were imbibed for 3 days and the
seedlings were further incubated for 8 days in the presence of
either air or nitrogen. In aerobiosis, the specific activity of pyro-
phosphate:fructose 6-phosphate 1-phosphotransferase and that
of the ATP-dependent phosphofructokinase increased about
fourfold. In anaerobiosis, the specific activity of ATP-dependent
phosphofructokinase remained stable, whereas that of pyrophos-
phate:fructose 6-phosphate 1-phosphotransferase increased as
much as in the presence of oxygen and there was also a fourfold
increase in the concentration of fructose 2,6-bisphosphate, a
potent stimulator of that enzyme. These data suggest a prefer-
ential involvement of pyrophosphate:fructose 6-phosphate 1-
phosphotransferase rather than of ATP-dependent phosphofruc-
tokinase in glycolysis during anaerobiosis.

There is a general agreement that a major regulatory point
of glycolysis is the reaction catalysed by PFK 12 (reviewed in
Hers and Hue [7]). In most animal cells, the activity of PFK

is greatly stimulated by Fru-2,6-P2, which appears as the
main regulator of glycolysis under aerobic conditions. By
contrast, in higher plants, PFK is completely insensitive to
stimulation by Fru-2,6-P2, but the cells contain a pyrophos-
phate:fructose-6-phosphate 1-phosphotransferase, also called
"PPi-dependent phosphofructokinase" (PPi-PFK), which cat-
alyses the reversible formation of Fru- 1,6-P2 and Pi from Fru-
6-P and PPi (4). Remarkably, plant PPi-PFK is strongly
stimulated by Fru-2,6-P2 (16). PFK and PPi-PFK coexist in
the cytoplasm of plants, and their maximal activities are of
the same order (5).

Because it catalyses a freely reversible reaction, PPi-PFK
could operate in vivo in the gluconeogenic as well as in the
glycolytic direction. The first hypothesis has been favored by
several groups (2, 8, 24), who considered that the role of the
reaction is to provide PPi for the pyrophosphorolysis of
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UDPG when glycolysis occurs at the expense of sucrose; this
sugar is indeed assumed to react with UDP, under the action
of sucrose synthase, to form fructose and UDPG. On the
other hand, the glycolytic role of PPi-PFK is supported by a
series of experimental data: (a) The fact that, in several plant
tissues, PPi-PFK coexists with fructose-1,6-bisphosphatase
(which is strongly inhibited by Fru-2,6-P2) in the cytosol (5),
whereas these two enzymes are inversely affected by the
presence of Fru-2,6-P2 can only make sense if they catalyse
opposite reactions (19); (b) The concentration of Fru-2,6-P2,
which is the cofactor of PPi-PFK, is greatly increased in
conditions under which glycolysis is expected to be intense,
such as wounding (21), anaerobiosis (13), and in the presence
of an uncoupler (6); (c) A series of protozoa which, although
belonging to different groups, have in common the absence
of oxidative phosphorylation, contain no detectable PFK 1
but a high amount of a fully active PPi-PFK, indicating that
the latter enzyme is appropriate to its glycolytic role ( 14).
The purpose of the present work was to further investigate

this problem, using rice seedlings exposed to anaerobiosis as
an experimental model. Indeed, rice seeds are able to germi-
nate and grow under long periods of anaerobiosis, during
which they display a strong alcoholic fermentation (18). This
adaptation of rice plantlets to anaerobiosis is reflected by their
ability to synthetize a limited number of proteins during this
treatment (15). These proteins include two glycolytic en-
zymes, alcohol dehydrogenase, and pyruvate decarboxylase,
the activities of which greatly increase under anoxia (1, 9).
Our aim was, therefore, to determine if prolonged anoxia
could induce either PFK 1 or PPi-PFK, and to obtain in this
way an indication concerning their respective glycolytic func-
tion.

MATERIALS AND METHODS

Materials

DTT was from Janssen Chimica (Beerse, Belgium). En-
zymes and biochemicals were from Boehringer (Mannheim,
FRG); others chemicals were from Merck (Darmstadt, FRG)
and were of analytical grade. Fru-2,6-P2 (20) and PPi-PFK
(22) were prepared as described.

Treatment of the Seeds

Rice seeds (Oryza sativa, var Martelli), kindly provided by
Dr. M. Boutry from the Faculty of Agronomy of this univer-
sity, were stirred in 60% ethanol for 2 min, washed in sterile
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water, stirred in 0.1% HgCl2 for 2 min, and finally washed
twice in sterile water. The seeds were then put on a wet filter
paper and set in the dark at 20 °C, in a vacuum flask through
which a gas (air or nitrogen) was circulated after bubbling in
sterile water. The seeds were allowed to germinate aerobically
for 3 d and then placed in a nitrogen atmosphere during 8 d,
or left in air. At the indicated times, samples were removed,
dropped in liquid nitrogen and stored at -80 °C until further
processing.

Extraction of the Seeds and Analytical Procedures

To measure Fru-2,6-P2, a batch of five seedlings was
weighed and homogenized with an Ultra-Turrax in 2 mL of
ice-cold, 50 mm NaOH; the homogenate was centrifuged for
5 min at 10,000g, and the resulting supernatant was heated
for 5 min at 80 °C, cooled, and centrifuged again for 2 min at
10,000 g. Fru-2,6-P2 was determined in the last supernatant
by the stimulation of potato PPi-PFK, according to Van
Schaftingen and Hers (21). It has been verified that the
recovery of various amounts of Fru-2,6-P2 added to an homo-
genate of seedlings after 3 or 11 d ofgermination exceeded 90%.

For the assay ofenzymes, a batch of 5 seedlings was weighed
and homogenized at low speed with an Ultra-Turrax, in 2
mL of an ice-cold solution containing 5 mM DTT, 5 ,g/mL
antipain, 0,5% PVP, 5 mM magnesium acetate, and 50 mM
Hepes (pH 7.1). The homogenate was centrifuged for 10 min
at 10,000 g, and the resulting supernatant was used the same
day for the measurement of enzymic activities.
PPi-PFK was assayed spectrophotometrically by monitor-

ing the oxidation of NADH (0.15 mM) in the presence of 4
mm magnesium acetate, 2 mm Fru-6-P, 7 mM Glc-6-P, 2 ,M
Fru-2,6-P2, 1 mM PPi, 50 ,tg/mL aldolase, 1 ug/mL triose-
phosphate isomerase, 10 ug/mL glycerol 3-P dehydrogenase,
2 mm DTT, 0.2% bovine serum albumin, and 50 mm Tris/
Cl (pH 7.8). The same mixture was used for the determination
of PFK 1, except that PPi was replaced by 5 mm ATP, that
magnesium acetate was 10 mm and that Fru-2,6-P2 was omit-
ted. PFK 2 was assayed by the formation of Fru-2,6-P2, as
described by Larondelle et al. (11). Pyruvate kinase was
assayed by pyruvate-dependent oxidation of NADH (0.15
mM), in the presence of 5 mm magnesium acetate, 2 mm
DTT, 2 mm ADP, 1 mM P-enolpyruvate, 5 /Ag/mL lactate
dehydrogenase, and 50 mM Hepes (pH 7.1). Glc-6-P dehydro-
genase was measured spectrophotometrically by the reduction
of NADP (0.15 mM) in the presence of 2 mm DTT, 5 mM
magnesium acetate, 5 mM Glc-6-P, and 50 mM Hepes (pH
7.1). Phosphoglucose isomerase was assayed by the same
procedure, except that Fru-6-P was used instead of Glc-6-P
and that 5 gtg/mL Glc-6-P dehydrogenase was also present.
All enzyme measurements were made at 30 'C. It was checked
that gentle extraction, made in a Potter-Elvejhem device, of
seeds which were dehulled by hands, gave similar PPi-PFK
and PFK 1 activities as that measured after extraction with
an Ultra-Turrax. One unit is the amount of enzyme that
catalyses the conversion of 1 umol of substrate/min un-
der the standard conditions of assay. Protein was deter-

mined according to Bradford (3) with bovine -y-globulin as a
standard.

RESULTS

During the 8 d of the experimental period, the aerobically
growing seedlings showed a rapid expansion of both radicle
and coleoptile, whereas the lack of oxygen prevented radicle
and leaf elongation, allowing only a modest coleoptile elon-
gation. As expected, the weight and the protein content of the
seedlings increased much less in anoxia than under aerobic
conditions (Fig. 1)
The maximal activities of PFK 1 and PPi-PFK were meas-

ured on whole seedlings exposed to both gas phases. It is
shown in Figure 2 that, in the presence of oxygen, the specific
activity of both enzymes increased about 4-fold, correspond-
ing to an increase in enzyme content close to 8-fold. The

0.50
a

c,DO0.25

Ca
V

LO

0
a 5.0
c

')
co 2.5
I-,cm)
E

0
, 25
00~
0
0) 10E

E 0
a~ 0 4 8

Time (days)
Figure 1. Effect of anoxia on weight, protein content, and Fru-2,6-
P2 concentration of rice seedlings. Anaerobiosis was applied to rice
seeds imbibed aerobically for 3 d. Values are mean + SEM of three
samples of five seedlings.
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Figure 2. Effect of anoxia on maximal activities of PFK 1 and PPi-
PFK from rice seedlings. Same procedure as described in Figure 1.

same figure shows that anoxia deeply reduced the formation
ofPFK 1, whereas it had little effect on the rise in the specific
activity of PPi-PFK. Therefore, the PPi-PFK/PFK 1 ratio
increased more than 3-fold in anoxia, whereas it declined
slightly in air, and the maximal activity of PPi-PFK was more

than 10-fold higher than that of PFK 1 after 8 d of oxygen
deprivation (Fig. 2). Similarly to what we have described for
PFK 1, the specific activity of a series of enzymes involved in
carbohydrate metabolism, including pyruvate kinase, glucose
6-phosphate dehydrogenase, phosphoglucomutase, and PFK
2, remained stable during the 8 d of anoxia and increased
more than twice during the same time in the presence of
oxygen (not shown).
The kinetic properties of the anaerobically induced PPi-

PFK did not differ from that of its aerobic counterpart;
indeed, the Km values, measured in the presence ofa saturating
(2 uM) concentration ofFru-2,6-P2, were similarly in the range
of 0.3 mM for Fru-6-P and 10 jtM for PPi for both seedling
extracts. Remarkably, however, the concentration of Fru-2,6-
P2, which is nearly a cofactor for PPi-PFK in plants, increased

fourfold in the seedlings in anoxia, whereas it remained much
more stable in the controls (Fig. 1).
We have also observed that a up to 48 h anaerobic treatment

ofJerusalem artickoke tubers at 4 °C, which is known to cause
a more than 10-fold increase in the concentration of Fru-2,6-
P2 (13), was not accompanied by a change in the maximal
activities of PFK 1 and PPi-PFK (not shown).

DISCUSSION

Increased Activity of PPi-PFK in Prolonged Anoxia

The main observations made in this work are that not only
is the maximal activity of PPi-PFK increased in rice seedlings
during prolonged anoxia, but that the activity of this enzyme
in the cell can be further increased because of a higher
concentration of Fru-2,6-P2. The rise in maximal activity is
not accompanied by a change in the kinetic properties of the
enzyme and, therefore, presumably reflects the formation of
an increased amount ofenzyme. It is similar to that previously
shown for two glycolytic enzymes, alcohol dehydrogenase,
and pyruvate decarboxylase (9). The specific synthesis ofthese
enzymes, occurring when that of most other proteins, includ-
ing PFK 1, is severely restricted, indicates that they have a
role to play in the response to anoxia.

It is worth mentioning that the increased concentration of
Fru-2,6-P2 reported in this paper is not associated with an
induction of PFK 2; this is not surprising if we consider that
PFK 2 and the low Km FBPase 2 from higher plants are
associated in a single bifunctional protein (1 1, 12). Therefore,
similarly to what has been observed on castor bean endosperm
(10), Jerusalem artichoke tubers, and soja seedlings (13), this
increase in Fru-2,6-P2 concentration in anoxia might be the
consequence of a lower concentration of glycerate 3-P, a
powerful inhibitor of its synthesis (1 1).

It is also interesting to recall the observation made by Smyth
et al. (17) that the maximal activity of PPi-PFK was about
50% higher in maize roots submerged in water (a condition
expected to reduce oxygen tension), by comparison to roots
growing in moist vermiculite.

Role of PPi-PFK in Higher Plants

As discussed elsewhere (14, 23), the potential advantage of
the use of PPi-PFK rather than of PFK 1 in anoxia could be
to allow an increase of up to 50% in the ATP yield of
glycolysis, thanks to the use of PPi, a byproduct of several
biosynthetic reactions, as a phosphate donor.

This energetic advantage is, however, minimal in aerobic
conditions, as illustrated by the observations made during
thermogenesis ofArum maculatum clubs. Indeed, the tremen-
dous acceleration of carbohydrate oxidation which occurs
under this condition is accompanied by a large increase in
the maximal activity ofPFK 1, whereas that of PPi-PFK and
the concentration of Fru-2,6-P2 remain stable. Furthermore,
the maximal activity of PPi-PFK cannot account for this
largely increased glycolytic flux (2). These enzymatic changes,
although they are the opposite of what we found in rice
seedlings during anoxia, are not inconsistent with our hypoth-
esis. Indeed, the acceleration of the glycolytic flux during
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thermogenesis is an energy-wasting process leading to the
production of heat, but not of ATP.
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