
Supplementary Notes

Supplementary Note 1: Eco-evolutionary feedbacks in saturated resource competition models

To develop intuition for the potential mechanisms that could produce the data in Figs. 1-3, we studied
the eco-evolutionary correlations that arise in a simple mathematical model of an evolving microbial
community. We focused on a simple class of resource competition models (46) of the form studied in
Ref. (15) and other works (45, 48, 49). We assume that microbial cells compete within a well-mixed,
chemostat-like environment, in which R substitutable resources are supplied at constant flux, with �i

denoting the fraction of biomass supplied in the form of resource i. We assume that species take up
these resources at different genetically encoded rates, rµ,i. We previously showed (15) that it can be
useful to decompose these uptake rates into a normalized resource strategy,
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which represents the fraction of effort devoted to acquiring resources of type i, as well as a total
uptake rate,
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which we will call the general fitness component. In this notation, the resulting ecological dynamics
can then be written in a compact form,
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where fµ denotes the relative abundance of species µ (15). At long times, these dynamics approach
a unique stable fixed point (ecological equilibrium) with at most R coexisting species.

Here we focus on a scenario in which the community is already at its ecological equilibrium, and a
new mutation occurs in one of the S resident species. In principle, this initial collection of species
could be produced by a complex assembly process, involving a mixture of habitat filtering, host
selection, and/or previous local evolution. Here, we will focus on the special case of a saturated
community (S = R), where the ecological equilibria are particularly well characterized. We previously
showed that the relative abundances in such an ecosystem are given by
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where ↵
�1
i,µ

is the inverse of ↵µ,i. The normalization of the resource strategies (
P
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that
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= 1. Much of the relevant behavior can be observed for a special class of resource
strategies,

↵µ,i = �i(1 � ✏) + ✏ · ↵̃µ,i , (S1.5)

where ↵̃µ,i is another normalized resource strategy and ✏ is a small parameter. In this case, the
inverse of ↵µ,i is asymptotically given by
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If we define a corresponding rescaling of the overall fitness, Xµ = ✏
2
X̃µ, then we can expand

Eq. (S1.4) in the limit of small ✏ to obtain
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This expression can also be written in the compact form,
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which are weighted by the external resource supply rates �i.

Within such a community, we wish to examine the invasion fitness and ecological impact of a mutation
that changes the phenotype of a focal species (µ⇤). These mutations can change the resource
strategy ↵µ,i, the overall fitness component Xµ, or a combination of the two. We can write this as:

Xµ⇤ ! Xµ⇤ + �X , ↵µ⇤,i ! ↵µ⇤,i + �i , (S1.11)

where �i is normalized so that
P

i
�i = 0. We previously showed (15) that the invasion fitness of such

a mutation is given by
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in the limit that ✏ ⌧ 1 (15). Note that this expression is independent of the external resource supply
rates �i. This shows that, in saturated communities at ecological equilibrium, the selection pressures
on new mutations are independent of the external environment. This occurs because saturated
communities can dynamically readjust their species composition in Eq. (S1.4) in such a way that the
internal resource concentrations remain constant (15, 49). In this way, the collective behavior of the
community will tend to shield it from any ecology-driven feedbacks, provided that the timescales of the
external fluctuations are long compared to the internal equilibration time. This provides a
proof-of-principle example of a large community in which only evolutionary feedbacks are possible.
We will consider these feedbacks for different classes of mutations below.

Pure fitness mutations. We first consider the case where the mutation increases the overall fitness
of the strain (�X > 0) but leaves its resource strategy intact (�i = 0). The invasion fitness of such a
mutation is simply given by

S̃inv = �X̃ =) Sinv = �X . (S1.14)
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If this mutation establishes, it will outcompete its ancestor and alter the ecological equilibrium
between species. For sufficiently small �X̃, none of the other species will go extinct, and the new
equilibrium can be calculated from Eq. (S1.4) by perturbing X̃µ ! X̃µ + �X̃�µ,µ⇤ . The corresponding
relative abundance changes are given by
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which can also be written as
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where Cov�(↵̃�1
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�1
µ⇤ ) is defined as in Eq. (S1.10) above. This shows that for a given invasion fitness

Sinv (e.g. as measured in metagenomic sequencing), larger shifts in frequency occur in communities
with a larger degree of metabolic overlap (smaller ✏). Conversely, for a fixed set of resource strategies,
larger invasion fitnesses result in larger ecological perturbations. Furthermore, since
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Eq. (S1.16) shows that the shift in the focal strain is always positive for a pure fitness mutation. The
ratio of the shifts in frequency can be written as
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which is independent of Sinv, ✏, and Xµ, and depends only on the strategy covariance matrices
defined above. The right hand side of Eq. (S1.18) is reminiscent of some classical measures of niche
overlap computed from the correlations of resource utilization vectors (47). In this case, however,
because the covariances depend on the inverse matrix (↵�1

i,µ
) rather than the resource strategies

themselves, the abundance fluctuations will generally depend on the resource strategies of the entire
community (as opposed to µ and µ

⇤ alone).

Pure strategy mutations. We next consider the case where the mutation alters the resource strategy
of the strain (�i 6= 0) but leaves its overall fitness component intact (�X = 0). Equation (S1.13)
shows that the invasion fitness of such a mutation is given by
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This shows that only a subset of these mutations will be favored by selection (Sinv > 0). As above, we
wish to understand how a successful strategy mutation changes the ecological equilibrium at steady
state. In the limit of small �̃i, the mutation will outcompete its parent strain and lead to small changes
in the frequencies of the other strains. This results in a new set of resource strategy vectors,
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We can calculate the new equilibrium frequencies from Eq. (S1.4) with the help of the identity,
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Substituting into Eq. (S1.4) , we obtain
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where f
0
µ = E� [↵�1

µ ] is the equilibrium frequency in the absence of any fitness differences (Xµ = 0).
Using the definition of the invasion fitness in Eq. (S1.19), we can write expression in the compact
form,
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We can then turn this expression around to solve for �̃i as a function of �fµ:
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Plugging back in to our expression for S̃inv in Eq. (S1.19), we have a self-consistent solution for S̃inv:
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where we have used the fact that
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↵̃µ,i = �µ,⌫ . Solving for S̃inv and converting back to unscaled
fitnesses, we find that
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Note that the sign of this expression depends on the focal species only through the factor 2fµ⇤ � f
0
µ⇤ ,

which is independent of the new mutation. When 2fµ⇤ � f
0
µ⇤ > 0, natural selection will favor mutations

that increase the community-level quantity
P

µ
fµ · Xµ, even if the focal species itself declines in

abundance. Conversely, if 2fµ⇤ � f
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µ⇤ < 0, natural selection will favor mutations that lead to lower

values of
P

fµ · Xµ, independent of the focal species change.

General mutations. We can combine the results above to understand what happens for a general
mutation. At linear order, we still obtain
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where S̃inv now includes the contribution from �X̃. Solving for �̃i and plugging into Eq. (S1.19), we
obtain
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which yields the general expression,
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quoted in Eq. (1) in the main text.

Example for two species. We can gain some further intuition for this result by focusing on the case
where S = R = 2, which is illustrated in Fig. 4C. Without loss of generality, we can label the two
species so that the focal species is µ

⇤ = 1. In this case, the inverse resource strategy matrix can be
computed exactly:
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The change in frequency from an infinitesimal � is given by
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These results show that for a fixed �, the fitness landscape is independent of the sign of 2f1 � f
0
1 . If

�X > 0, then there is always selection pressure for � > 0. In this case, f1 > f
0
1 , so the

corresponding change �f is always positive. Conversely, if �X < 0, then there is always selection
pressure for � < 0. In this case, the sign of �f depends on f1 vs f

0
1 . If f1 > f

0
1 /2, then the mutation

leads to �f < 0, and an increase in
P

µ
fµXµ. However, if f1 < f

0
1 /2, then the mutation leads to

�f > 0, and a decrease in the community-wide
P

µ
fµXµ.
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Supplementary Figures
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Supplementary Figure 1: Schematic illustration of strain replacement and evolutionary modification
events within a host. In the former case, private marker SNVs that are fixed in the resident population
at the initial timepoint are replaced when an external strain sweeps through the population (4, 9). In
contrast, private marker SNVs are preserved in an evolutionary modification event, when mutations ac-
cumulate on the background of the resident strain. Bottom panel shows the fraction of private marker
SNVs preserved as a function of the total number of SNV differences for all of the populations in our
study with at least 10 private marker SNVs. The sharp transition at ⇡100 SNVs motivates our oper-
ational definition of a strain replacement event as one with >100 SNV differences between timepoints
(Methods).
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Supplementary Figure 2: An analogous version of Fig. 1C using species richness as a measure of
community diversity. Richness was calculated as S =

P
µ

[1 � exp(�fµ/f0)] with f0 = 10�3. This
metric approximates the number of species with relative abundance & 10�3, but is less sensitive to the
presence of log-scale fluctuations (33) near the minimum frequency threshold.

Supplementary Figure 3: Distribution of Shannon entropy at the initial timepoint for all species that
experienced a strain replacement event. Bacteroidetes species are shown on the left, while Firmicutes
species are shown on the right. Colored lines denote the observed data, while grey lines denote the
background distribution for all resident populations from the corresponding phylum. These data show
that strain replacements are not enriched for higher levels of initial community diversity, consistent with
the logistic regression results in Supplementary Table 1.
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Supplementary Figure 4: An analogous version of Fig. 1C as a function of the Firmicutes-to-
Bacteroidetes ratio. The F/B ratio was computed by summing the relative abundances of the species
in the Firmicutes and Bacteroidetes phyla at the initial timepoint. We observed no systematic corre-
lation between the F/B ratio and the rate of evolutionary modification, after controlling for the phylum
of the focal species (P ⇡ 0.3; logistic regression). Similar results were observed for the rate of strain
replacement (P ⇡ 0.2). These results suggests that the F/B ratio does not significantly impact the rate
of within-host evolution in our dataset.

Supplementary Figure 5: Analogous versions of Fig. 2D using Jensen-Shannon distances computed
from species abundances coarse-grained at the genus, family, and phylum levels. The corresponding
P -values of the one-sided KS tests (Methods) are Pmod ⇡ 0.01, Prep ⇡ 0.01 (genus-level), Pmod ⇡

0.02, Prep ⇡ 0.001 (family-level), Pmod ⇡ 0.01, Prep ⇡ 0.001 (phylum-level). Sample sizes for each
category are the same as in Fig. 2D.
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Supplementary Figure 6: Survival distributions for the Jensen-Shannon distances in Fig. 2D, illustrat-
ing the one-sided Kolmogorov-Smirnov (KS) test (Methods). The dashed line shows the location of the
maximum deviation between the two deviations, which defines the KS statistic D in Eq. (7).

Supplementary Figure 7: An analogous version of Fig. 2D using the change in Shannon diversity
(left) or its absolute value (right) as an ecological distance metric. The only (marginally) significant
difference occurs for the absolute value of the replacement events (P ⇡ 0.05, Methods); all other
comparisons have P > 0.1. Sample sizes for each category are the same as in Fig. 2D.
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Supplementary Figure 8: An analogous version of Fig. 2G showing “invasion” as well as “extinction”
events of abundant species (Methods). Invasions are defined as the time-reversed version of an extinc-
tion event, so that the relative numbers of extinction and invasion events can be compared. In contrast
to extinction events, replacement and modifications do not show a significantly increased number of
invasions relative to hosts with no genetic changes (Prep ⇡ 0.08 and Pmod ⇡ 0.2, Methods). Interest-
ingly, however, hosts with no genetic changes have a significantly increased fraction of invasions vs
extinctions (P ⇡ 0.01, Methods), indicating a violation of time-reversal symmetry.
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Supplementary Figure 9: Analogous versions of Fig. 3E,F computed for a range of taxonomic
distances from the focal species. We observed a small enrichment in the average JSD explained
by species in the same genus for evolutionary modification events (uncorrected P ⇡ 0.02, effect
size=0.04, Methods). All other comparisons were not statistically significant.
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Supplementary Tables

Regression model n n1 �phylum Pphylum �H0 PH0

logit p(rep) ⇠ phylum + H0 784 16 1.136 0.041 0.095 0.807
logit p(mod) ⇠ phylum + H0 784 76 1.247 <0.001 0.421 0.037
logit p(mod) ⇠ phylum + H0

(bottom 90% of H0)
705 62 1.247 <0.001 0.421 0.037

logit p(rep) ⇠ phylum + S0 784 16 1.102 0.047 0.018 0.425
logit p(mod) ⇠ phylum + S0 784 76 1.270 <0.001 0.022 0.044

Supplementary Table 1: Results of logistic regressions comparing the rates of strain replacement and
evolutionary modification in different species populations as a function of the initial community diversity
(Methods), as quantified by Shannon diversity (H0) or the richness metric in Supplementary Fig. 2
(S0). From left to right, columns list the regression model, the total sample size (n), the total number
of populations in which the event was observed (n1), the regression coefficients (�) and two-sided
P -values for the phylum of the focal species (either Bacteroidetes or Firmicutes) and the community
diversity metric, respectively. No adjustments were made for multiple comparisons.
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