Expanded View Figures

A ALG-1 Wild type sequence 30 amino acids -VDREHDSGEGSQPSGTSEDTTLSNMARAVQ-

- # Netphos-3.1b prediction results

Sequence		# x	Context	Score	Kinase
#	Sequence	7 S	REHDSGEGS	0.478	СК ІІ
#	Sequence	7 S	REHDSGEGS	0.410	СКІ
#	Sequence	11 S	SGEGSQPSG	0.398	CK I
#	Sequence	11 S	SGEGSQPSG	0.382	СКІІ
#	Sequence	14 S	GSQPSGTSE	0.524	СКІ
#	Sequence	14 S	GSQPSGTSE	0.359	CK II
#	Sequence	16 T	QPSGTSEDT	0.394	CK II
#	Sequence	16 T	QPSGTSEDT	0.368	СКІ
#	Sequence	17 S	PSGTSEDTT	0.421	CKI
#	Sequence	17 S	PSGTSEDTT	0.404	CK II

В

AGO-2 Wild type sequence 30 amino acids -VDKEHDSAEGSHTSGQSNGRDHQALAKAVQ-

Netphos-3.1b prediction results

Sequence		# x	Context	Score	Kinase
#	Sequence	7 S	KEHDSAEGS	0.508	СКІ
#	Sequence	7 S	KEHDSAEGS	0.453	СК ІІ
#	Sequence	11 S	SAEGSHTSG	0.415	СКІ
#	Sequence	11 S	SAEGSHTSG	0.335	СКІІ
#	Sequence	13 T	EGSHTSGQS	0.389	CK II
#	Sequence	13 T	EGSHTSGQS	0.371	СКІ
#	Sequence	14 S	GSHTSGQSN	0.450	CK I
#	Sequence	14 S	GSHTSGQSN	0.305	СКІІ
#	Sequence	17 S	TSGQSNGRD	0.378	СКІ
#	Sequence	17 S	TSGQSNGRD	0.323	СКІІ

Figure EV1. CK1A1 and CK2 were both predicted to be phosphorylating the S988:S998 cluster on ALG-1 and S824:S834 cluster on AGO2 by Netphos3.1 online database.

A Netphos3.1 scores of CKI and CK2 phosphorylating the different phosphorylatable Serine residues (S988, S992, S995, and S998) and a Threonine residue (T997) within the S988:S998 cluster on ALG-1 in Caenorhabditis elegans.

B Netphos3.1 scores of CKI and CK2 phosphorylating the different phosphorylatable Serine residues (S824, S828, S831, and S834) and a Threonine residue (T830) within the S824:S834 cluster on AGO2 in humans.

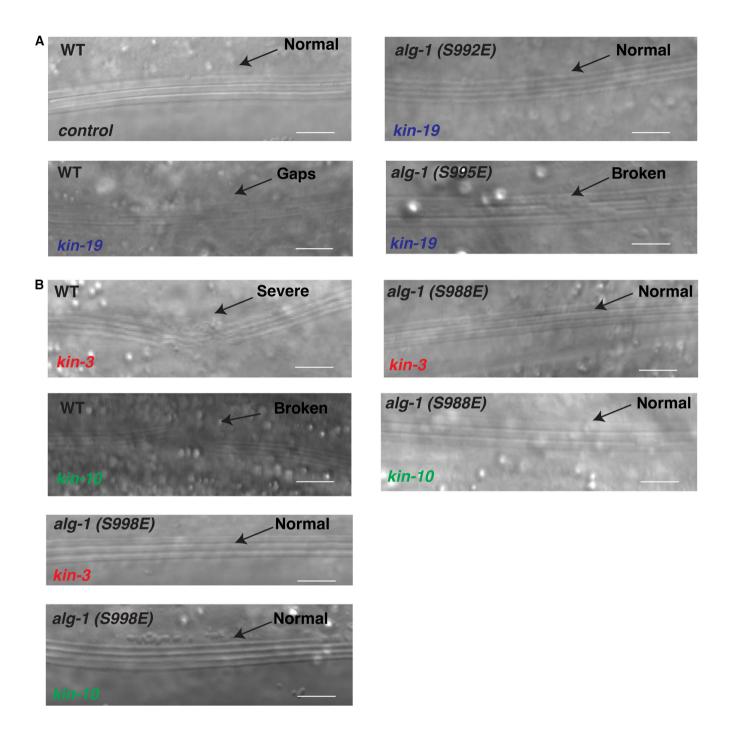


Figure EV2. CK1A1 depletion in alg-1(S992E) and alg-1(S995E) animals and CK2 depletion in alg-1(S988E) and alg-1(S998E) animals rescue alae defects (a phenotype associated with reduced miRNA pathway function).

A, B Representative images with alae structure (normal and defective) are shown for all conditions. The scale bar represents 10 µm.

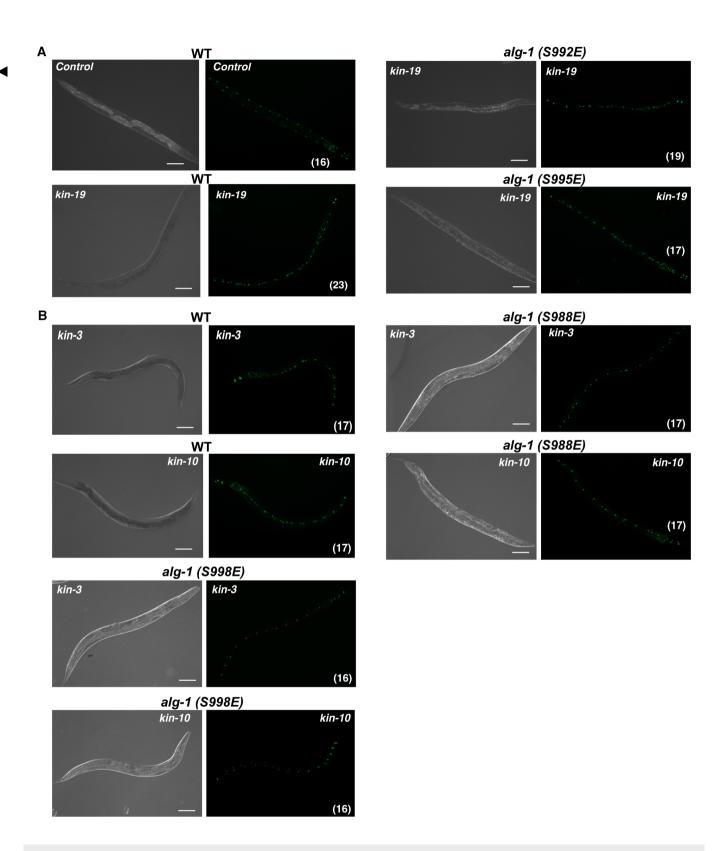
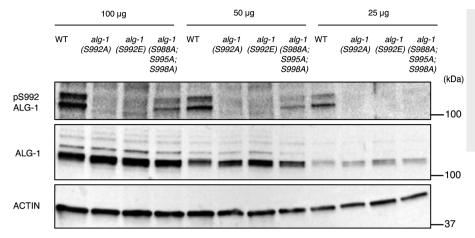
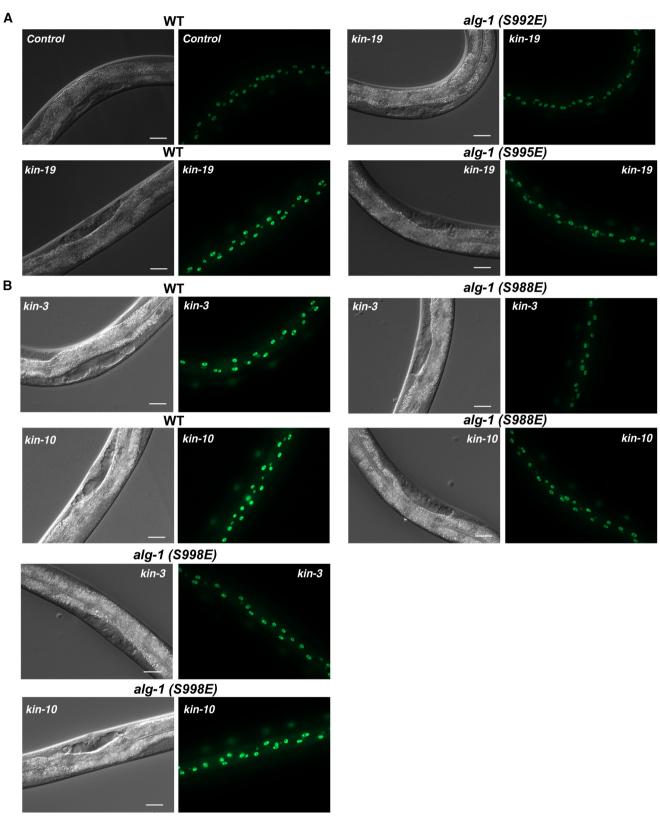



Figure EV3. CK1A1 depletion in alg-1(S992E) and alg-1(S995E) animals and CK2 depletion in alg-1(S988E) and alg-1(S998E) animals rescue seam cell defects (a phenotype associated with reduced miRNA pathway function).

A, B Representative pictures of seam cell *gfp* reporter expression (normal and abnormal) are shown for all conditions. The number in brackets indicates the number of seam cells. The scale bar represents 100 μ m.


Figure EV4. Specificity of the phospho-specific antibody to the S992 site within the S988:S998 cluster on ALG-1.

Representative Western blot of pALG-1 (S992) and ALG-1 in wild-type, alg-1(S992A), alg-1(S992E), and alg-1(S988A;S995A;S998A) young adult worm extracts at different protein concentrations of 100, 50, and 25 μ g to demonstrate the specificity of the phospho-specific antibody. ACTIN is used as a loading control.

Source data are available online for this figure.

Figure EV5. Functional analysis using a let-7 miRNA reporter.

A, B CK1A1 depletion in *alg-1(S992E)* and *alg-1(S995E)* animals and CK2 depletion in *alg-1(S988E)* and *alg-1(S998E)* animals rescue let-7 miRNA reporter de-repression. Representative pictures of let-7 miRNA reporter expression are shown for all conditions. The scale bar represents 20 μm.

