## nature microbiology

Article

https://doi.org/10.1038/s41564-023-01494-9

# Nuclear exchange generates population diversity in the wheat leaf rust pathogen *Puccinia triticina*

In the format provided by the authors and unedited



**Supplementary Table S1: The** *Pt* **isolates collected in this study with sample locations in Australia and pathotypes.** The nuclear genotypes derived from *k*-mer and lineage assignments according to phylogenetic tree analysis are shown. The nuclear genotype of 20QLD87 later derived as CD is also shown. (ACT: Australian Capital Territory; QLD: Queensland; NSW: New South Wales).

| Isolate name                 | Sample collection | Collection | Pathotype               | Nuclear  | Lineage |
|------------------------------|-------------------|------------|-------------------------|----------|---------|
|                              |                   | year       |                         | genotype |         |
| 19ACT06 (Pt76) <sup>24</sup> | Canberra, ACT     | 2019       | 76-3,5,7,9,10,12,13     | AB       | AU1     |
| 19QLD08                      | Gatton, QLD       | 2019       | 76-1,3,5,7,9,10,12,13   | AB       |         |
| 19NSW04                      | Wagga Wagga, NSW  | 2019       |                         | BC       | AU2     |
| 19ACT07                      | Canberra, ACT     | 2019       | 104-1,3,4,5,6,7,9,10,12 | BC       |         |
| 20QLD91                      | Gatton, QLD       | 2020       |                         | BC       |         |
| 20ACT90                      | Canberra, ACT     | 2020       | 104-1,3,4,5,7,9,10,12   | BC       |         |
| 20QLD87                      | Warwick, QLD      | 2020       | 104-1,3,4,6,7,8,9,10,12 | CD       | AU3     |

Supplementary Table S2: Statistics for the hifiasm-haplotype 1 and hifiasm-haplotype 2 assemblies before scaffolding.

| Statistic               | 19NSW04 hifiasm-<br>haplotype 1 | 19NSW04 hifiasm-<br>haplotype 2 | 20QLD87 hifiasm-<br>haplotype 1 | 20QLD87 hifiasm-<br>haplotype 2 |
|-------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Assembly size           | 129.487 Mb                      | 123.558 Mb                      | 123.181 Mb                      | 125.281 Mb                      |
| # of contigs            | 119                             | 61                              | 81                              | 64                              |
| N/L50                   | 8/6.813 Mb                      | 9/6.623 Mb                      | 9/5.992 Mb                      | 9/5.943 Mb                      |
| Maximum scaffold length | 9.616 Mb                        | 8.623 Mb                        | 8.313 Mb                        | 8.988 Mb                        |
| GC content              | 46.54%                          | 46.57%                          | 46.59%                          | 46.62%                          |
| Complete BUSCOs (%)     | 96.3%                           | 95.2%                           | 95.7%                           | 96.3%                           |
| Duplicated BUSCOs (%)   | 5.4%                            | 3.9%                            | 3.6%                            | 4.2%                            |
| Fragmented BUSCOs (%)   | 2.7%                            | 2.6%                            | 3%                              | 2.7%                            |
| Haplotype identity      | C                               | В                               | D                               | C                               |

Supplementary Table S3: Assembly statistics for the two haplotypes of the scaffolded hifiasm assemblies with Hi-C integration.

| Statistic                                      | 19NSW04<br>haplotype C<br>chromosomes | 19NSW04<br>haplotype B<br>chromosomes | 19NSW04<br>unplaced<br>contigs | 20QLD87<br>haplotype D<br>chromosomes | 20QLD87<br>haplotype C<br>chromosomes | 20QLD87<br>unplaced<br>contigs |
|------------------------------------------------|---------------------------------------|---------------------------------------|--------------------------------|---------------------------------------|---------------------------------------|--------------------------------|
|                                                |                                       |                                       |                                |                                       |                                       |                                |
| Assembly size                                  | 123.8 Mb                              | 122.1 Mb                              | 7.2 Mb                         | 121.8 Mb                              | 123.3 Mb                              | 3.0 Mb                         |
| Number of                                      | 18                                    | 18                                    | 123                            | 18                                    | 18                                    | 79                             |
| scaffolds/contigs                              |                                       |                                       |                                |                                       |                                       |                                |
| N/L50                                          | -                                     | -                                     | 27/76.2 Kb                     | -                                     | -                                     | 21/38.7 Kb                     |
| Maximum scaffold length                        | 9.6 Mb                                | 9.2 Mb                                | 326.9 Kb                       | 9.3 Mb                                | 9.4 Mb                                | 164.3 Kb                       |
| GC content                                     | 46.6%                                 | 46.7%                                 | 43.6%                          | 46.6%                                 | 46.6%                                 | 44.1%                          |
| Complete BUSCOs (%)                            | 96.1%                                 | 96.2%                                 | 0.8%                           | 96%                                   | 96.1%                                 | 0.2%                           |
| Duplicated BUSCOs (%)                          | 3.7%                                  | 3.5%                                  | 0.1%                           | 3.4%                                  | 3.6%                                  | 0.1%                           |
| Fragmented BUSCOs (%)                          | 2.8%                                  | 2.7%                                  | 0.1%                           | 2.8%                                  | 2.8%                                  | 0%                             |
| Number of genes                                | 17,939                                | 18,138                                | 245                            | 18,952                                | 18,804                                | 90                             |
| % repetitive sequence                          | 63.9%                                 | 63.5%                                 | 92.7%                          | 62.6%                                 | 63.1%                                 | 90%                            |
| % retroelements                                | 31.4%                                 | 30.9%                                 | 15.8%                          | 31.1%                                 | 31.9%                                 | 19.7%                          |
| % DNA transposons                              | 6.3%                                  | 6.4%                                  | 1.4%                           | 6.4%                                  | 6.5%                                  | 3.3%                           |
| % unclassified repeats                         | 23.6%                                 | 24%                                   | 19.5%                          | 23.6%                                 | 23.2%                                 | 24%                            |
| % ribosomal RNAs                               | 0.9%                                  | 0.7%                                  | 51.6%                          | 0.6%                                  | 0.6%                                  | 40.3%                          |
| Assembly consensus<br>quality value (QV score) |                                       | 55.6                                  | -                              |                                       | 59.7                                  | -                              |

Supplementary Table S4: Statistics for genomic alignments between the *Pt76* and the 19NSW04/20QLD87 haplotype chromosomes.

| Within-isolate alignments             | 19NSW04 haplotype B<br>versus haplotype C | 20QLD87 haplotype C<br>versus haplotype D | <i>Pt76</i> haplotype A versus haplotype B |
|---------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|
| Aligned bases                         | 97.9%                                     | 97.4%                                     | 97.1%                                      |
| Average identity of 1-to-1 alignments | 99.5%                                     | 99.5%                                     | 99.5%                                      |
| Average identity of M-to-M alignments | 99.1%                                     | 99.1%                                     | 99%                                        |
| Translocations                        | 849                                       | 848                                       | 1,053                                      |
| Inversions                            | 155                                       | 132                                       | 164                                        |
| Insertions                            | 8,913                                     | 8,617                                     | 10,898                                     |
| Total SNPs                            | 328,470                                   | 301,814                                   | 334,189                                    |
| Total Indels                          | 182,991                                   | 167,011                                   | 186,643                                    |

| Between-isolate<br>alignments            | <i>Pt76</i> haplotype B<br>versus 19NSW04<br>haplotype 1 | <i>Pt76</i> haplotype B<br>versus<br>19NSW04<br>haplotype 2 | 20QLD87<br>haplotype 2<br>versus<br>19NSW04<br>haplotype 2 | 20QLD87<br>haplotype 2<br>versus 19NSW04<br>haplotype 1  | 20QLD87<br>haplotype 1<br>versus<br><i>Pt76</i> haplotype A |
|------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|
| Aligned bases                            | 99.03%                                                   | 99.97%                                                      | 98.88%                                                     | 99.98%                                                   | 98.76%                                                      |
| Average identity of<br>1-to-1 alignments | 99.49%                                                   | 99.98%                                                      | 99.49%                                                     | 99.99%                                                   | 99.49%                                                      |
| Average identity of<br>M-to-M alignments | 99.06%                                                   | 99.95%                                                      | 99.07%                                                     | 99.97%                                                   | 99.07%                                                      |
| Translocations                           | 900                                                      | 1                                                           | 862                                                        | 4                                                        | 986                                                         |
| Inversions                               | 157                                                      | 6                                                           | 145                                                        | 2                                                        | 146                                                         |
| Insertions                               | 10,601                                                   | 347                                                         | 11,233                                                     | 260                                                      | 11,544                                                      |
| Total SNPs                               | 325,608                                                  | 2,966                                                       | 328,689                                                    | 2,182                                                    | 327,782                                                     |
| Total Indels                             | 181,972                                                  | 9,457                                                       | 182,772                                                    | 6,486                                                    | 180,947                                                     |
| Assignment                               |                                                          | 19NSW04<br>haplotype 2 = B                                  |                                                            | 19NSW04<br>haplotype 1 = C<br>20QLD87<br>haplotype 2 = C |                                                             |

#### Supplementary Table S5: SNPs derived from genomic alignments and their properties.

| Comparison            | Number<br>of SNPs | SNPs in repetitive regions | SNPs in coding<br>regions | Non-<br>synonymous<br>SNPs | Nonsense<br>SNPs | Number of<br>proteins<br>with<br>variant | Number of<br>secreted<br>proteins with<br>variant |
|-----------------------|-------------------|----------------------------|---------------------------|----------------------------|------------------|------------------------------------------|---------------------------------------------------|
| 19ACT06 B - 19NSW04 B | 2,966             | 2,367 (80.1%)              | 283 (9.5%)                | 163 (57.6%)                | 7 (2.5%)         | 60                                       | 5 (8.3%)                                          |
| 19NSW04 C – 20QLD87 C | 2,182             | 1,773 (81.3%)              | 178 (8.2%)                | 100 (56.2%)                | 3 (1.7%)         | 122                                      | 21 (17.2%)                                        |
|                       |                   |                            |                           |                            |                  |                                          |                                                   |
| 19ACT06 A - 19ACT06 B | 334,203           | 262,845 (78.7%)            | 35,110 (10.5%)            | 21,232 (60.5%)             | 526 (1.5%)       | 7,630                                    | 1,215 (15.9%)                                     |
| 19NSW04 B - 19NSW04 C | 328,470           | 256,429 (78.1%)            | 34,941 (10.6%)            | 21,340 (61.1%)             | 474 (1.4%)       | 7,858                                    | 1,223 (15.6%)                                     |
| 20QLD87 C - 20QLD87 D | 301,814           | 258,447 (85.6%)            | 32,754 (10.9%)            | 20,114 (61.4%)             | 529 (1.6%)       | 7,384                                    | 1,108 (15%)                                       |

### Supplementary Table S6: SNPs derived from genomic alignments and their location on the chromosomes.

| B haplotype var         | iants       |          |               | C haplotype variants    |             |          |               |  |  |
|-------------------------|-------------|----------|---------------|-------------------------|-------------|----------|---------------|--|--|
| Chromosome<br>(19NSW04) | Length      | Variants | Variants rate | Chromosome<br>(19NSW04) | Length      | Variants | Variants rate |  |  |
| 1_B                     | 9,204,362   | 158      | 58,255        | 1_C                     | 9,316,129   | 94       | 99,107        |  |  |
| 2_B                     | 7,951,971   | 112      | 70,999        | 2_C                     | 7,154,143   | 26       | 275,159       |  |  |
| 3_B                     | 8,920,942   | 82       | 108,791       | 3_C                     | 9,016,186   | 39       | 231,184       |  |  |
| 4_B                     | 8,537,679   | 259      | 32,964        | 4_C                     | 8,922,052   | 100      | 89,220        |  |  |
| 5_B                     | 8,007,851   | 259      | 30,918        | 5_C                     | 7,944,558   | 162      | 49,040        |  |  |
| 6_B                     | 8,182,878   | 98       | 83,498        | 6_C                     | 9,615,590   | 66       | 145,690       |  |  |
| 7_B                     | 7,671,061   | 360      | 21,308        | 7_C                     | 7,664,942   | 60       | 127,749       |  |  |
| 8_B                     | 7,350,761   | 108      | 68,062        | 8_C                     | 7,484,054   | 37       | 202,271       |  |  |
| 9_B                     | 6,788,249   | 93       | 72,991        | 9_C                     | 7,031,919   | 26       | 270,458       |  |  |
| 10_B                    | 7,565,484   | 368      | 20,558        | 10_C                    | 7,216,867   | 35       | 206,196       |  |  |
| 11_B                    | 6,990,834   | 106      | 65,951        | 11_C                    | 6,813,017   | 281      | 24,245        |  |  |
| 12 B                    | 5,939,218   | 118      | 50,332        | 12 C                    | 6,034,179   | 227      | 26,582        |  |  |
| 13 B                    | 5,575,677   | 231      | 24,137        | 13 C                    | 5,707,219   | 23       | 248,139       |  |  |
| 14 B                    | 5,329,819   | 49       | 108,771       | 14 C                    | 5,388,068   | 47       | 114,639       |  |  |
| 15_B                    | 4,442,786   | 63       | 70,520        | 15_C                    | 4,475,553   | 23       | 194,589       |  |  |
| 16_B                    | 4,691,570   | 253      | 18,543        | 16_C                    | 4,941,809   | 39       | 126,713       |  |  |
| 17_B                    | 4,550,902   | 197      | 23,101        | 17_C                    | 4,705,371   | 64       | 73,521        |  |  |
| 18 B                    | 4,374,653   | 52       | 84,127        | 18_C                    | 4,313,118   | 833      | 5,177         |  |  |
| Total                   | 122.076.697 | 2,966    | 41,158        | Total                   | 123,744,774 | 2,182    | 56,711        |  |  |

| AB haplotype            | AB haplotype variants |          |               |                         | BC haplotype variants |          |                  |  |  |
|-------------------------|-----------------------|----------|---------------|-------------------------|-----------------------|----------|------------------|--|--|
| Chromosome<br>(19ACT06) | Length                | Variants | Variants rate | Chromosome<br>(19NSW04) | Length                | Variants | Variants<br>rate |  |  |
| 1_A                     | 9,506,148             | 22,218   | 427           | 1_B                     | 9,204,362             | 21,390   | 430              |  |  |
| 2_A                     | 8,009,403             | 25,043   | 319           | 2_B                     | 7,951,971             | 20,565   | 386              |  |  |
| 3_A                     | 8,950,327             | 26,605   | 336           | 3_B                     | 8,920,942             | 18,222   | 489              |  |  |
| 4_A                     | 8,524,094             | 23,715   | 359           | 4_B                     | 8,537,679             | 18,305   | 466              |  |  |
| 5_A                     | 7,886,703             | 19,132   | 412           | 5_B                     | 8,007,851             | 23,759   | 337              |  |  |
| 6_A                     | 8,486,047             | 25,704   | 330           | 6_B                     | 8,182,878             | 26,824   | 305              |  |  |
| 7_A                     | 7,806,228             | 20,495   | 380           | 7_B                     | 7,671,061             | 20,663   | 371              |  |  |
| 8_A                     | 7,740,161             | 21,943   | 352           | 8_B                     | 7,350,761             | 19,548   | 376              |  |  |
| 9_A                     | 7,101,616             | 15,953   | 445           | 9_B                     | 6,788,249             | 25,401   | 267              |  |  |
| 10_A                    | 7,138,558             | 14,572   | 489           | 10_B                    | 7,565,484             | 21,790   | 347              |  |  |
| 11_A                    | 6,975,844             | 26,053   | 267           | 11_B                    | 6,990,834             | 16,327   | 428              |  |  |
| 12_A                    | 6,725,789             | 21,776   | 308           | 12_B                    | 5,939,218             | 17,463   | 340              |  |  |
| 13_A                    | 5,634,657             | 11,674   | 482           | 13_B                    | 5,575,677             | 13,970   | 399              |  |  |
| 14_A                    | 5,301,928             | 18,206   | 291           | 14_B                    | 5,329,819             | 16,551   | 322              |  |  |
| 15_A                    | 4,388,549             | 14,747   | 297           | 15_B                    | 4,442,786             | 14,851   | 299              |  |  |
| 16_A                    | 4,755,494             | 6,525    | 728           | 16_B                    | 4,691,570             | 11,575   | 405              |  |  |
| 17_A                    | 4,616,298             | 12,755   | 361           | 17_B                    | 4,550,902             | 11,591   | 392              |  |  |
| 18_A                    | 4,363,601             | 7,087    | 615           | 18_B                    | 4,374,653             | 9,675    | 452              |  |  |
| Total                   | 123,911,445           | 334,203  | 370           | Total                   | 122,076,697           | 328,470  | 371              |  |  |

| CD haplotype variants   |             |          |                  |  |  |  |  |  |
|-------------------------|-------------|----------|------------------|--|--|--|--|--|
| Chromosome<br>(20QLD87) | Length      | Variants | Variants<br>rate |  |  |  |  |  |
| 1_C                     | 9,365,963   | 20,704   | 452              |  |  |  |  |  |
| 2_C                     | 8,279,169   | 22,640   | 365              |  |  |  |  |  |
| 3_C                     | 9,012,612   | 19,929   | 452              |  |  |  |  |  |
| 4_C                     | 8,396,214   | 17,729   | 473              |  |  |  |  |  |
| 5_C                     | 7,810,846   | 19,972   | 391              |  |  |  |  |  |
| 6_C                     | 8,497,072   | 24,128   | 352              |  |  |  |  |  |
| 7_C                     | 7,710,878   | 19,509   | 395              |  |  |  |  |  |
| 8_C                     | 7,461,278   | 18,667   | 399              |  |  |  |  |  |
| 9_C                     | 7,516,638   | 22,994   | 326              |  |  |  |  |  |
| 10_C                    | 7,216,724   | 15,645   | 461              |  |  |  |  |  |
| 11_C                    | 6,814,370   | 16,044   | 424              |  |  |  |  |  |
| 12_C                    | 6,055,093   | 16,388   | 369              |  |  |  |  |  |
| 13_C                    | 5,706,749   | 11,320   | 504              |  |  |  |  |  |
| 14_C                    | 5,288,343   | 11,851   | 446              |  |  |  |  |  |
| 15_C                    | 4,480,348   | 14,154   | 316              |  |  |  |  |  |
| 16_C                    | 4,910,384   | 12,804   | 383              |  |  |  |  |  |
| 17_C                    | 4,412,544   | 7,582    | 581              |  |  |  |  |  |
| 18_C                    | 4,316,561   | 9,754    | 442              |  |  |  |  |  |
| Total                   | 123,251,786 | 301.814  | 408              |  |  |  |  |  |

**Supplementary Table S7:** Illumina read coverage, number of homozygous SNPs and *k*-mer containment score for the genomic loci of the b2, b3, b4 and b5 genes.

|                | <i>Pt76</i> b2 | Pt76 b2 (haplotype A) Pt76 b3 (haplotype 2 |       | (pe B)   | 20QLD87 b4 (haplotype C) |       |          | 20QLD87 b5 (haplotype D) |       |          |       |       |          |
|----------------|----------------|--------------------------------------------|-------|----------|--------------------------|-------|----------|--------------------------|-------|----------|-------|-------|----------|
|                | Coverage       | # hom                                      | k-mer | Coverage | # hom                    | k-mer | Coverage | # hom                    | k-mer | Coverage | # hom | k-mer | genotype |
|                |                | SNPs                                       | score |          | SNPs                     | score |          | SNPs                     | score |          | SNPs  | score |          |
| AU1 (AB)       | 100%           | 0                                          | 100%  | 100%     | 0                        | 100%  | 70.8%    | 9                        | 98.3% | 83.4%    | 24    | 98.8% | b2/b3    |
| AU2 (BC)       | 62.5%          | 26                                         | 97.9% | 100%     | 0                        | 100%  | 100%     | 0                        | 100%  | 82.3%    | 34    | 98.8% | b3/b4    |
| 20QLD87 (CD)   | 62.4%          | 8                                          | 97.9% | 79.6%    | 16                       | 98.3% | 100%     | 0                        | 100%  | 100%     | 0     | 100%  | b4/b5    |
| AU5 (A)        | 100%           | 0                                          | 100%  | 67.5%    | 31                       | 98.1% | 66.8%    | 16                       | 98.4% | 75.3%    | 21    | 99.1% | b2/?     |
| AU4            | 60.7%          | 8                                          | 98.2% | 72%      | 15                       | 98.5% | 60.2%    | 16                       | 98.5% | 100%     | 0     | 100%  | b5/?     |
| 09TUR23-1 (AB) | 100%           | 0                                          | 100%  | 100%     | 0                        | 100%  | 63%      | 6                        | 99%   | 99.8%    | 8     | 99.8% | b2/b3    |
| CZ10-9 (A)     | 100%           | 0                                          | 100%  | 74.9%    | 21                       | 98.8% | 64.8%    | 8                        | 99%   | 94.8%    | 15    | 99.6% | b2/?     |
| FR56 (A)       | 100%           | 0                                          | 100%  | 87.4%    | 19                       | 99.2% | 69.6%    | 12                       | 98.9% | 76.6%    | 15    | 99.3% | b2/?     |
| EU1            | 74.6%          | 10                                         | 97.9% | 74.3%    | 15                       | 97.9% | 56.7%    | 11                       | 98.3% | 96.4%    | 7     | 99.2% | ?/?      |
| EU4            | 100%           | 0                                          | 100%  | 100%     | 0                        | 100%  | 62.9%    | 9                        | 98.3% | 75.5%    | 22    | 98.8% | b2/b3    |
| EU5            | 91.8%          | 5                                          | 99.5% | 74.7%    | 21                       | 98.7% | 76.2%    | 9                        | 99.1% | 94.6%    | 13    | 99.6% | ?/?      |
| NA1            | 98.2%          | 9                                          | 99.2% | 71.1%    | 22                       | 97.7% | 64.9%    | 8                        | 98.2% | 75%      | 23    | 98.3% | ?/?      |
| NA2            | 89.2%          | 8                                          | 99.1% | 72.2%    | 22                       | 98%   | 67.8%    | 11                       | 98.5% | 81.3%    | 17    | 98.8% | ?/?      |
| NA3 (CD)       | 63.8%          | 8                                          | 98.1% | 69.4%    | 16                       | 98.3% | 99.9%    | 0                        | 100%  | 99.9%    | 0     | 100%  | b4/b5    |
| NA4 (D)        | 66.6%          | 7                                          | 98.7% | 66.7%    | 18                       | 98%   | 51.1%    | 6                        | 98.6% | 100%     | 0     | 100%  | b5/?     |
| NA5 (D)        | 70.6%          | 9                                          | 98.5% | 74.1%    | 18                       | 98.7% | 69.5%    | 14                       | 99%   | 100%     | 0     | 100%  | b5/?     |
| NA6 (D)        | 65.9%          | 11                                         | 98.2% | 74.3%    | 20                       | 98.6% | 61.3%    | 19                       | 98.7% | 100%     | 0     | 100%  | b5/?     |
| NA7 (C)        | 72.2%          | 8                                          | 99%   | 64.6%    | 14                       | 98.3% | 99.9%    | 0                        | 99.9% | 79.9%    | 8     | 99.2% | b4/?     |
| Durum          | 76.7%          | 14                                         | 98.2% | 70.6%    | 16                       | 98%   | 73.3%    | 10                       | 98.4% | 75.4%    | 20    | 98.5% | ?/?      |
| Middle East    | 100%           | 0                                          | 100%  | 64.1%    | 20                       | 98.3% | 100%     | 0                        | 100%  | 61.4%    | 17    | 98.8% | b2/b4    |

#### Supplementary Table S8: Pathotyping results for the set of seven Australian isolates.

|                   | Differential<br>number | Resistance<br>gene | Cultivar    | 19NSW04 | 19ACT06 | 19ACT07 | 19QLD08 | 20QLD87 | 20ACT90 | 20QLD91 |
|-------------------|------------------------|--------------------|-------------|---------|---------|---------|---------|---------|---------|---------|
| T. ( 1            |                        | Lrl                | Tarsa       | V       | Α       | V       | Α       | V       | V       | V       |
| series            |                        | Lr2a               | Webster     | Α       | Α       | Α       | Α       | Α       | Α       | Α       |
| series            |                        | Lr3a               | Democrat    | V       | V       | V       | V       | V       | V       | V       |
|                   | 1                      | Lr20               | Thew        | V       | Α       | V       | V       | V       | V       | V       |
|                   | 2                      | Lr23               | Gaza        | Α       | Α       | Α       | Α       | Α       | Α       | Α       |
|                   | 3                      | Lr14a              | Spica       | V       | V       | V       | V       | V       | V       | V       |
|                   | 4                      | Lr15               | K1483       | V       | Α       | V       | Α       | V       | V       | V       |
|                   | 5                      | Lr3ka              | Klein Titan | V       | V       | V       | V       | Α       | V       | V       |
|                   | 6                      | Lr27+Lr31          | Gatcher     | V       | V       | V       | Α       | V       | Α       | V       |
| Australian series | 7                      | Lr17a              | Songlen     | V       | V       | V       | V       | V       | V       | V       |
|                   | 8                      | Lr28               | CS 2A/2M    | Α       | Α       | Α       | Α       | V       | Α       | Α       |
|                   | 9                      | Lr26               | Mildress    | V       | V       | V       | V       | V       | V       | V       |
|                   | 10                     | Lr13               | Egret       | V       | V       | V       | V       | V       | V       | V       |
|                   | 11                     | Lr16               | Exchange    | Α       | Α       | Α       | Α       | Α       | Α       | Α       |
|                   | 12                     | Lr17b              | Harrier     | V       | V       | V       | V       | V       | V       | V       |
|                   | 13                     | Lr24               | Agent       | А       | V       | А       | V       | Α       | Α       | Α       |



Figure S1: Hi-C *trans* contacts between the hifiasm-haplotype1 and hifiasm-haplotype2 in the 19NSW04 and 20QLD87 assemblies. Hi-C *trans* contacts for each contig were extracted from the HiC-Pro contact map in 100 Kb bins. The two assemblies exhibit a strong dikaryotic phasing signal. In both cases the haplotype1 and haplotype2 assemblies are close to perfectly nuclear-assigned, with only two contigs larger than 150 Kb (1.2 Mb in total) assigned to the incorrect phase in19NSW04 and only a single mis-assigned contig (2.2 Mb) in 20QLD87.





Figure S2: (A) Hi-C contact maps (100 Kb resolution) for the haplotype chromosomes of the two isolates 19NSW04 and 20QLD87. The 18 centromeres are visible as distinct outwards-spreading bowtie-like shapes. (B) Mapping qualities (MAPQ) of Hi-C read pairs. Total number of Hi-C read pairs are shown in red. Mapping quality (MAPQ) reflects the degree of confidence in the point of origin for a read. For example, MAPQ of 10 or less indicates that there is at least a 1 in 10 chance that the read originated from another genomic location. Mis-mapped Hi-C reads occur primarily between allelic, homologous chromosomes and as expected, these have significantly lower mapping quality in both isolates. In contrast, read pairs that occur between the two nuclei but are not on homologous chromosomes do not have significantly lower mapping in both isolates. Such Hi-C read pairs could be a result of some non-intact nuclei during the crosslinking. In the box plot, the boundaries represent the 25th percentile and the 75th percentile, with a line highlighting the median. The upper whisker extends from the hinge to the largest value no further than 1.5 \*

interquartile range from the hinge. The lower whisker extends from the hinge to the smallest value at most 1.5 \* interquartile range of the hinge. Outlier points are not shown in the box plot. \*\*\* indicates that the *p*-value from a *t*-test was < 0.001.



Figure S3: SNP density of the B haplotype variants in 20 KB windows. Non-synonymous SNPs are shown in red, synonymous SNPs are shown in blue.



Figure S4: SNP density of the C haplotype variants in 20 KB windows. Non-synonymous SNPs are shown in red, synonymous SNPs are shown in blue.



Figure S5: SNP density of the AB haplotype variants in 20 KB windows. Non-synonymous SNPs are shown in red, synonymous SNPs are shown in blue.



Figure S6: SNP density of the BC haplotype variants in 20 KB windows. Non-synonymous SNPs are shown in red, synonymous SNPs are shown in blue.



Figure S7: SNP density of the CD haplotype variants in 20 KB windows. Non-synonymous SNPs are shown in red, synonymous SNPs are shown in blue.

| 19ACT06_bW2-chr4A<br>Race1_bW2<br>20QLD87_bW5-chr4D<br>19NSW04_bW4-chr4C<br>20QLD87_bW4-chr4C<br>19NSW04_bW3-chr4B                                   | 1  SQ, HN, TN, AQ, H, Y, AH, GNR, A, D, L, H, VS, GC, E, QAN, NL, T, M, Q, P, AP, RG,, T,  T, SQ, HN, TN, AQ, H, Y, AH, GNR, A, D, L, H, VS, GC, E, QAN, NL, T, M, Q, P, AP, RG,, T,  T, SQ, HN, TN, AQ, H, Y, AH, GNR, A, D, L, H, VS, GC, E, QAN, NL, T, M, Q, P, AP, RG,, T, AS, CR, SR, T, AH, TN, DN, A, D, L, KEISS, F, EEL, Y, F, KE, RA, L, N, R, S, TT, E, PA, L, R, S, T, T, M, D, A, D, L, KEISS, F, EEL, Y, F, KE, RA, L, N, R, S, TT, E, PA, L, R, S, T, T, M, D, A, S, ST, SR, SR, EH, M, D, D, L, KEISS, F, EEL, Y, F, KE, RA, Y, N, R, MG, ITA, SP, PSLP, QS, A,, D, A, S, ST, SR, R, H, M, D, D, D, C, ST, Q, QAE, F, L, V, K, EA, Y, N, R, MG, ITA, SP, PSLP, QS, A,, N, D, A, S, ST, SR, SR, M, D, A, S, ST, SR, SR, M, S, ST, SR, SR, SR, SR, SR, SR, SR, SR, SR, SR | 154<br>154<br>151<br>138<br>138<br>152               |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 19ACT06_bW3-chr4B<br>Race1_bW1                                                                                                                       | 1 PN.H RQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 152                                                  |
| 19ACT06_bW2-chr4A<br>Race1_bW2<br>20QLD87_bW5-chr4D<br>19NSW04_bW4-chr4C<br>20QLD87_bW4-chr4C<br>19NSW04_bW3-chr4B<br>19ACT06_bW3-chr4B<br>Race1_bW1 | 155  A1  A.Q.  Q.  N.P.K. N.  A.  PA.P. AP. SNR.  V.E. TN.  A.FR.  A.I.  N. A.    155  A1  A.Q.  Q.  N.P.K.  N. A.  PA.P. AP. SNR.  V.E. TN.  A.FR.  A.I.  A.I.<                                                                                                                                           | 310<br>310<br>308<br>295<br>295<br>302<br>302<br>312 |
| 19ACT06_bW2-chr4A<br>Race1_bW2<br>20QLD87_bW5-chr4D<br>19NSW04_bW4-chr4C<br>20QLD87_bW4-chr4C<br>19NSW04_bW3-chr4B<br>19ACT06_bW3-chr4B<br>Race1_bW1 | 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 467<br>465<br>450<br>450<br>459<br>459<br>469        |
| 19ACT06 bW2-chr4A<br>Race1_bW2<br>20QLD87_bW5-chr4D<br>19NSW04_bW4-chr4C<br>20QLD87_bW4-chr4C<br>19NSW04_bW3-chr4B<br>19ACT06_bW3-chr4B              | 468<br>488<br>451<br>451<br>451<br>451<br>460<br>400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 621<br>621<br>619<br>604<br>613<br>613<br>613        |

| 19NSW04_bE3-chr4B<br>19ACT05_bE3-chr4B<br>20QLD87_bE3-chr4D<br>20QLD87_bE4-chr4C<br>19NSW04_bE4-chr4C<br>Race1_bE1<br>Race1_bE2<br>19ACT06_bE2-chr4A | 1 V.  A.  SS. I.    1 V.  A. S. P.  SS. I.    1             | A.L.DMVQS<br>A.L.DMVQS<br>A.M.DR.E-VEL<br>AT.S.LTS.I<br>AT.S.LTS.I<br>T.F.DN.N.LH.I.L.Y<br>I.S.LRQRPV-LI.A.A<br>.I.S.L.RQRPV-LI.A.A | V. ITP.N. F. SC.LQ.<br>V. ITP.N. F. SC.LQ.<br>H. N. ITP.Q. A.T. A. L. M. I.N.<br>Q. S. A. M. E.<br>Q. S. A. M. E.<br>R. Q. O.H. VLIHR. V. K. E.<br>V. Q. VL.DR. AA. T. T.F.<br>V. Q. VL.DR. AA. T. T.F. | R. AF | 127<br>127<br>I. 126<br>M. 128<br>M. 128<br>I. 128<br>.W 128<br>.W 128<br>.W 128 |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------|
| 10NSW01 bE3-chr4B                                                                                                                                    | 128 DII P                                                   | 5.4                                                                                                                                 | V K                                                                                                                                                                                                     | М     | 255                                                                              |
| 19ACT06_bE3-chr4B                                                                                                                                    | 128 DII P                                                   | - SA                                                                                                                                | У К                                                                                                                                                                                                     | мМ    | 255                                                                              |
| 20QLD87 bE5-chr4D                                                                                                                                    | 127 L A                                                     |                                                                                                                                     |                                                                                                                                                                                                         |       | 255                                                                              |
| 20QLD87_bE4-chr4C                                                                                                                                    | 129 VI.K                                                    |                                                                                                                                     |                                                                                                                                                                                                         |       | 256                                                                              |
| 19NSW04_bE4-chr4C                                                                                                                                    | 129 VI.K                                                    | S                                                                                                                                   |                                                                                                                                                                                                         |       | 256                                                                              |
| Race1_bE1                                                                                                                                            | 129 ALTAFVTP                                                | S                                                                                                                                   | YD.E                                                                                                                                                                                                    | L     | 256                                                                              |
| Race1_bE2                                                                                                                                            | 129 E AH E                                                  | P Y. H A                                                                                                                            | YD.E                                                                                                                                                                                                    | L     | 256                                                                              |
| 19AC100_DE2-Chr4A                                                                                                                                    | 129 E AH E I                                                | Рт.нА                                                                                                                               |                                                                                                                                                                                                         | L     | 256                                                                              |
| 19NSW04_bE3-chr4B<br>19ACT06_bE3-chr4B<br>20QLD87_bE5-chr4D<br>20QLD87_bE4-chr4C<br>19NSW04_bE4-chr4C<br>Race1_bE1<br>Race1_bE2<br>19ACT06_bE2-chr4A | 256<br>256<br>257<br>257<br>257<br>257<br>257<br>257<br>257 |                                                                                                                                     |                                                                                                                                                                                                         | L     | 373<br>373<br>373<br>374<br>378<br>374<br>374<br>374                             |

Figure S8: Multiple sequence alignments of the bE and bW proteins.