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Supplementary Fig. 1 | The photo image of one printed VegPU/Ag pattern on the VegPU 22 

substrate. The VegPU/Ag ink was screen-printed on a VegPU thin film and then cured by 23 

sintering solution. 24 
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 44 

Supplementary Fig. 2 | Synthesis of representative VegPU from sustainable polyols. A series 45 

of VegPU were synthesized from SPO and PTMG with IPDI at a molar ratio of 0.8:0.5:1.5 (-OH/-46 

NCO). First, the PTMG-IPDI-based NCO-terminated precursor was prepared by the PTMEG and 47 

IPDI chemical reaction with a 2: 3 mole ratio at 75 -80 ℃ under a nitrogen condition for 6 hours. 48 

The PTMEG-IPDI precursor (4 mmol) and SPO (8.03 mmol) were solubilized in anhydrous DMF 49 

(20 ml) and were left to react for 4 hours at 80 ℃. The reacting solution was then given one drop 50 

of DBTDL and stirred for another 30 minutes. Subsequently, dimethylglyoxime (DMG) (4.04 51 

mmol) as a chain extender was diluted in DMF (5mL), and the resulting solution was added into 52 

the reaction system that was further maintained at 65 ℃ for 2 hours. The resultant polymer solution 53 

was then placed into a glass mold (length × width: 100 mm × 50 mm) and dried in an 80 ℃ oven 54 

for 12 hours. 55 
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 62 

Supplementary Fig. 3 | Synthesis of castor oil-based bifunctional ricinoleic acid. Bifunctional 63 

ricinoleic acid could be acquired through either saponification or fractional distillation of castor 64 

oil that has been hydrogenated. Initially, required quantities of castor oil were saponified into 65 

bifunctional ricinoleic acid by heating a sodium hydroxide (NaOH) mixture at 80-85 ℃ for 4 hours. 66 

The COBRA solution was then neutralized using diluted hydrochloric acid (HCl). The organic 67 

phase has been filtered after neutralization by washing with double-distilled water (ddH2O). The 68 

dissolution-decantation process was routine four times, and the product was dried over magnesium 69 

sulfate (MgSO4). The majority of the bifunctional fatty acids in castor oil are ricinoleic acid (88 to 70 

91%), and additional acids are present, including linolenic, linoleic, and oleic acids. 71 
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 82 

Supplementary Fig. 4 | The importance and advantages of bifunctional ricinoleic acid 83 

functional units of dangling chain, -COOH and -OH in the VegPU preparations. Ricinoleic acid 84 

(12 hydroxy–cis–9–octadecenoic acid) is the major hydroxylated aliphatic unsaturated fatty acid 85 

in castor oil (>90%) and a key substrate for the polymerization of precursors to produce sustainable 86 

VegPU. 87 
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 101 

Supplementary Fig. 5 | Synthesis of epoxidized SBOs. In a typical experiment, a measured 102 

quantity of soybean oil (0.5038 mol) was processed at 70 ℃ for 1 hour in a 250 mL round-bottle 103 

flask with a thermometer, and an oil bath. Thereafter, a mixture of hydrogen peroxide (H2O2, 104 

0.2855 mol) and formic acid (HCOOH, 0.0570 mol) was introduced to the soybean oil with the 105 

catalyst at a syringe pump rate of 0.20 cm3 min-1. The resultant mixture was stirred periodically 106 

and kept at the same temperature of 70 ℃ for 5 hours. After the addition of the oxidant mixture, 107 

the reaction proceeded for the preferred duration of time. 108 
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 122 

Supplementary Fig. 6 | Synthesis of sustainable polyols. Firstly, COBRA was placed in a flask 123 

with a mole ratio of the carboxyl group of 1.5, stirred with a mechanical stirrer, and kept at 150 ℃ 124 

in an N2-free environment. Then, ESBO at a mole ratio of 3 to the epoxy group was added drop 125 

by drop while vigorously stirring. After being mixed fully, the mixture was kept at 140 to 180 ℃ 126 

overnight with the constant stirring condition. To quench the reaction, 30% ammonia in water was 127 

added to the solution mixture. After the reaction was complete, the finished SPO products were 128 

obtained with Et2O and washed at least five times with double-distilled water. After drying the 129 

precipitate with MgSO4, it was filtered. After removing the organic solvent with Rotavapor and 130 

vacuum, the clear viscous pale yellow SPO was obtained.  131 
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 137 

Supplementary Fig. 7 | 1H-NMR spectra of castor oil (CO) and soybean oil (SBO). The 3° 138 

proton of the -CH2CHCH2- the backbone of castor oil is at 5.1–5.4 ppm, the -CH2 proton of the -139 

CH2-CHCH2- backbone is at 4.2–4.3 ppm, and the 3° hydrogen neighboring to the -OH proton in 140 

the ricinoleic acid chain is at 3.4–3.7 ppm. The SBO spectrum demonstrates that each 141 

triacylglycerol forms five double bonds (-C=C-). 142 
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 147 

Supplementary Fig. 8 | 1H-NMR spectra of CO and COBRA. The 3° proton of the -148 

CH2CHCH2- the backbone of castor oil is at 5.1–5.4 ppm, the -CH2 proton of the -CH2-CHCH2- 149 

backbone is at 4.2–4.3 ppm, and the 3° hydrogen neighboring to the -OH proton in the ricinoleic 150 

acid chain is at 3.4–3.7 ppm. The peaks at 5.1–5.4 ppm and 4.2–4.3 ppm went away after the 151 

reduction reaction. On the other hand, the peak intensity at 3.4–3.7 ppm went up, which shows 152 

that triglyceride was completely broken down, which led to the formation of primary hydroxyl 153 

groups (-OH). It is therefore concluded that COBFA was successfully prepared.  154 
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 159 

Supplementary Fig. 9 | FTIR spectra of CO and COBRA at various reaction times. The broad 160 

absorption band at around 3400-1 and 1750-1 can be assigned to hydroxyl and carbonyl groups, 161 

respectively. 162 
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 170 

Supplementary Fig. 10 | 1H-NMR spectra of soybean oil (SBO) and epoxidized soybean oil 171 

(ESBO). The SBO spectrum demonstrates that each triacylglycerol forms five double bonds (-172 

C=C-). The ESBO spectrum illustrates that unsaturated fatty acids were transformed into epoxy 173 

groups labeled as diepoxides and monoepoxides, with signals having appeared at 3.06–3.16 ppm 174 

(-CHOCH-CH2-CHOCH-) and 2.5–3.1 ppm (-CHOCH-CH2-CHOCH-). The peak at 1.45–1.50 175 

ppm methylene protons (-CH2) neighboring epoxy group (-CH2-CH2-CHOCH-) and at 2.3 ppm α-176 

methylene group (α-CH2) to acyl group (CH2-CH2-C=O-O-). 177 
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 179 

Supplementary Fig. 11 | FTIR spectra of SBO and epoxidized SBO (ESBO) at various 180 

reaction times. The characteristic absorption bands at 822, 1173, 1725, and 2913 cm -1 are 181 

attributable to the stretching vibration of epoxy, C–O, C=O, and C-H groups of the ESBO, 182 

respectively. The epoxidation of epoxidized SBOs (ESBO) was followed by the disappearance of 183 

the C = C peak at 3011 cm-1 and the appearance of the new broad epoxy peak stretching vibration 184 

between 862-809 cm −1. 185 
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 190 

Supplementary Fig. 12 | 1H-NMR spectra of sustainable polyols (SPO) for distinct intervals 191 

of carboxyl to epoxy group reactions. As reaction times increased, the peaks at 2.8-3.2 ppm, 192 

representing the epoxy groups, decreased. The peaks at 2.7-3.1 ppm representing epoxy groups, 193 

decreased as reaction times increased. On the other hand, new peaks corresponding 3o to Hto  194 

atoms next to the newly formed ester groups were detected between 4.5-4.9 ppm. The peaks 195 

showing where hydrogen is attached to carbons near the ester overlap with those where hydrogen 196 

is attached to carbons near the hydroxyl. 197 
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 200 

Supplementary Fig. 13 | FTIR spectra of COBRA, ESBO, and SPO at various reaction times 201 

intervals. The oxirane absorption bands at 822 cm-1, which represent epoxy groups, appeared, 202 

while the carbon-carbon (-C=C-) double bonds at 3001-3012 cm-1 almost vanished. The absence 203 

of epoxy groups in polyols indicated that the epoxy groups in ESBO had been ring-opened. The 204 

epoxy groups in epoxidized SBO decreased after the ring-opening reaction was initiated by 205 

COBRA, while a broad peak at 3395 cm-1 appears, indicating that the epoxy groups in ESBO were 206 

ring-opened and sustainable hydroxyl (-OH) polyols were successfully formed. 207 
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 209 

Supplementary Fig. 14 | 1H and 13C-NMR spectra of dimethylglyoxime (DMG). The 210 

dimethylglyoxime was purchased from Sigma-Aldrich without any purification. 211 
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 222 

Supplementary Fig. 15 | 1H-NMR spectra of VegPU. 1H-NMR (400 MHz, DMSO, 25 ℃) δ 223 

(ppm): δ 7.23-7.38 (−C(O)NH−), δ 5.14 (-CH=CH-), δ 5.46 (−OH), δ 4.21−4.35 (−O−CH−), δ 224 

3.32 (CO−NH−CH−), δ 3.28 (CO−O−CH2), δ 2.17−2.30 (−CH2−), δ 2.01 (6H, CH=C−CH3), δ 225 

1.52-1.68 (−C−CH2−), δ 1.18-1.50 (−CH2−CH2−CH3), and δ 0.81-0.93  (CH2−CH3). 226 

 227 

 228 

 229 

 230 

 231 

 232 

 233 

 234 

 235 

 236 

 237 



 238 

Supplementary Fig. 16 | 13C-NMR spectra of VegPU. 3C-NMR (400 MHz, DMSO, 25 oC) δ 239 

(ppm): 173.2 (-CH2-CO-O-), 154.1-155.6 (-NH-CO-O-), 131.3 (-C=C), 126.8 (-C=C), 71.6 (CO-240 

O-C), 68.2 (CH2-O-), 61.8-64.4 (HO-C), 40.9-42.1 (NH-C), 8.3-38.4 (CH3-CH2 and CO-CH2, 241 

etc).  242 
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 252 

Supplementary Fig. 17 | FTIR spectra of a sustainable VegPU prepolymer: at various time 253 

intervals (a) and different ratios of oxime (b). The peak at 2268 cm-1 was designated to the NCO 254 

groups of VegPU at fixed temperature and variable time periods. The strength of the NCO peak at 255 

2268 cm-1 reduces over time progressively with specific temperature, confirming the reaction 256 

between the -NCO group of IPDI and the -OH groups of PTMG, SCP, and DMG. After 360 257 

minutes, there was almost no NCO prepolymer band at 2268 cm-1, indicating that the NCO and 258 

the -OH bonds of PTMG, SCP, and DMG had fully reacted and the reaction was complete, with 259 

no reactants remaining. B) The following characteristic bands were found in the VegPU result: 260 

3340-3356 cm-1 (N-H amide stretching), 3001-2800 cm-1 (symmetric and anti-symmetric aliphatic 261 

stretching), 1725 cm-1 (C=O carbonyl stretching), 1453 cm-1 (C-H), and 1539 cm-1 (C-262 

NH bending).  The bands at 991 cm-1 and 944 cm-1 were assigned to the out-of-plane C-H and 263 

C=C bending vibrations. The peak representing the N-O stretching vibration of oxime appears at 264 

975-988 cm-1. 265 
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 275 

Supplementary Fig. 18 | The DMA of VegPU. The loss factor (a) and storage modulus (b) as 276 

functions of temperature for VegPU films measured by DMA from -100 ℃ to 120 ℃ under a room 277 

temperature, at a heating rate of 3 ℃ min-1 and a frequency of 1 Hz. (c) the image of the VegPU 278 

testing specimen. 279 
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 298 

Supplementary Fig. 19 | TGA weight loss and derivative curves for the VegPU films. The first 299 

degradation of the VegPUs observed at temperatures between 240-350 ℃ was attributed to the 300 

decomposition of labile carbamate-oxime groups. The second degradation observed in the 301 

temperature range from 350-500 ℃ resulted from chain scission in the sustainable polyols. 302 
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 320 

Supplementary Fig. 20 | The creep and recovery strain-time curve of VegPU under different 321 

applied stress at 25 ℃. The creep stress varied from 0.10 to 0.22 MPa. When the stress was 322 

increased from 0.10 to 0.22 MPa, the strain increased by 28 to 220%. The elastic response of the 323 

VegPU films causes an instantaneous increment in strain in all VegPU creep curves. At the end of 324 

the applied load period, viscous flow is observed. When the stress is removed, the strain rapidly 325 

decreases to the initial elastic response. During the rest period, the polymer makes an attempt to 326 

recapture its original shape through time-dependent molecular stress relief.   327 
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 340 

Supplementary Fig. 21 | The cyclic tensile (500%) tests of VegPU for the first cycles and after 341 

240 min relaxation. Strain rate: 100 mm/min; width of sample: 14 mm; thickness: 1 mm; length 342 

of gauge: 40 mm. 343 
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 361 

Supplementary Fig. 22 | The notch testing for VegPU. The stress-extension curves of unnotched 362 

VegPU and notched VegPU film (A); (B) the size of the notched area. 2 mm thickness, 10 mm 363 

length, and 5 mm width was notched along a single edge at a length of 1 mm, and the film was 364 

extended at a loading rate of 100 mm/min. 365 
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Supplementary Table 1 | The comparison of VegPU with other petrol-based PU elastomers 384 

and sustainable PU elastomers. HPUA: Hydrophilic poly(urethane-acrylate) elastomer; PDPU: 385 

polysiloxane-dimethylglyoxime–based polyurethane: poly(urethane-acrylate) elastomer; PU-OOP: 386 

polyurethane-olive oil polyol; PU-MSO: polyurethane- soybean oil-based polyols; POPU: palm 387 

oil polyurethane. 388 

Sample Sustainable 

polyols 

Sustainable 

percentage (%) 

Tensile 

strength 

(MPa) 

Elongation at 

break (%) 

Reference 

HPUA None 0 3.69 4954.83 2 

PDPU None 0 0.9 1800 3 

PUA None 0 7 5000 4 

PU-OOP Olive oil 70.25% 4.7 ±0.4 331.5±12.9 5 

PU-MSO Soybean oil 10.71 11.60±0.24 610±20 6 

POPU Palm oil 34.23 1.17±0.4 608.52 7 

VegPU Castor and 

soybean oil 

75-81% 0.66 797 Our work 
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 401 

Supplementary Fig. 23 | VegPU being recycled through the process of solution casting. After 402 

cutting the fresh VegPU film into granules, the granules were dissolved in the DMF solvent and 403 

stirred for 5 h at 60 ℃ to produce a homogenous solution. Afterward, the solution was poured into 404 

the glass mold and allowed to dry at a temperature of 80 ℃ for a period of 12 h.  405 
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Supplementary Fig. 24 | VegPU being recycled through the process of hot-pressing (Condition: 422 

80 ℃, 10 MPa, 10 mins). The VegPU film was cut into small pieces and hot pressed for 10 minutes 423 

at 80 ℃ with a pressure of 10 MPa.  424 
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 441 

Supplementary Fig. 25 | DSC thermograms (a) of the different VegPU films and recycling 442 

curves (b) of VegPU2 (Recycle 1: solution casting and Recycle 2: hot-pressing). The DSC 443 

measurements were carried out at heating rates of 10 ℃ /min in a nitrogen-free environment. The 444 

absence of melting or crystallization transitions in the DSC curves indicates that these VegPUs are 445 

amorphous. Each curve has one Tg, which corresponds to the urethane segments of the obtained 446 

VegPU. The three VegPUs Tg were remarkably similar, which can be attributed to the urethane 447 

and hydroxyl functions. 448 
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Supplementary Fig. 26 | Size characterization of Ag flakes. SEM ( high-magnification (a) and 464 

low-magnification (b)) and particle size distribution (c) of used Ag flakes. 465 
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 487 

Supplementary Fig. 27 | The surface properties of Ag flakes. Schematics of the bonding 488 

between Ag flakes coated by fatty acid and VegPU (a) and the zeta potential of Ag flakes in the 489 

VegPU resin (b). 490 
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 510 

Supplementary Fig. 28 | The rheology of VegPU and VegPU/Ag. The dependence of the storage 511 

modulus (G') and lost modulus (G") on angular frequency for VegPU resin and VegPU/Ag flakes 512 

ink.  513 
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 530 

Supplementary Fig. 29 | Release of Ag flakes and Ag+ during the sintering solution curing 531 

process: (a) the process of collecting Ag flakes and Ag+;  The release of Ag+(b) and Ag flakes (c) 532 

upon soaking duration. Error bar: n=3. 533 
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 547 

Supplementary Fig. 30 | The morphology of VegPU film treated by different methods. (a-c) 548 

The SEM images of VegPU resin after being cured by 80 ℃ heat, DI water, and sintering solution, 549 

respectively. 550 
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 570 

Supplementary Fig. 31 | Cross-sectional SEM images of VegPU treated by different methods. 571 

(a-c) The cross-sectional SEM images of VegPU resin after cured by 80 ℃ heat, DI water, and 572 

sintering solution, respectively. (d-f) The corresponding SEM images with a higher magnification. 573 

Scale bar in (a-c): 5 µm and in (d-f) 1 µm. 574 
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 591 

Supplementary Fig. 32 | EDX images of VegPU/Ag. (a) SEM image of the sintering solution-592 

cured electrode and corresponding EDX images showing Ag (b), C (c), N (d), and O (e) elements. 593 

Scale bar: 6 µm. 594 

 595 

 596 

 597 

 598 

 599 

 600 

 601 

 602 

 603 

 604 

 605 

 606 

 607 

 608 

 609 



 610 

Supplementary Fig. 33 | The morphology of VegPU/Ag film treated by different methods. (a-611 

c) The high-resolution SEM images of sintering solution-, DI water- and heat-cured VegPU/Ag 612 

electrodes, respectively. Scale bar: 500 nm. 613 
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 633 

Supplementary Fig. 34 | The morphology of Ag flakes treated by different methods. (a-c) The 634 

SEM images of Ag flakes, DI water, and sintering solution-treated Ag flakes, respectively. Scale 635 

bar: 1 µm. 636 
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 655 

Supplementary Fig. 35 | C-AFM topography images of VegPU/Ag electrodes cured by heat 656 

curing (a) sintering solution (b) and water (c).  657 
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Supplementary Fig. 36 | The effect of sintering solution treatment on the conductivity of the 680 

electrodes cured by heat and water. The heat-treated (a) and DI water-treated (b) electrodes were 681 

retreated by the sintering solution. Error bar: n=3. 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 

 691 

 692 

 693 

 694 

 695 

 696 

 697 

 698 

 699 

 700 

 701 



 702 

 703 

Supplementary Fig. 37 | The recycling of the VegPU/Ag electrode. The conductivity (a) and 704 

resistance changes upon stretching (b) of recycled VegPU-based conductor. (c) The photo image 705 

of collected Ag flakes dispersed in the DMF solvent. Error bar: n=3. 706 
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 726 

Supplementary Fig. 38 | The degradation of VegPU film. The photo images of VegPU after 727 

soaking in PBS buffer solutions with (left) and without (right) the presence of lipase enzyme.  728 
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 751 

Supplementary Fig. 39 | The resistance changes of VegPU during cyclic stretching with 752 

different ratios of Ag and VegPU. The stretching rate is 60 mm/min. VegPU electrodes were 753 

stretched to 50% extension and then released at the same rate. 754 
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 771 

Supplementary Fig. 40 | The stress relaxation of VegPU film. The test was performed at the 772 

ambient temperature (20 ℃). 773 
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Supplementary Fig. 41 | The pre-cut cracks in the dense (a) and porous VegPU film (b). The 789 

cracks in two films with a same length. 790 
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Supplementary Fig. 42 | SEM images of the water-treated electrode with the presence 100% 807 

of stretching. Under 100% strain, there are no macro cracks on the water-treated electrode. 808 
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 828 

Supplementary Fig. 43 | SEM images of the heat-treated electrode with the presence of 829 

stretching. The stretching level is 100%. The printed electrode was adhered on a sample stage. 830 

 831 

 832 

 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 

 842 

 843 

 844 

 845 



 846 

Supplementary Fig. 44 | The effect of sintering solution treatment on the DI water-cured 847 

electrode. The resistance variation upon strain (a) and SEM images of VegPU/Ag electrodes cured 848 

by DI water without (b) and with (c) subsequent sintering solution, scale bar: 1 µm. 849 
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 868 

Supplementary Fig. 45 | The effect of sintering solution treatment on the heat-treated 869 

electrode. The strain-resistance change curve (a) and SEM images of the heat-cured VegPU/Ag 870 

electrode before (b) and after (c) the retreatment by sintering solution, scale bar: 1 µm.  871 
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 887 

Supplementary Fig. 46 | The strain-resistance change (a) and cycling stretching (b) curves of 888 

VegPU/Ag electrodes cured by different sustainable sintering solutions (lactic acid/Cl-, acetic 889 

acid/Cl- and citric acid/Cl-). 890 
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Supplementary Fig. 47 | The SEM images of sintering solution-treated electrode after 1000 912 

cycles of 50% stretching: (a) Low magnification and (b) high magnification. 913 
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Supplementary Fig. 48 | The SEM images of encapsulated sintering solution-treated 930 

VegPU/Ag electrode. The encapsulation material was VegPU and the SEM image was taken 931 

under 50% strain, scale bar: 10 µm. 932 
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 942 

Supplementary Fig. 49 | The performance of VegPU/Ag printed on a textile substrate. The 943 

photo image (a), SEM images (b and c), strain-resistance change curve (d), and resistance change 944 

during 50% cycling for 100 cycles (e) and 1000 cycles (f) of the sustainable VegPU/Ag electrode 945 

printed on textile. Scale bar: 20 µm.  946 
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Supplementary Table 2 | The performance comparison of VegPU/Ag conductors with 963 

reported conductors. 964 

Materials structure Process 
Conductivity 

(S cm-1) 
Stretchability 

Cyclic 

degradation 
Test 

conditions 
number 

Ag flakes/ fluorine 
rubber 

film 
Screen 
printing 

6168 400% 500 
50% 100 

cycles 
8 

Ag flakes/ 
Polyester 

film 
Screen 
printing 

7500 170% 25 
50% 100 

cycles 
9 

Ag flakes/PDMS film 
Screen 

printing 
10604 119% 

50% 

3.5 

30% 1000 
cycles 

80% 1000 
cycles 

10 

Ag flakes/TPU Film 
Direct 
writing 

10000 240% 3.5 
5% 1000 

cycles 
11 

Ag flakes/PDMS-
MPU-IU 

film 
Transfer 
printing 

632 3500% 3 50% 1000 12 

Ag flakes/ECO-flex film 
Screen 
printing 

2400 500% 0.1 
50% 1000 
speed 4.4 
mm/min 

13 

Ag flakes-Ag 
coated 

PDMS/PDMS 
film 

Stencil 
printing 

1190 125% 90 
50% 1000 

cycles 
14 

Ag flakes/4-arm 
PEG/PANI/PTA 

film 
Stencil 
printing 

10800 (4-8 
order low 

before 
stretching) 

1000% n 
1000% 
1000 

cycles 
15 

Ag 
flakes/PCL/Enzyme 

film 
3D 

printing 
210 80% 0.875 

15% 1000 
cycles 

16 
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 967 

Supplementary Fig. 50 | The resistance (a) and stretchability (b) of VegPU/Ag after 3 weeks. 968 

The VegPU/Ag electrodes without any encapsulation was stored at ambient temperature (20 ℃). 969 
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 983 

Supplementary Fig. 51 | Bode impedance curves of tomato during shaking. The voltage is 0.2 984 

V with frequencies from 100 Hz to 100000 Hz. 985 
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 987 

Supplementary Fig. 52 | The change of R1 (a) and R2 (b) during one-week storage. The intra- 988 

and extra-cellular fluids are modeled by R1 and R2. The tomato was stored at ambient temperature 989 

for 7 days.  990 



 991 

Supplementary Fig. 53 | The weight of three targeted tomatoes. The weight of three tomatoes 992 

was measured by a balance (ME 204, Mettler Toledo). 993 
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 995 

Supplementary Fig. 54 | The photo images of firmness (a) and soluble content test (b). The 996 

firmness of the selected tomato was tested by a fruit hardness tester (GY-3, Jingcheng Instrument), 997 

while the soluble content of the tomato juice was measured by a refractometer (PAL-1, ATAGO). 998 
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