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Spatial transcriptomics reveals unique gene expression 
changes in different brain regions after sleep deprivation.



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

• What are the noteworthy results? 

The authors use spatial transcriptomics to study the effects of 5 hours sleep deprivation throughout the 

murine brain. As previously shown, major changes are found across brain regions, particularly 

hippocampus, neocortex, hypothalamus and thalamus. These transcriptional changes seem to be region 

specific and don’t necessarily follow a similar pattern as illustrated by major up-regulation of neocortex 

transcripts but down-regulation of hippocampal transcripts. 

Using available single cell RNA-seq data, the authors further deconvoluted hippocampal and cortex 

spatial information, demonstrating that the effects of sleep deprivation is heterogeneous even within 

different layers of these regions. Most striking is the evidence found in favor of high number of unique 

effects of sleep deprivation even between layers of neurons, suggesting highly specific responses based 

on individual neuronal identities. 

The authors further developed a method to register all images to a unified reference space, allowing 

statistically analyses all images in a comparable manner. This method improves the spatial resolution of 

the data for the analysis of brain spatial transcriptomics when compared to deconvolution. 

• Will the work be of significance to the field and related fields? How does it compare to the established 

literature? If the work is not original, please provide relevant references. 

Given the complexity and heterogeneity of the brain tissues, the description of the different spatial 

effects of sleep deprivation provides an important new layer of information to understand the impact 

and function of sleep. To my knowledge, despite the various brain regions having been previously 

profiled independently, the approach taken in this work is original in that it takes a simultaneous look at 

the entirety of the brain. 

Even though the work clearly focuses on the effects of lack of sleep, the methods described can in 

principle be applied to any other question, particularly related to brain biology, so the work reported 

can be significant to neurosciences in general. 

However, I feel the authors could comment more on of how do the number of differentially expressed 

genes compare to the previous reports. Considering the cited works, deep RNA-seq suggests twice as 

many hippocampal DEG as reported here, with a more balanced distribution between up- and down-

regulation, while micro-arrays find similar results. In the authors' opinion, how do these different 

methods lead to these discrepancies? Would the sensitivity of spacial transcriptomics described in this 

work be lower compared to bulk RNA-seq methods? Similarly, up to 70% of cortex transcriptome has 



been suggested to be altered by sleep deprivation, which is a larger proportion that the one described. 

Do the authors think these differences can be explained by differences in the sleep deprivation protocol, 

experimental method or statistical analysis? 

• Does the work support the conclusions and claims, or is additional evidence needed? 

The conclusions are supported by the results shown. In addition, most of the conclusions are 

additionally supported by previous research, confirming the ability of spatially transcriptomics to, at 

least partially, produce similar results to alternative approaches. 

If possible, I think alternative demonstration of some of these results by classical molecular methods 

would be relevant to further support the conclusions. For example, can some of the results of figure 5 

be replicated with in situ hybridization or other similar method to validate the observed spatial 

heterogeneity? 

• Are there any flaws in the data analysis, interpretation and conclusions? Do these prohibit publication 

or require revision? 

STANLY makes use of advanced image processing methods and Advanced Normalization Tools (ANTs) 

and The Allen Software Development Kit (SDK), with which I have no professional experience. Although 

the described method looks correct and valid from a statistical and computational perspective, I am not 

an expert in these methodologies. 

Regardless of this limitation, I find the authors arguments in favor of their analysis, interpretation and 

conclusions well founded. However, since this is a new method, discussing the limitations of this 

method, both practical (e.g. can it would with all types of data or only Visium data?) and technical (e.g. 

is there loss of resolution from the averaging of 7 neighbors spots?) in more detail is important to clarify 

how it can be used for other research questions and by other groups. 

I find that the reason why is SCTransform is not suitable for differential analysis, but it is suitable for 

other analyses, is not be clear to all readers. Could the authors develop a bit more on this 

methodological aspect? 

• Is the methodology sound? Does the work meet the expected standards in your field? 

As above, I believe the work meets expected standards and the methodology is sound, providing a clear 

example of how emerging technologies can be used to address standing questions in the field. 

• Is there enough detail provided in the methods for the work to be reproduced? 



Given the time available, I did not re-run the analysis myself. However, all the links provided lead to the 

respective code or data, so this work should, in principle, be reproducible. 

As a comment, STANLY howto.md should be made more visible (e.g. mentioned or merged with 

readme.md) so potential users can easily find the instructions on how to use the method. 

• Other comments 

The manuscript often refers to a 10x Genomics Visium platform (starting in the highlights!) Although it 

would not be unusual to be referred to in the methods section, the way it is frequently mentioned 

sometimes gives the manuscript the feeling of “advertising the method validation”. Given the 

commercial nature of this central method to the work, I leave for the editors whether this could be 

considered a competing interest at some level or just an authors’ oversight. 

There’s some minor grammar mistakes that should be corrected during the revision (e.g. "Loss of sleep 

affects impacts cognition"). 

STANLY uses hemisphere mirroring to maximize the usability of the tissue slides. Though it is not 

expected a priori, it would be relevant to demonstrate there are no major asymmetries in the brain 

response to sleep deprivation. 

The enrichment analyses (and the manuscript in general) focus on the unique differential expressed 

genes for each region/layer. However, exploring if there are any common mechanisms shared between 

the different parts of the brain could also be of interest. Could the authors comment if any, and which, 

molecular mechanisms are enriched for shared genes? 

• Figures and tables 

From supplementary table 1, it looks like the median number of genes per spot is 5978.25 instead of the 

*mean number* as mentioned in the results section. Additionally, it would seem that for each sample, > 

21k genes are detected, which I find highly relevant, as it illustrates the ability to identify most genes, 

but this is not mentioned in the results section. Furthermore, adding a small comment on the disparity 

between genes per spot and genes per sample could be relevant to properly interpret these results (is 

this a regional bias? cell type specific biology? a limitation of the “spot” approach? etc.) 

Figure 2D has a green colored gene (Cnp), which is an unexpected color not described in the figure 

legend. 

The supplementary Tables it is unclear why some regions seem to have been filtered, while others 

contain non-significant genes (e.g. Table S2, allocortex 19327 genes, neocortex 3689). Gene ID also 

matches gene name, which is unexpected. It should either be a numerical value or the official symbol 

(eg. Arntl instead of Bmal1). Finally, there’s a number of highly significant genes showing a fold-change 



of 1, which I would intuitively think as showing no difference. Could these tables be double checked? 

Table S6 is particularly full of NaN values. With the lack of headers, this makes it extremely difficult to 

interpret. 

Figure 5 could benefit having the color code be explicitly defined in the legend (blue down-regulated 

and red up-regulated) and which t-statistic is represented on the third panel (SD/NSD or NSD/SD) 

Deconvulution methods mention that all 16 are showed in figure S4. However, this doesn’t seen to be 

the correct image. Also, there are two supplementary figures S5. 

Reviewer #2 (Remarks to the Author): 

Vanrobeys et al., in this study report region specific alteration in brain transcriptome in response to 

sleep deprivation (SD). Their study establishes hippocampus (Hip) and neocortex (NC) as the 

predominant regions that show alteration in regulation of gene expression in response to SD. 

Surprisingly, SD drive a heterogeneous response across distinct brain regions. The unique approach of 

spatial transcriptomics the authors employ also reveals the alteration in the hypothalamus and thalamus 

in addition to Hip and NC as a consequence of SD. The body of work provides a helpful approach for the 

analysis of brain-section wide alterations in transcriptome and integrate it to specific anatomical regions 

for visualization. In addition to this the method developed by the authors will assist in identifying 

transcriptomic alterations, associating them to very small brain regions inaccessible with traditional 

methods. 

The study is well conducted, discovers unique patterns of transcriptomic changes in multiple brain 

regions and recapitulates previous discoveries. Thus, demonstrating the sensitivity of the approach and 

its ability to make new discoveries and visualize them in an anatomical space. Another strength of this 

method is that it utilizes existing brain atlases to look at subregion-specific alterations in transcriptomics 

which can contribute to our understanding of region-specific responses. The development of STANLY a 

spatial transcriptome tool is a necessary advancement and growth in new direction for spatial 

transcriptomics in brain biology likely to be of great value to many researchers. The figures are 

excellently prepared, and the conclusions are well supported by the presented data. There are some 

technical clarifications and points the authors need to address to further enhance the clarity of result 

interpretation and better substantiate the conclusions. 

Comments: 

1. In figure 1D, the UMAP clusters the Allocortex and striatum like amygdalar nuclei in to two clusters. 

Since the same region is clustered twice, could the authors provide an explanation if this is correct or 

check the data to correct for this. 

2. In the result section line 100 and 101 the authors mention that unsupervised clustering was used with 



transcriptional signatures, the authors should mention which of the unsupervised clustering methods 

was used. 

3. In the figure legend for fig 3 line 813, the authors seem to have used an FDR step up <0.1 while in 

other figures, the FDR step up is reported as <0.001. Why was a different metric used for fig 3 

specifically? This appears to be a typing error. Please elaborate. 

4. For the statistical analysis of digital spots (Fig. 5), a Sidak p-value correction was used. Could the 

authors provide a rationale for the selection of Sidak’s p-value correction in the methods section. The 

Sidak method enhances the statistical power thus increasing the probability of false positives in 

comparison to more advanced/conservative methods of p-value correction. In this case, the Sidak 

correction with the criterion that at least 3 digital spots of the 1892 might still contribute to false 

positives despite the new critical value after the correction. It remains unclear how the selection of 3 

spots was arrived at. Therefore, we recommend that other more conservative p-value correction 

methods be used to control for false discoveries. 

5. Additionally, in fig 5(B1-G3) the spot comparison reduces the spatial resolution of its location, would it 

be possible within the scope of the project to integrate/super-impose a line map of the brain region for 

spatial reference. 

6. In the methods section, the authors specify that a coronal section corresponding/similar to the 45th 

slice in the Paxinos mouse atlas. Could the authors specify which subregions this corresponds to since 

the brain regions mentioned can refer to a broader anatomical region. 

Reviewer #3 (Remarks to the Author): 

The study titled, "Spatial transcriptomics reveals unique gene expression changes in different brain 

regions after sleep deprivation", concerns a study employing newly developed spatial transcriptomic 

techniques and analytical methods to examine spatially localized DEGs in a coronal section of mouse 

brain that includes hippocampus, neocortex and subcortical regions, in response to acute sleep 

deprivation. The findings extend previous bulk tissue transcriptomic studies by allowing comparison of 

different brain regions’ DEG from 13 samples (the number of samples analyzed for different aspects of 

the study is not always made clear). The MS is clearly written, nicely illustrated, and the study is well 

designed and appears to be technically sound. 

The expression patterns derived from the spots’ transcriptomes correspond to anatomically defined 

brain regions. By registering ~50um diameter spots’ DEGs across the samples comprising each sleep 

group to a common anatomical reference location, the authors identify sets of DEGs specific to localized 

regions. One of the most interesting findings is that most hippocampal DEGs are downregulated and the 

majority of neocortical DEGs are upregulated. Also, this is a technically novel application of spatial 

transcriptomic analysis to changes induced by sleep deprivation. 

DEGs unique to localized brain regions (hippocampal sub-regions or neocortical layers) are also 



identified. Although FDR appears to be well controlled, the power of the spatial transcriptomic 

technique for DEGs may be problematic. According to the authors, the spots may involve 10-20 different 

cells so that a spot may better resemble highly localized bulk tissue in that a particular gene in a given 

spot may be up or downregulated or change very little and this might vary considerably from spot to 

spot depending on the cellular makeup of the spot (for example no DEGs were identified in CA2 and 

CA3). Further, even with scRNAseq, using a negative binomial mixed model like NEBULA, power, 

estimated from realistic simulations is less than 50% for several thousands of single cells of a given cell 

type (many more cells than spots, each spot with mixed cells) to detect DEGs with a FC of ~1.2 . Is it 

possible that at least some of the anatomically unique cells might be identified due to a very high rate of 

false negatives? Perhaps this could be more directly addressed in the discussion and the conclusions 

revised accordingly. 



REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
Comment 1: 
 
• What are the noteworthy results? 
 
The authors use spatial transcriptomics to study the effects of 5 hours sleep deprivation 
throughout the murine brain. As previously shown, major changes are found across brain 
regions, particularly hippocampus, neocortex, hypothalamus and thalamus. These 
transcriptional changes seem to be region specific and don’t necessarily follow a similar pattern 
as illustrated by major up-regulation of neocortex transcripts but down-regulation of 
hippocampal transcripts.  
 
Using available single cell RNA-seq data, the authors further deconvoluted hippocampal and 
cortex spatial information, demonstrating that the effects of sleep deprivation is heterogeneous 
even within different layers of these regions. Most striking is the evidence found in favor of high 
number of unique effects of sleep deprivation even between layers of neurons, suggesting 
highly specific responses based on individual neuronal identities.  
 
The authors further developed a method to register all images to a unified reference space, 
allowing statistically analyses all images in a comparable manner. This method improves the 
spatial resolution of the data for the analysis of brain spatial transcriptomics when compared to 
deconvolution. 
 
Response: We thank the reviewer for the supportive comments pointing out our 
noteworthy findings. 
 
Comment 2: Will the work be of significance to the field and related fields? How does it 
compare to the established literature? If the work is not original, please provide relevant 
references. 
 
Given the complexity and heterogeneity of the brain tissues, the description of the different 
spatial effects of sleep deprivation provides an important new layer of information to understand 
the impact and function of sleep. To my knowledge, despite the various brain regions having 
been previously profiled independently, the approach taken in this work is original in that it takes 
a simultaneous look at the entirety of the brain.  
 
Even though the work clearly focuses on the effects of lack of sleep, the methods described can 
in principle be applied to any other question, particularly related to brain biology, so the work 
reported can be significant to neurosciences in general.  
 
Response: We thank the reviewer for this kind assessment of the originality and 
significance of our work. 
 
Comment 3: However, I feel the authors could comment more on of how do the number of 
differentially expressed genes compare to the previous reports. Considering the cited works, 
deep RNA-seq suggests twice as many hippocampal DEG as reported here, with a more 
balanced distribution between up- and down-regulation, while micro-arrays find similar results. 
In the authors' opinion, how do these different methods lead to these discrepancies? Would the 
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sensitivity of spatial transcriptomics described in this work be lower compared to bulk RNA-seq 
methods? Similarly, up to 70% of cortex transcriptome has been suggested to be altered by 
sleep deprivation, which is a larger proportion that the one described. Do the authors think these 
differences can be explained by differences in the sleep deprivation protocol, experimental 
method or statistical analysis? 
 
Response: We appreciate the reviewer’s questions. We do not think the differences arise 
from the sleep deprivation protocol, as the protocol is similar to what was used in 
previous studies. We also do not believe the differences arise from the experimental 
methods used in spatial transcriptomics, as we find a similar result in our subregional 
analysis of genes such as Arc compared to what has been reported in other studies. As 
analysis of spatial transcriptomic data is new in the field, we have adopted a highly 
conservative approach for data analysis. With our conservative approach, we do find a 
lower number of significant differentially expressed genes compared to previous 
transcriptomic studies which used RNA sequencing or microarrays. Given the large 
number of data points per sample in spatial transcriptomic analysis, encompassing 
thousands of spots, the initial adoption of a highly conservative approach with a very low 
FDR is necessary because the large sample size may increase the number of outliers or 
false positives. Consequently, we used a rank-sum Kurskal-Wallis test for our statistical 
analysis.  However, as with many RNA-seq transcriptomic studies, the FDR can be set at 
different thresholds to identify differentially expressed genes. 
 
We have included new text in the Discussion of the revised manuscript to address these 
questions. 
 
New text, Discussion p. 12: 
 
Using a conservative FDR-corrected p-value of <0.001 as the threshold, we identified fewer 
differentially expressed genes in the hippocampus and the cortex compared to other 
transcriptomic studies11,13,21. As our sleep deprivation method and protocols were similar to 
other studies11,13, we believe that differences arise from our use of a highly conservative 
statistical approach to avoid false positives due to the large sample size (i.e., the number of 
spots in each slice). However, we recognize that our conservative approach may also result in 
false negatives, so all gene expression data is included in the Supplemental Tables and 
available through GEO (GSE222410). 
 
Comment 4: 
 
• Does the work support the conclusions and claims, or is additional evidence needed? 
 
The conclusions are supported by the results shown. In addition, most of the conclusions are 
additionally supported by previous research, confirming the ability of spatially transcriptomics to, 
at least partially, produce similar results to alternative approaches.  
 
If possible, I think alternative demonstration of some of these results by classical molecular 
methods would be relevant to further support the conclusions. For example, can some of the 
results of figure 5 be replicated with in situ hybridization or other similar method to validate the 
observed spatial heterogeneity? 
 
Response: As suggested by the reviewer, we have included new experimental data using 
RNAscope (Supplemental Figure 7), an in situ hybridization method, to analyze the 
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expression pattern of Arc mRNA in the hippocampus. We then compared these results to 
subregional analysis of spatial transcriptomic data using STANLY. Both methods yield 
similar findings, with sleep deprivation increasing Arc mRNA expression in area CA1 but 
not in the dentate gyrus. Thus, the results from the RNAscope analysis for the spatial 
heterogeneity of Arc gene expression in the hippocampus after sleep deprivation 
validate subregional analysis using our new computational approach, STANLY. 
 
New Text added to the revised manuscript, Methods p. 28: 
 
RNAscope In situ hybridization 
To validate the results derived from STANLY, we used RNAscope in situ hybridization to assess 
Arc mRNA expression in the hippocampus. RNAscope was performed using commercially 
available fluorescent reagent kits according to the manufacturer’s protocol (Advanced Cell 
Diagnostics, Inc). In brief, mice were subjected to acute sleep deprivation for 5 hours using 
gentle handling (cage taps and cage shakes). Brains were dissected from SD and control NSD 
mice at the same circadian time and fixed for three hours using 4% paraformaldehyde in PBS at 
4o C. Brains were transferred to 30% sucrose in PBS and kept at 4o C for 48 – 72 hours. Brains 

were then cryosectioned at -20 oC (25 M), with coronal slices placed in a cryoprotective 
solution (30% sucrose, 30% ethylene glycol in PBS) and stored at -20o C. Sections were rinsed 
in cold 1xPBS and then mounted and dried on Superfrost Plus microscope slides (Fisher 
Scientific, Cat. #12-550-15). Tissue sections on slides were arranged to enable multiple sample 
conditions on each slide including positive and negative in situ controls, non-sleep deprived 
sections and sleep deprived sections. For in situ hybridization, slides were then submerged in 
50% ethanol, 70% ethanol, and two 100% ethanol steps for 5 min each at room temperature. 
Slides were then pretreated with solution according to the manufacturer directions for 30 min, 
and then washed with 1xPBS twice. Probes were hybridized to the slides for 2 hours at 40o C. 
Following hybridization, slides were washed twice with wash buffer at room temperature and 
then subjected to a series of hybridizations and washes with the AMP 1, AMP 2, AMP 3 and 
AMP 4 reagents as directed by manufacturer (ACD). Prolong diamond antifade mountant with 
DAPI (Thermofisher, Cat. # P36962) was used to protect sections and visualize nuclei.  
Hippocampi were imaged using a Leica confocal microsope. 
 
New text added to the revised manuscript. Results section p. 11: 
 
We wanted to test the power of STANLY and spatial transcriptomics for subregional analysis 
within the hippocampus, particularly area CA1 and the dentate gyrus as regions-of-interest for 
this validation. Both area CA1 and the dentate gyrus were treated as binary masks, with dots 
situated within these regions included into our analyses. We then conducted a two-sample t-test 
at each spot within these masks as shown in Supplemental Figure 7. Because we were only 
investigating one gene, Arc, we performed our p-value correction using the number of spots 
being tested, which was 140, giving us a threshold of p < 0.00075. Using this p-value, we found 
that sleep deprivation significantly increased the mRNA expression of the activity-dependent 
immediate early gene Arc in area CA1 (p < 0.0005), whereas there was little change or even 
slightly decreased expression of Arc in the dentate gyrus. To validate the reliability of our 
STANLY analyses, using samples from independent sleep deprivation experiments, we 
performed in situ hybridization using RNAscope (ACD) for Arc expression in the hippocampus. 
The RNAscope analysis revealed that acute sleep deprivation significantly increased Arc mRNA 
positive cells in the CA1, while there was no change in the DG (Sup. Fig. 7). Arc shows 
increased expression in the hippocampus following acute sleep deprivation11,13. Moreover, Arc 
has also been identified as having differential expression in the subregions of the hippocampus 
after sleep deprivation with significantly increased levels of Arc in the CA1 and no change or 
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decreased expression in the dentate gyrus52. Thus, the results from STANLY analysis 
comparing subregions within the hippocampus are consistent with our in situ hybridization 
experiments and with previously published results. These results validate the power of STANLY 
and spatial transcriptomic approaches to identify spatially restricted changes in gene 
expression. 
 
Additional Supplemental Figure 7 
 

 
 
Comment 5: 
 
• Are there any flaws in the data analysis, interpretation and conclusions? Do these prohibit 
publication or require revision? 
 
STANLY makes use of advanced image processing methods and Advanced Normalization 
Tools (ANTs) and The Allen Software Development Kit (SDK), with which I have no professional 
experience. Although the described method looks correct and valid from a statistical and 
computational perspective, I am not an expert in these methodologies. 
 
Regardless of this limitation, I find the authors arguments in favor of their analysis, interpretation 
and conclusions well founded.  
 
Response: We thank the reviewer for their support of our data analysis, interpretations, 
and conclusions. 
 
 
Comment 6: 
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However, since this is a new method, discussing the limitations of this method, both practical 
(e.g. can it work with all types of data or only Visium data?) and technical (e.g. is there loss of 
resolution from the averaging of 7 neighbors spots?) in more detail is important to clarify how it 
can be used for other research questions and by other groups. 
 
Response: We thank the reviewer for giving us the opportunity to further elaborate on 
these important issues. The basic principle – the alignment of the spots of individual 
data sets to a common template – is applicable to a broad range of spatial 
transcriptomics data sets. However, we have optimized this method for the data set that 
we used in this study regarding resolution, the number of dots, etc.  
 
We have added new text in the Methods, p. 24: 
 
While this basic principle – the alignment of individual data sets to a common template – is 
applicable to all kinds of multiomics data sets74, this version of STANLY has been optimized for 
the data sets in this study (e.g., regarding resolution, the number of dots, etc.). 
 
Response continued: The use of 7 neighboring spots is intended to account for spatial 
uncertainty that is inevitable due to the alignment process. Each spot retains its original 
log base 2 value, and all 7 spots are used in the calculation of the t-statistic. It is a 
strategy to counter spurious findings based on misalignments. This should reduce the 
amount of false positive results that are not reflective of the “true” differences between 
groups but rather driven by technical artifacts. This strategy is very common in 
neuroimaging, where it is referred to as “smoothing.” Although this strategy reduces 
spurious findings based on spatial uncertainty, it also slightly reduces the resolution. 
We’ve added the following sentence to the manuscript to elaborate on this: 
 
New text in the Methods section, p. 24: 
 
STANLY uses 7 neighboring spots in each calculation to account for spatial uncertainty, which 
is an inevitable problem for every alignment process. Importantly, every spot retains its original 
log base 2 value, and all 7 spots are utilized in our t-statistics. This strategy reduces spurious 
findings based on small misalignments. 
 
Comment 7: 
 
I find that the reason why SCTransform is not suitable for differential analysis, but it is suitable 
for other analyses, is not clear to all readers. Could the authors develop a bit more on this 
methodological aspect? 
 
Response: The SCTransform algorithm yields a more accurate representation of different 
brain regions, as pictured below, enabling distinction between the neocortex and the 
allocortex, clear separation of the spots in the hippocampal region and the neocortex 
and differentiation between the subregions of the striatum. However, the authors of the 
SCTransform algorithm demonstrated that differential expression using SCTransform 
resulted in ten times more significantly differentially false-positive genes (Choudary and 
Satija, 2022 PMID: 35042561). Thus, it is necessary to use a different analysis approach 
for differential gene expression. By using both SCTransformed and logtransformed data 
we can better identify brain regions (see figure below) and more appropriate analyze 
differential gene expression. We have now more fully explained this in the revised 
manuscript. 
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New text in the Methods, p. 21. Line 452 
 
The identification of anatomical brain regions for all 16 samples can be found in Supplemental 
Figure 2. SCTransform algorithm yields a clearer representation of the different brain regions 
than a classic log-transformation (Sup. Fig. 9). However, it is not suitable for differential gene 
expression analyses, as previously the SCTransform algorithm has been shown to result in ten 
times more significant false positives when used for differential gene expression analysis68. To 
overcome this challenge, output data from the Space Ranger pipeline were renormalized with 
the log transformation approach including Counts Per Million (each gene’s raw read count in a 
sample divided by the total number of counts per million in a sample), with a value of 1 added to 
avoid 0 counts and errors in differential analysis, and finally a log base 2 transformation applied 
to all values to model and measure proportional fold changes. 
 
 
Comment 8: 
 
• Is the methodology sound? Does the work meet the expected standards in your field? 
 
As above, I believe the work meets expected standards and the methodology is sound, 
providing a clear example of how emerging technologies can be used to address standing 
questions in the field. 
 
• Is there enough detail provided in the methods for the work to be reproduced? 
 
Given the time available, I did not re-run the analysis myself. However, all the links provided 
lead to the respective code or data, so this work should, in principle, be reproducible.  
 
As a comment, STANLY howto.md should be made more visible (e.g. mentioned or merged 
with readme.md) so potential users can easily find the instructions on how to use the method. 
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Response: We would like to thank the reviewer for pointing out this issue. We have 
added a direct link to the howto page in the readme which is displayed on the homepage 
of the git repository. 
 
Comment 9:  
 
The manuscript often refers to a 10x Genomics Visium platform (starting in the highlights!) 
Although it would not be unusual to be referred to in the methods section, the way it is 
frequently mentioned sometimes gives the manuscript the feeling of “advertising the method 
validation”. Given the commercial nature of this central method to the work, I leave for the 
editors whether this could be considered a competing interest at some level or just an authors’ 
oversight. 
 
Response: The 10x Genomics Visium platform is a new technology and could be 
compared with other established sequencing methods, therefore we emphasized the 
name of the technique and the platform we used. This was an oversight on our part and 
we did not realize it would come across this way. We have revised the manuscript to 
avoid the overuse of the phrase “10X Genomics Visium platform” or “Visium” to 
preclude leaving this impression on readers. 
 
Comment 10: 
 
There’s some minor grammar mistakes that should be corrected during the revision (e.g. "Loss 
of sleep affects impacts cognition"). 
 
Response: We thank the reviewer for bringing this to our attention. We have looked 
closely over the manuscript to identify and correct any grammar mistakes. 
 
Comment 11: 
 
STANLY uses hemisphere mirroring to maximize the usability of the tissue slides. Though it is 
not expected a priori, it would be relevant to demonstrate there are no major asymmetries in the 
brain response to sleep deprivation. 
 
Response: Due to the size limitations of spatial transcriptomic slides, it is not possible to 
fit an entire coronal brain slice on the slide, so only one hemisphere of the brain section 
was used for each animal. Almost all of our samples were from the right hemisphere (5 
for SD, 6 for NSD) with only one left hemisphere section for SD and one for NSD used in 
the STANLY analysis. Thus, we do not have enough replicates to make a comparison 
between changes in gene expression after sleep deprivation in the left and right 
hemispheres. We have re-run our analysis using just the right hemisphere samples and 
find similar results for the number of differentially expressed genes. In future studies, we 
plan to investigate potential differences in the impact of sleep deprivation between the 
left and right brain hemispheres.  
 
We have included new text in the Discussion, p. 13: 
 
In the current study, we were unable to investigate potential asymmetries in the response of the 
left and right hemisphere to the impacts of acute sleep deprivation, as we were limited by the 
size of the spatial transcriptomic slides in which only one hemisphere can fit within the bounds 
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of the slide. In future studies, we plan to use spatial transcriptomics to investigate more nuanced 
impacts of sleep deprivation, such as interhemispheric differences. 
 
Comment 12: 
 
The enrichment analyses (and the manuscript in general) focus on the unique differential 
expressed genes for each region/layer. However, exploring if there are any common 
mechanisms shared between the different parts of the brain could also be of interest. Could the 
authors comment if any, and which, molecular mechanisms are enriched for shared genes? 
 
Response: We also questioned whether there were conserved effects of sleep 
deprivation across brain regions. To our surprise, there was very little overlap in the 
genes that were affected by sleep deprivation between brain regions. Strikingly, we only 
found two regions, the neocortex and the allocortex, that shared a great enough number 
of DEGs to perform pathway analysis. There were 35 DEGs in common between the 
neocortex and the allocortex with molecular function enrichment analysis highlighting 
protein kinase inhibitor activity. All other sets of common DEGs were too small to reveal 
enrich significant molecular functions. In the revised manuscript, we have created a 
supplemental figure to illustrate the molecular function for shared genes between the 
Neocortex and the Allocortex (Supplemental Figure 4). Differentially expressed genes 
common between brain regions are listed in Supplemental Table 5. We have revised the 
text to reflect the inclusion of this information. 
 

 
 
New text in Results, page 7: 
 
Of the 592 DEGs found in the hippocampal region, 489 were exclusively affected in the 
hippocampal region (489/592 DEGs), 306/401 in the neocortex, 199/266 in the hypothalamus, 
56/113 in the thalamus, and 33/66 in the striatum-like amygdalar nuclei (Sup. Table 3). 
Interestingly, only 35 DEGs were found to be in common between the neocortex and the 
allocortex, resulting in one significantly enriched pathway: protein kinase inhibitor activity (Sup. 
Fig. 4). All other sets of common DEGs (Sup. Table 5) were too few in number to reveal 
enriched molecular functions.  
 
Comment 13: 
 
• Figures and tables 
 
From supplementary table 1, it looks like the median number of genes per spot is 5978.25 
instead of the *mean number* as mentioned in the results section. Additionally, it would seem 
that for each sample, > 21k genes are detected, which I find highly relevant, as it illustrates the 
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ability to identify most genes, but this is not mentioned in the results section. Furthermore, 
adding a small comment on the disparity between genes per spot and genes per sample could 
be relevant to properly interpret these results (is this a regional bias? cell type specific biology? 
a limitation of the “spot” approach? etc.) 
 
Response: We apologize for the confusion about the number of genes and the labels. In 
Supplementary Table 1, the median number of genes per spot can be found for each 
sample. In the revised table, we have listed the mean value of the medians across the 
samples to provide the mean number of genes per spot. The value of 5978.25 genes per 
spot refers to the mean of the median of genes per spot within each sample.  
The number of genes per spot is indeed 3 - 4 times lower than the number of genes per 
sample. This is primarily due to cell-type and brain-region specific gene expression such 
that only a subset of genes is expressed in each spot. This is illustrated in the figure 
below where an example is displayed for the number of expressed genes across the 
tissue section. The highest number of genes can be found in excitatory neurons residing 
in the hippocampal region and cortex. We have added this figure as a Supplemental 
Figure (Supplemental figure 1) and expanded the result section to explain this. 
 
New text in the Results, page 5: 
 
Importantly, we were able to detect over 21,000 genes for each sample (Sup. Table 1). 
However, the individual number of genes detected in each spot is three to four times lower than 
the total number of expressed genes detected due to cell-type and brain-region specific 
differences in gene expression across brain regions (Sup. Fig 1). 
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Comment 14: 
 
Figure 2D has a green colored gene (Cnp), which is an unexpected color not described in the 
figure legend. 
 
Response: We apologize for this mistake, and we thank the reviewer for pointing it out. 
The color code for the Cnp genes has been changed from green to red. 
 
Comment 15:  
 
The supplementary Tables it is unclear why some regions seem to have been filtered, while 
others contain non-significant genes (e.g. Table S2, allocortex 19327 genes, neocortex 3689). 
Gene ID also matches gene name, which is unexpected. It should either be a numerical value or 
the official symbol (eg. Arntl instead of Bmal1). Finally, there’s a number of highly significant 
genes showing a fold-change of 1, which I would intuitively think as showing no difference. 
Could these tables be double checked? 
 
Response: We apologize for the confusion in Supplemental Table 2 and the mistake with 
the Gene ID. In the analysis, significant DEGs were identified using two filters, an FDR of 
0.001 and an absolute fold change threshold of 1.2. Table 2 originally showed genes that 
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fit either of those criteria, instead of only fitting both. Now, in Supplemental Table 2, the 
expression for all genes is displayed with no filters and all the data is available. We have 
also now included a new Table (Supplemental Table 3) showing only the significant 
differentially expressed genes. We have revised the Results to more clearly explain the 
filters and the designation of significant DEGs. 
 
Revised Text in the Results, p. 5: 
 
Supplemental Table 2 reports the expression levels for all genes with no filters.  
 
Revised Text in the Results, p. 6: 
 
In the analysis, significant DEGs were identified using two filters, an FDR of 0.001 and an 
absolute fold change threshold of 1.2. Significant DEGs for each brain region are reported in 
Supplemental Table 3. 
 
Comment 16: 
 
Table S6 is particularly full of NaN values. With the lack of headers, this makes it extremely 
difficult to interpret. 
 
Response: We removed NaN values and have added headers representing the coordinate 
location of the spot. 
 
Comment 17: 
 
Figure 5 could benefit having the color code be explicitly defined in the legend (blue down-
regulated and red up-regulated) and which t-statistic is represented on the third panel (SD/NSD 
or NSD/SD). 
 
Response: Heatmaps shown in B-G are color coded based on the result of the SD/NSD t-
statistic of the log base 2 normalized data, with blue meaning a decrease in expression in 
SD animals, and red signifying an increase in SD animals. White spots indicate where the 
mean is the same between the two groups. We have updated the figure and figure legend 
to clarify. We have also added asterisks to distinguish between significance levels. 
 
For the revised version of the manuscript, we have now added scales to the color codes 
and the following changes to the figure description for Figure 5 (page 43): 
 
B-G. Samples were split into non-sleep deprived (NSD, n=6, 42 sample spots per digital spot) 
and sleep deprived (SD, n=7, 49 sample spots per digital spot). The range of the color bar for 
the mean calculations is set from 0 to a log2 fold-change of 3, the maximum fold change for the 
genes shown, while the color bar for the SD > NSD t-statistic (B3-G3) is bounded to [-4,4], 
which is approximately the equivalent to the FDR < 0.1. * indicates the gene is significant at 
FDR < 0.1, ** indicates significance at FDR < 0.05. We show a selected group of 6 genes from 
the 413 DEGs (Sup. Table 10) (B-G). 
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Comment 18: 
 
Deconvolution methods mention that all 16 are showed in figure S4. However, this doesn’t seem 
to be the correct image. Also, there are two supplementary figures S5. 
 
Response: We apologize for the mistake with our label, and we thank the reviewer for 
pointing this out. We have corrected the figure identifier in the main section of the 
document. The supplementary figures are now correctly labeled. The Supplemental 
Figure with the 16 images (Sup Fig 5, previously Sup Fig 4) is a multi-page figure.  
 
 
  



Vanrobaeys et al., response to reviewers 

 13 

Reviewer #2 (Remarks to the Author): 
 
Vanrobeys et al., in this study report region specific alteration in brain transcriptome in response 
to sleep deprivation (SD). Their study establishes hippocampus (Hip) and neocortex (NC) as the 
predominant regions that show alteration in regulation of gene expression in response to SD. 
Surprisingly, SD drive a heterogeneous response across distinct brain regions. The unique 
approach of spatial transcriptomics the authors employ also reveals the alteration in the 
hypothalamus and thalamus in addition to Hip and NC as a consequence of SD. The body of 
work provides a helpful approach for the analysis of brain-section wide alterations in 
transcriptome and integrate it to specific anatomical regions for visualization. In addition to this 
the method developed by the authors will assist in identifying transcriptomic alterations, 
associating them to very small brain regions inaccessible with traditional methods.  
 
The study is well conducted, discovers unique patterns of transcriptomic changes in multiple 
brain regions and recapitulates previous discoveries. Thus, demonstrating the sensitivity of the 
approach and its ability to make new discoveries and visualize them in an anatomical space. 
Another strength of this method is that it utilizes existing brain atlases to look at subregion-
specific alterations in transcriptomics which can contribute to our understanding of region-
specific responses. The development of STANLY a spatial transcriptome tool is a necessary 
advancement and growth in new direction for spatial transcriptomics in brain biology likely to be 
of great value to many researchers. The figures are excellently prepared, and the conclusions 
are well supported by the presented data. There are some technical clarifications and points the 
authors need to address to further enhance the clarity of result interpretation and better 
substantiate the conclusions. 
 
Response: We thank the reviewer for this kind appraisal of our work. 
 
Comment 1: 
 
In figure 1D, the UMAP clusters the Allocortex and striatum like amygdalar nuclei in to two 
clusters. Since the same region is clustered twice, could the authors provide an explanation if 
this is correct or check the data to correct for this. 
 
Response: 
Yes, this is correct. The allocortex is transitional between the more evolutionarily ancient 
amygdala and the more evolutionarily recent neocortex and portions of the basolateral 
amygdala are anatomically very close to the allocortex, leading the allocortex appearing 
in two clusters. Transcriptionally, the BMA, the BLA and the LA share strong similarities 
with the other striatum-like amygdalar nuclei, including the medial amygdala subnuclei. 
When performing UMAP clustering, the similarity of the transcriptional signatures 
between the medial area (included in the striatum-like amygdalar nuclei) and the 
basolateral/basomedial areas leads to the basolateral/basomedial subnuclei appearing in 
two locations on the UMAP plot. It is important to note that we are clustering bar-coded 
spots and each bar-coded spot appears only once on the UMAP plot. We merged 
anatomically adjacent spots from the two clusters to generate the labelled brain regions. 
 
New Text in the Revised Manuscript, p. 5: 
Due to the transcriptional similarity of the basomedial and basolateral amygdalar subnuclei with 
the subnuclei of the amygdalar medial area, and the spatial proximity and similarity with the 
allocortex, UMAP clustering reports the striatum-like amygdalar nuclei and the allocortex as 
repeated clusters with slightly different transcriptional signatures depending upon the grouping 
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of the basomedial and basolateral subnuclei. We merged anatomically adjacent spots from the 
two clusters to generate the labelled brain regions. 
 
Comment 2: 
 
In the result section line 100 and 101 the authors mention that unsupervised clustering was 
used with transcriptional signatures, the authors should mention which of the unsupervised 
clustering methods was used. 
 
Response: We used graph-based clustering for unsupervised clustering of 

transcriptional signatures, specifically, the Louvain clustering algorithm that includes 30 

nearest neighbors and 20 principal components to identify the transcriptional signatures 

of each spot. This unbiased approach builds a graph where each node is a spot that is 

connected to its nearest neighbors in high-dimensional space. Connections are weighted 

based on the similarity between the spots involved, with higher weight given to spots 

that are more closely related.  We have added additional details to the method section 

(page 19) to clarify the nature of the unsupervised clustering method used in this study.  

New text in the Methods, p. 20-21: 
A graph-based clustering was performed to identify the transcriptional signatures of each spot 

using the Louvain clustering algorithm that includes 30 nearest neighbors and 20 principal 

components. The Louvain algorithm is an unbiased approach connecting each sample spot to 

its nearest neighbor. The strength of the connections is weighted based on the similarity 

between the spots, and higher weight is given to spots more closely related. We then applied 

the Louvain algorithm to identify “communities” of spots that are more connected to spots in the 

same community than they are to spots of different communities, resulting in clustering of the 

sample spots. 

 

Comment 3: 

In the figure legend for fig 3 line 813, the authors seem to have used an FDR step up <0.1 while 
in other figures, the FDR step up is reported as <0.001. Why was a different metric used for fig 
3 specifically? This appears to be a typing error. Please elaborate. 
 
Response: Each brain region contains a large number of spots ranging from 2000-10,000. 
We adopted a very conservative differential gene expression analysis using an FDR 
threshold of 0.001 for whole brain or large brain regions to minimize the rate of false 
negatives or Type II errors. However, for subregional analysis with the smaller number of 
spots, the risk of false negatives becomes a serious concern due to the smaller number 
of spots. Consequently, we lowered the FDR stringency after deconvolution of 
hippocampal subregions consistent to what has been used in RNA-seq studies for 
subregional hippocampal analysis (Chen et al 2017 PMID 28275336). 
 
New text in the Discussion, p. 15: 
 
Given the decreased number of sample spots in the analysis of hippocampal subregions, the 
FDR threshold was lowered to 0.1 for the identification of significant DEGs to reduce the 
number of false negatives, similar to the FDR used for RNA-seq studies of hippocampal 
subregions61. 
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Comment 4: 
 
For the statistical analysis of digital spots (Fig. 5), a Sidak p-value correction was used. Could 
the authors provide a rationale for the selection of Sidak’s p-value correction in the methods 
section. The Sidak method enhances the statistical power thus increasing the probability of false 
positives in comparison to more advanced/conservative methods of p-value correction.  
 
Response:  
 
We have taken the reviewer’s suggestion to look at other p value correction methods.  
We chose the Sidak method because it assumes that each test is independent.  
We have now analyzed the data using two additional correction methods (Bonferroni and 
Benjamini-Hochberg methods) to assess the robustness of the results from the Sidak 
correction method. Bonferroni represents a conservative method correcting for the 
familywise error rate, i.e., the number of false positives, whereas Benjamini-Hochberg 
represents a stricter control for the false discovery rate, i.e., the number of false 
positives in ratio to the total number of positives. We have compared the results of 
Šidák, Bonferroni, and Benjamini-Hochberg corrections for an adjusted p-value of 0.05 
and found that there are only slight differences between the results of the three 
approaches regarding the number of DEGs identified for whole brain analysis. The 
overlap of genes between the Šidák and Bonferroni correction was 100%, with the 
Benjamini-Hochberg identifying an additional 9 genes (S: 413 DEGs, B: 413 DEGs, BH: 
422 DEGs; Supplemental Figure 12). Additionally, we’ve added functionality for all three 
correction methods to the STANLY code options. 
 
Comment 4, part 2 
 
In this case, the Sidak correction with the criterion that at least 3 digital spots of the 1892 might 
still contribute to false positives despite the new critical value after the correction. It remains 
unclear how the selection of 3 spots was arrived at. Therefore, we recommend that other more 
conservative p-value correction methods be used to control for false discoveries. 
 
Response: 
Previously, we corrected for multiple comparisons based on the number of spots, but 
based on this suggestion, we have now revised the p-value calculation. The new 
calculation corrects for transcriptome-wide significance (n=18,893), which provides a p-
value as threshold for statistical significance of 2.71e-06. Because of this more stringent 
calculation in the revised version of our manuscript, we have since removed the 3 spot 
threshold. We have revised the methods to reflect the updated Sidak correction that was 
used. We thank the reviewer for the comments as this has allowed us to show the 
strength of the data set the results remain virtually the same irrespective of the method 
used to correct for multiple comparisons.   
   
The following text was revised in the Methods Section, p. 28 
 
Where αs is the Šidák corrected p-value, α is the original p-value (and m is the number of genes 
in the transcriptome, n=18,893). Based on these numbers, any genes that differed between 
NSD and SD with a p-value < of 2.71e-06 was considered significantly differentially expressed. 
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The following text was added to the Methods section, p. 28: 
 
We used the Šidák method for statistical analysis because it assumes that each test is 
independent of each other. However, we also tested the Bonferroni and Benjamini-Hochberg 
methods for FDR correction to verify the strength of the gene analysis. We found the same 
number of DEGs (413) for the Bonferroni correction as the Šidák, while the Benjamini-Hochberg 
generated 422 DEGs. The overlap of genes between the Šidák and Bonferroni correction was 
100%, with the Benjamini-Hochberg including an additional 9 genes (Supplemental Figure 12). 
Thus, spatial transcriptomics provides a robust data set for differential gene analysis 
irrespective of the method used to correct for multiple comparisons.   
 
Supplemental Figure 12 
 
 
 

 
 
 
Comment 5: 
 
Additionally, in fig 5(B1-G3) the spot comparison reduces the spatial resolution of its location, 
would it be possible within the scope of the project to integrate/super-impose a line map of the 
brain region for spatial reference.  
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Response: As a spatial reference, we have included an anatomical map of the brain 
regions in Figure 5A to assist readers in interpretation of the regions in B1 – G3. See 
Revised Figure 5A below. It was not feasible to superimpose line maps on B1-G3 as this 
obscured many of the data points. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Comment 6: 
 
In the methods section, the authors specify that a coronal section corresponding/similar to the 
45th slice in the Paxinos mouse atlas. Could the authors specify which subregions this 
corresponds to since the brain regions mentioned can refer to a broader anatomical region. 
 
Response: For the purposes of tissue collection, we selected a slice that resembled slice 
45 of the Paxinos atlas. The features we looked at to determine similarity were 
predominately the following: the shape of the dentate gyrus and fit of CA1 and CA3 
bands to the atlas; size and shape of fimbria; size and separation of optic tract and 
internal capsule; size of lateral ventricle. We have added new text to the Methods 
describing the prominent tissue features that were used to determine the match to 
Paxinos slice 45. 
 
New and revised text in the Methods p 19: 
 
One coronal section per mouse, corresponding approximately to section 45 of the Paxinos 
Mouse Brain atlas, was mounted on Visium Spatial Gene Expression Slides (catalog no. 
2000233, 10x Genomics). For tissue collection, we selected a slice that resembled section 45 of 
the Paxinos Mouse Brain Atlas based on the following features: the shape of the dentate gyrus 
and fit of CA1 and CA3 bands to the atlas; size and shape of fimbria; size and separation of 
optic tract and internal capsule; size of lateral ventricle. 
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Reviewer #3 (Remarks to the Author): 
 
The study titled, "Spatial transcriptomics reveals unique gene expression changes in different 
brain regions after sleep deprivation", concerns a study employing newly developed spatial 
transcriptomic techniques and analytical methods to examine spatially localized DEGs in a 
coronal section of mouse brain that includes hippocampus, neocortex and subcortical regions, 
in response to acute sleep deprivation. The findings extend previous bulk tissue transcriptomic 
studies by allowing comparison of different brain regions’ DEG from 13 samples (the number of 
samples analyzed for different aspects of the study is not always made clear). The MS is clearly 
written, nicely illustrated, and the study is well designed and appears to be technically sound. 
The expression patterns derived from the spots’ transcriptomes correspond to anatomically 
defined brain regions. By registering ~50um diameter spots’ DEGs across the samples 
comprising each sleep group to a common anatomical reference location, the authors identify 
sets of DEGs specific to localized regions. One of the most interesting findings is that most 
hippocampal DEGs are downregulated and the majority of neocortical DEGs are upregulated. 
Also, this is a technically novel application of spatial transcriptomic analysis to changes induced 
by sleep deprivation. 
 
Response: We thank the reviewer for this kind appraisal of our work. 
 
Comment: 
DEGs unique to localized brain regions (hippocampal sub-regions or neocortical layers) are also 
identified. Although FDR appears to be well controlled, the power of the spatial transcriptomic 
technique for DEGs may be problematic. According to the authors, the spots may involve 10-20 
different cells so that a spot may better resemble highly localized bulk tissue in that a particular 
gene in a given spot may be up or downregulated or change very little and this might vary 
considerably from spot to spot depending on the cellular makeup of the spot (for example no 
DEGs were identified in CA2 and CA3). Further, even with scRNAseq, using a negative 
binomial mixed model like NEBULA, power, estimated from realistic simulations is less than 
50% for several thousands of single cells of a given cell type (many more cells than spots, each 
spot with mixed cells) to detect DEGs with a FC of ~1.2. Is it possible that at least some of the 
anatomically unique cells might be identified due to a very high rate of false negatives? Perhaps 
this could be more directly addressed in the discussion and the conclusions revised accordingly. 
 
Response: We agree that the absence of DEGs in CA2 and CA3 could arise from false 
negatives as we did adopt a conservative approach for the analysis. As suggested by the 
reviewer, the lack of DEGs may arise from the lack of statistical power as there are only 
210 spots total that overlay with these hippocampal subregions. Consequently, as in 
single-cell RNA-seq, a cluster of a hundred cells in each condition would not result in 
any significantly differentially expressed genes, despite our change of the FDR threshold 
from 0.001 for a major brain region to 0.1 for subregions such as CA2 and CA3. 
 
As suggested by the reviewer, we have now addressed this issue more directly in the 
Discussion. 
 
New text, Discussion, p. 15 
 
Given the decreased number of sample spots in the analysis of hippocampal subregions, the 
FDR threshold was lowered to 0.1 for the identification of significant DEGs to reduce the 
number of false negatives, similar to the FDR used for RNA-seq studies of hippocampal 
subregions61.  
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New Text, Discussion, p. 16 
 
It is probable that the small number of sample spots and subsequent lack of statistical power for 
analysis of the CA2 and CA3 subregions resulted in a failure to detect DEGs with some genes 
reported as false negatives. 
 



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

The authors have clearly answered all the reviewers' comments and the work has benefited from the 

additional results, tests and clarifications. 

Reviewer #2 (Remarks to the Author): 

The authors have done an excellent job in preparing the revised version of their manuscript. All of my 

specific concerns have been addressed to my complete satisfaction. Moreover, in my opinion, the 

authors have also suitably addressed the comments of the other reviewers. I have no remaining 

concerns. The authors are to be congratulated for an excellently conducted study and well-prepared 

manuscript. 

Graham Diering 

Reviewer #3 (Remarks to the Author): 

To the authors: This is a revision of the manuscript describing the study titled, "Spatial transcriptomics 

reveals unique gene expression changes in different brain regions after sleep deprivation." Many of the 

interpretations concerning sleep DEGs observed as specific to regions, cortical layers and sub-regions 

made by the authors, rely on the power of this technique to avoid false negatives. Yet, there is no clear 

assessment of the power of their spatial transcriptomic methods. This may be important since false 

negatives could lead to spurious conclusions concerning the anatomical specificity of differential gene 

expression. This kind of assessment would add greatly to the impact of this study considering that false 

negatives could potentially give an appearance of spatial specificity for sleep DEGs. 

Specific points: 

1. Within a given registered spot/group of spots defining a region/layer/subregion how many UMIs are 

detected/sample. 

2. What is the UMI variability from sample to sample (for each kind of area that is to be analyzed rather 

than for the whole sample as shown in table 1)? 

3. There appears to be minimal overlap of DEGs even from layer to layer in the neocortex or from 

hippocampus to neocortex. Would it be informative to compare UMI variability for those genes that are 

sleep DEGs in the regions (or layers) that are not sleep DEGs in the compared anatomical areas? 

Robert Greene 



A point-by-point Response to Reviewers: 

We thank the reviewers and the editorial team for carefully reviewing our manuscript. We 

have revised the manuscript according to the comments. All the changes in the 

manuscript are in red.  

 

Reviewer #1 (Remarks to the Author): 

The authors have clearly answered all the reviewers' comments and the work has benefited 

from the additional results, tests and clarifications. 

Response: We thank the reviewer for the supportive comments pointing out our 
noteworthy findings. 
 

 

Reviewer #2 (Remarks to the Author): 

The authors have done an excellent job in preparing the revised version of their manuscript. All 

of my specific concerns have been addressed to my complete satisfaction. Moreover, in my 

opinion, the authors have also suitably addressed the comments of the other reviewers. I have 

no remaining concerns. The authors are to be congratulated for an excellently conducted study 

and well-prepared manuscript. 

Response: We thank the reviewer for this kind appraisal of our work. 

 

Reviewer #3 (Remarks to the Author): 

To the authors: This is a revision of the manuscript describing the study titled, "Spatial 

transcriptomics reveals unique gene expression changes in different brain regions after sleep 

deprivation." Many of the interpretations concerning sleep DEGs observed as specific to 

regions, cortical layers and sub-regions made by the authors, rely on the power of this 

technique to avoid false negatives. Yet, there is no clear assessment of the power of their 

spatial transcriptomic methods. This may be important since false negatives could lead to 

spurious conclusions concerning the anatomical specificity of differential gene expression. This 

kind of assessment would add greatly to the impact of this study considering that false 

negatives could potentially give an appearance of spatial specificity for sleep DEGs. 

Specific points: 

1. Within a given registered spot/group of spots defining a region/layer/subregion how many 

UMIs are detected/sample. 

Within the neocortex, an average of 30,000 UMI counts per spot was detected across 

samples. This sequencing depth was maintained in a specific neocortical layer such as 

layer 2/3, supporting the idea that it is not differences in counts that drive the layer-

specific differences in differential gene expression that we observe. We added these 

metrics in Supplemental Figure 12. 



 

 

2. What is the UMI variability from sample to sample (for each kind of area that is to be analyzed 

rather than for the whole sample as shown in table 1)? 

Variability from sample to sample was minimal in the neocortex, and this was 

consistently maintained within specific neocortical layers, such as layer 2/3. We added 

these metrics in Supplemental Figure 13. 

 

 

 

 



 

3. There appears to be minimal overlap of DEGs even from layer to layer in the neocortex or 

from hippocampus to neocortex. Would it be informative to compare UMI variability for those 

genes that are sleep DEGs in the regions (or layers) that are not sleep DEGs in the compared 

anatomical areas? 

There are 12 DEGs commonly affected after sleep deprivation in each neocortical layer. 

When comparing the UMI variability of these 12 DEGs with that of 12 genes unaffected by 

sleep deprivation in the neocortical layers, no difference is observed in UMI variability. 

We added these metrics in Supplemental Figure 14. 

 

Given these findings, we would regard it as unlikely that our results are driven by false 

positives, but rather represent true biological changes. We have revised the “data 



processing” section of the Materials and Methods to reflect the emphasis of this 

information. 

New text in Methods, page 22: 

Addressing concerns regarding the potential for false negatives, we conducted a 

thorough assessment of the power of our spatial transcriptomic approach. We 

maintained a robust sequencing depth, with an average of 30,000 UMI counts per 

spatial spot within the neocortex, consistently across samples and specific neocortical 

layers such as layer 2/3 (Sup. Fig. 12). Minimal variability in UMI counts was observed 

between samples and within the neocortex and neocortical layer 2/3, underscoring the 

reliability and reproducibility of our methodology (Sup. Fig. 13). Notably, we identified 

12 DEGs common to each neocortical layer after sleep deprivation. The UMI variability 

of these sleep responsive DEGs did not differ from that of 12 genes unaffected by sleep 

deprivation in the neocortical layers (Sup. Fig. 14). This comparative analysis provides 

strong evidence against false positives, supporting the interpretation that our findings 

reflect genuine biological changes rather than artifacts. 

 

We think that these changes have helped to improve the manuscript and hope that it is 

now suitable for publication in Nature Communications. 
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