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ABSTRACT

The localization of plasma membrane H+-ATPase has been
studied at the optical microscope level utilizing frozen and par-
affin sections of Avena sativa and Pisum sativum, specific anti-
ATPase polyclonal antibody, and second antibody coupled to
alkaline phosphatase. In leaves and stems the ATPase is con-
centrated at the phloem, supporting the notion that it generates
the driving force for phloem loading. In roots the ATPase is
concentrated at both the periphery (rootcap and epidermis) and
at the central cylinder, including endodermis and vascular cells.
This supports a 'two-pump' mechanism for ion absorption, involv-
ing active uptake at the epidermis, symplast transport across the
cortex, and active efflux at the xylem. The low ATPase content
of root meristem and elongation zone may explain the observed
transorgan H+ currents, which leave nongrowing parts and enter
growing tips.

The major ATPase of plant plasma membranes is a H+
pump, which seems to play a central role in plant physiology.
The proton gradient generated by the enzyme is the driving
force for active nutrient transport, and the pH changes result-
ing from proton pumping may be involved in growth control
(21). At the level of whole plants, the loading of root xylem
with inorganic nutrients and the loading of leaf phloem with
organic nutrients seem to depend on active transport processes
driven by the H+-ATPase (3, 12, 16).
Knowledge about the distribution of plasma membrane

H+-ATPase in plant tissues is essential for understanding the
pathway and mechanism of nutrient transport (3, 12, 16).
Previous approaches to this problem consisted of the cyto-
chemical staining for ATP hydrolysis by lead-induced precip-
itation of the released Pi (7, 25-27). However, it has recently
been demonstrated that the plasma membrane H+-ATPase is
inactivated by both the lead and the fixatives used in the
cytochemical procedure and that the measured ATP hydrol-
ysis is catalyzed by a molybdate-sensitive phosphatase (13).
Clearly, a more specific approach to ATPase localization was
needed.
We have expressed in Escherichia coli the carboxyl-terminal

domain of a cloned ATPase gene (18) and generated specific
polyclonal antibody against the enzyme. By utilizing this
antibody and either frozen or paraffin sections ofplant tissues,
we found that the ATPase is highly enriched in vascular tissues
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and root epidermis and endodermis. The implications of this
distribution for current models of nutrient transport in plants
are discussed.

MATERIALS AND METHODS

Plant Material

Oats (Avena sativa) and peas (Pisum sativum) were local
varieties distributed in Heidelberg by the Zentralgenossen-
schaft fur Landwirtschaftliche Erzeugnisse. They were grown
for 2 weeks in vermiculite. The plant chamber was maintained
at 23°C with a regime of 16 h day-8 h night.

Generation of Antibody

The carboxyl-terminal domain of the ATPase gene was
obtained from the cDNA clone (18) as a BstNI fragment of
427 base pairs (nucleotides 2915-3342). It was blunt-ended
with the Klenow fragment ofDNA polymerase and subcloned
with the right orientation into the SmaI site of the expression
vector pEX3 (22). This produced an in-frame fusion of the
cro-lacZ gene with the coding region for amino acids 851-
949. Purification of the fusion protein from the inclusion
bodies of the bacteria and rabbit immunization were per-
formed as described in the PEXFIT manual (Genofit, Geneva,
Switzerland).

Membrane and Enzyme Preparation

Oat roots were homogenized as described (20), and a crude
membrane fraction was prepared by centrifugation of the
homogenate during 1 h at 40,000 rpm (Beckman rotor 70
Ti). The plasma membrane ATPase was purified to near
homogeneity as described (20).

Electrophoresis and Blotting

PAGE in SDS, transfer to nitrocellulose, and immunode-
tection were as described (1). Samples were first precipitated
with TCA before dissolving in the SDS buffer and heating
was limited to 37°C. These modifications were needed to
prevent both proteolytic degradation and aggregation of the
ATPase (20). Nonfat dried milk was used in the blocking of
the nitrocellulose in addition to Tween 20 (1). Preimmune
and immune sera were diluted 1/2000 and the second anti-
body conjugated to alkaline phosphatase (Promega, Madison,
anti-rabbit IgG alkaline phosphatase conjugate developed in
goat and affinity purified, 1 mg/mL) was diluted 1/5000.
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Immunocytolocalization

Frozen sections of 14 to 20 gm were prepared at -22°C in
a cryostat and picked up on subbed slides as described (1 1,
17). Sections were air-dried and dehydrated at -20TC, first
with 40% ethanol and then with 55% ethanol. They were
finally fixed at -20TC with 75% ethanol-25% acetic acid,
washed at room temperature with 75% ethanol, and air-dried.
Paraffin sections of 10 ,m were made as described (15), except
that the tissue was fixed with 2% paraformaldehyde before
dehydration.

All the incubations and washes were done by overlaying
tissue sections with the corresponding solutions. The basic
medium was TBS2 buffer containing 2% nonfat dried milk
and either 0.05% (blocking and antibody dilutions) or 0.5%
(washes) Tween 20. Sections were blocked by 30 min incu-
bation in basic medium. Preimmune and immune sera were
diluted 1/500 (frozen sections) or 1/250 (paraffin sections)
and incubated 3 h with the sections. After 3 x 10 min washes,
second antibody conjugated to alkaline phosphatase (see
above) was diluted 1/100 and incubated 2 h with the sections.
After 3 x 10 min washes, the reaction of alkaline phosphatase
was developed for 30 min as described (1).
A Nikkon Diaphot microscope was utilized for sample

visualization and photography. To optimize differential vis-
ualization of the alkaline phosphatase stain with respect to
the contrast of the tissue, the condenser had to be moved
away from the sample to provide a low intensity of diffused
light. This produced some blurring of the image. All samples
(preimmune controls and immunodecorated sections) were
photographed under identical conditions.

RESULTS

Antibody has been generated against the last 99 amino
acids ofone ofthe three ATPase genes ofArabidopsis thaliana
(18). It reacts with purified plasma membrane ATPase from
oat roots (Fig. 1, lanes 3 and 7) and with plasma membrane
ATPases from tobacco, sunflower, and corn (R Serrano,
unpublished data). This carboxyl-terminal domain has only
19 to 20 amino acid changes with respect to other isoforms
of Arabidopsis ATPase (10, 18) and 36 changes with respect
to one ofthe isoforms oftobacco ATPase (2). Therefore, most
of the amino acids in this region are highly conserved. The
specificity of the antiserum is demonstrated by the fact that
in crude membranes showing many protein bands only the
ATPase band of 100 kD is decorated (Fig. 1, lanes 2 and 6).
We have utilized frozen (11, 17) and paraffin (15) sections

for immunolocalization studies because they preserve better
the antigenicity of tissue proteins than resin-embedded sec-
tions (8, 11). Structural preservation, however, is not always
good with these methods (8, 1 1), and we have encountered
most difficulties with root tissues. Figure 2A shows a longi-
tudinal frozen section of a root tip. Cellular detail is poor and
no improvement could be obtained by using paraffin sections.
However, despite its low resolution, this picture clearly indi-
cates enrichment ofthe ATPase at the root periphery (rootcap
and epidermis) and at the central cylinder. The meristematic

2Abbreviation: TBS, 0.15 M NaCl and 20 mM Tris-HCI (pH 8.0).

Figure 1. Specificity of antibody in Western blots. Samples of 20 /sg
crude membranes (lanes 2, 4, and 6) or 2 gg purified ATPase (lanes
3, 5, and 7) were separated by electrophoresis and either stained for
protein with Coomassie blue R-250 (lanes 2 and 3) or transferred to
nitrocellulose and decorated with either preimmune serum (lanes 4
and 5) or antiserumn (lanes 6 and 7). Lane 1: Molecular mass standards
of 200, 98, 68, 43, and 26 k.

and elongation zones and the cortex of differentiated zones
contain relatively little ATPase. Transverse sections at the
meristemnatic zone (Fig. 2B) also show poor cellular detail but
confirm the peripheral enrichment of the ATPase (at the
rootcap, under the mucilage layer). Much better structural
detail was obtained in transverse sections ofthe differentiation
zone (Fig. 2C), where the external part of the epidermal layer
and the central cylinder are intensively labeled. A mature
central cylinder surrounded by cortical cells is shown in Figure
2D. Intense labeling of endodermis, pericycle, and vascular
cells is observed. The root surface was also labeled in this
differentiated part of the root but structural preservation was
very poor and we could not ascertain ifthe stain corresponded
to the epidermis alone or to epidermis and exodermis (not
shown).

Figure 3A (low magnification) shows dark spots corre-
sponding, to staining of leaf veins. Figure 3B (high magnifi-
cation) demonstrates specific staining at the phloem layer of
a vascular bundle. In stems (Fig. 3C) the phloem of collateral
and bicollateral vascular bundles (the later with internal and
external phloem (61) is specifically stained.

DISCUSSION

The enrichment of ATPase at the phloem of leaf veins
supports a role for the enzyme in phloem loading, as suggested
from biochemical and physiological studies (12, 16). At the
optical microscope level we cannot definitively ascertain the
different types of cells labeled by antibody. In addition to
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Figure 3. Immunocytolocalization of ATPase in paraffin sections of oat leaves (A and B) and in frozen sections of pea stems (C). A, Overview
of a leaf at low magnification (x20); B, detail of a vein (x370); C, portion of a stem section (xl 00). Sections were decorated with either preimmune
serum (left) or antiserum (right).
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Figure 2. Immunocytolocalization of ATPase in frozen sections of oat roots. Longitudinal sections from root tips (A, x100) and transverse
sections of meristematic zone (B, x200), differentiation zone (C, x260), and mature central cylinder (D, x300) were decorated with either
preimmune serum (left) or antiserum (right).
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sieve tubes, phloem companion cells may also be labeled and
electron microscope studies are under way to clarify this point.
The functioning of the ATPase in sieve tubes is made possible
by the presence of ATP in phloem sap (14). Although we
have occasionally observed staining of stomata guard cells,
this was not reproducible and we want to confirm this point
by electron microscopy before reaching any conclusion.
The dual enrichment of ATPase at the epidermis and at

the central cylinder of roots supports the 'two-pump' hypoth-
esis for ion absorption (3, 4, 9, 16, 19), which assumes active
uptake at the epidermis, symplasmic transport to the stele,
and active loading of the xylem. The high ATPase content of
the endodermis would make plausible an apoplastic route
from the root surface to the central cylinder, with active
absorption at the endodermis. However, the epidermis has
greater surface and better accessibility to the external ions and
therefore most of the active absorption probably occurs there.
The low ATPase content of cortex cells would explain their
low absorption capacity (23). In addition, the bi-phasic com-
position of trans-root electrical potentials (5) is easily ex-
plained by the present results. Although, as indicated above
for aerial vascular bundles, electron microscopy is needed to
identify cell types, it seems that in addition to endodermis
and pericyle, xylem parenchyma cells and phloem are also
rich in ATPase. Root hairs, which are also probably enriched
in ATPase (16), were difficult to preserve during sectioning
and will require electron microscopy.
A final point is that the relatively low ATPase content of

meristematic and elongation zones may explain the observa-
tion (24) that natural H+ currents leave differentiated, non-
growing zones (rich in ATPase) and enter growing tips.
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