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Supplementary Figure 1: Additional characterization of primed cells by scRNA-seq and ATAC-seq. A. Louvain clusters of drug-naive WM989 cells 
displayed in UMAP space. Clusters 2, 8, and 9 are labeled as primed cells based on their expression of known primed marker genes and NT5E. B. UMAP plot 
showing sample labels from the experiment in Fig. 1C. Each cell is labeled either from the mixed sample or from the sample that was enriched for EGFR/NG-
FR-high cells. The sample that was enriched for EGFR/NGFR-high cells is significantly enriched in the right cluster containing the primed cells. C. UMAP plots 
showing only the cells from the mixed sample (does not include the sample enriched for primed cells). Without including the sample that is enriched for primed 
cells, the drug-susceptible and primed cells (identified by SOX10 and NT5E respectively) still separate into distinct clusters. D. UMAP plots showing log10 normal-
ized gene expression of the indicated gene for each cell. We find that melanocyte markers MITF and PMEL are high in the drug-susceptible cells, while NGFR 
and FN1, markers associated with drug resistance, are high in primed cells. Notably, NGFR-high cells appear in a different location of the right-hand cluster than 
AXL and EGFR in Fig. 1D. E. UMAP plot of the same cells shown in Supp. Fig. 1A but with the cell cycle regressed out. The cells are labeled by their phase in 
the cell cycle. This plot shows that the cell cycle is not driving the separation of the primed and drug-susceptible cells. F. UMAP plots showing cells from each 
phase of the cell cycle plotted independently. Each phase of the cell cycle separates the drug-susceptible and primed cells, indicating that the separation of these 
states is not driven by the cell cycle. G. Plots of scRNA-seq data using different dimensionality reduction methods, with cells color-coded by their state. Each of 
these methods effectively separates drug-susceptible and primed cells, although identifying cells in intermediate states remains challenging across all plots. H. 
We replicated the scRNA-seq on WM989 cells enriching for primed cells using NT5E as a marker. UMAP plots showing Louvain clustering and gene expression 
for this replicate. As in the previous scRNA-seq of WM989, we can clearly distinguish the drug-susceptible and primed cells and they show differential expression 
of the same genes. I. We performed ATAC-seq on a population of sorted mixed, EGFR-high, NGFR-high, and EGFR/NGFR-high WM989 cells. Each condition 
had three replicates. The scatter plot shows PCA analysis of differential peaks across the samples. The heatmap shows the top 2,000 differential peaks across 
samples. The order of both rows and columns of the heatmap was determined by Ward's minimum variance clustering. These plots show that although the major 
difference is between mixed and primed cells, there are consistent differences between EGFR and NGFR-high cells.  
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Supplementary Figure 2: Validation of NT5E as a primed state marker and comparison of the primed state to previously defined states. A. We sorted 
cells based on NGFR (top .2%), EGFR (top .2%), or NT5E (top 2%) expression and then treated them with BRAFi. Bar graph shows how many cells survived 
after 3 weeks of BRAFi. Control is the bottom 50% of NGFR, EGFR, or NT5E-expressing cells. Each data point is from a separate well representing technical 
replicates. Error bars are the mean absolute deviation, n=2 biological replicates. B. We sorted cells based on NGFR and EGFR together (top .2%) or NT5E (top 
2%) expression and then treated them with BRAFi. Bar graphs show the number of cells after 3 weeks of BRAFi. Control is the bottom 50% of NGFR and EGFR 
together or NT5E-expressing cells. Each data point is from a separate well representing technical replicates. Error bars are the mean absolute deviation, n=2 
biological replicates. C. UMAP plots showing gene set signature scores for melanoma gene expression states previously identified in the literature1,2. We see that 
primed cells express a mix of gene sets previously associated with drug resistance. For the box plots in A and B, the center line is the median, the box is the IQR, 
and the whiskers indicate 1.5 times the upper and lower IQR. All data points are shown.
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Supplementary Figure 3: The primed state exists in vivo and has memory. A. Additional images of HCR RNA FISH of NT5E and SOX10 in a mouse PDX 
drug-naive tumor shown in Fig. 3A. Images show rare cells with high levels of NT5E and low SOX10, indicating that primed cells exist in vivo. The green boxes 
highlight specific cells in the experiment. DAPI is shown in blue and the RNA FISH HCR is displayed in white. Images acquired at 60X magnification. The scale 
bar represents 10μm. Assay performed on three slides from one PDX tumor. B. Box plot showing the ranges of primed gene set enrichment scores (as determined 
by Ucell) per biopsy in patient melanoma cells from Fig. 2D and E compared to those of healthy human melanocytes3,4,5. This data set includes 7 melanoma and 
14 wild-type melanocyte biopsies. In this plot, the center line is the median, the box is the IQR, and the whiskers indicate 1.5 times the upper and lower IQR. All 
data points are shown. C. UMAP plot showing the estimated cell cycle stage of each cell. Bar graph showing the quantification of this data highlighting the compar-
ison in cell cycle between the cells in the drug-susceptible and primed clusters. The high proportion of primed cells in G1 suggests they are cycling slower than 
drug-susceptible cells. D. Scatter plot of the quantification of memory for each gene based on previously published bulk MemorySeq6 (x-axis) and the differential 
expression between primed and drug-susceptible cells in the scRNA-seq (y-axis). From the MemorySeq data, we plotted the residual of the fit between the 
coefficient of variation and mean expression for each gene (described in the paper as the heritability index in which the higher the residual, the more is memory 
attributed to that gene), and on the y-axis, we plotted the fold change expression between the primed and drug-susceptible states. These two metrics correlate 
well showing that scRNA-seq comparison between the primed and drug-susceptible clusters identifies the same memory states. E. Schematic of a lineage tree 
showing how state switching can occur within a lineage from the drug-susceptible to the primed state. Notably, the transition from the drug-susceptible state to 
the primed state does not occur at the exact same rate in all the branches of the tree. The different rates of progression is important because it allows us to take 
a measurement at a single point in time at the end of the tree and capture cells undergoing the transition to the primed state. This, along with the assumption that 
the intermediate state has memory, is what makes it possible to capture the gene expression of transitioning cells in lineages that are crossing. F. UMAP plots 
showing normalized gene expression of TGFB1, TGFBR1, and TGFBR2. These three genes are all up-regulated in primed cells, suggesting there is likely 
increased TGF-β signaling in primed cells through autocrine signaling, and potentially some paracrine signaling as well.
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Supplementary Figure 4: TGFB1 and PI3Ki can modulate the percentage of primed cells. A. Line graph plotting the number of cell doublings over 5 days 
with different doses of PI3Ki. This data indicates that 2µM PI3Ki does not have a large impact on cell proliferation rate. Each point is the average of 6 technical 
replicates and error bars represent the mean absolute deviation. B. Line graph plotting the doubling of cell death for each concentration of PI3Ki (doubling is used 
to normalize for the amount of death at the initial time point). This data indicates that 2µM PI3Ki does not have a big impact on cell viability or proliferation rate. 
Each point is the average of  6 technical replicates and error bars represent the mean absolute deviation. C. Box plot of the log10 percent of WM989 cells in the 
primed state after 5 days in each respective treatment. This plot is the same data shown in Fig. 4C, but the threshold for calling a primed cell was set at 8% instead 
of 2%. The 2% threshold in Fig. 4C is the experimentally validated threshold for the enrichment of primed cells with NT5E, and 8% is the percent of primed cells 
found in the scRNA-seq data. Both thresholds show an increase in the percent of primed cells with TGFB1 and a decrease with PI3Ki. All conditions have 3 biolog-
ical replicates each with 6 technical replicates. P values were calculated using a Wilcoxon test. The dotted line represents the mean log10 percent of primed (set 
at 8%) cells in the untreated condition. In this plot the center line is the median, the box is the IQR, and the whiskers indicate 1.5 times the upper and lower IQR. 
All data points are shown. D. Example histograms of NT5E expression as determined by flow cytometry in different treatments (this is the same data shown in 
Fig. 4B). The mean and median of each distribution are labeled. Both the mean and median of these populations shift, indicating that response to treatment is not 
due to large shifts in a few cells but that the whole population changes state due to treatment. E. Western blot showing the phosphorylation of AKT of different 
WM989 populations in different treatments. Mix population consists of sorting all live cells, and primed cells are sorted top 2% NT5E expressing cells. This experi-
ment was performed with two biological replicates with consistent results. F. Bar graphs showing the effect of treating with different growth factors and cytokines 
(EGF, IL6, and BDNF) on the percent of primed cells in the population based on NT5E measurements by flow cytometry. These experiments show that the 
increase in primed cells caused by TGFB1 does not occur with these treatments.
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Supplementary Figure 5: The primed state can maintain memory through 8 cell divisions. A. Schematic showing the experimental design we used to 
assess whether there is memory underlying resistance to BRAFi/MEKi over 7-8 doublings (the number of cells shown in the diagram is less than 7-8 doublings 
for simplicity). In this assay, we transduced cells with the lentiviral barcode library (the barcodes are represented by the number in the cell) and then allowed the 
cells to divide through 7-8 doublings, so there are multiple cells with the same barcode. We then split the cells across multiple plates such that each split has cells 
with each barcode. We then treated each split with BRAFi/MEKi for 4 weeks and recovered the barcodes from gDNA. From the barcode sequences, we can 
determine whether the same cells survived in each split. The top schematic shows a scenario in which resistance has memory and the bottom schematic shows 
a scenario in which resistance does not have memory. In the top schematic, the same cells survive in each split leading to the same barcodes being recovered. 
This outcome leads to highly correlated barcode frequencies in both splits. When memory is not maintained, as shown in the bottom schematic, cells with different 
barcodes survive in each split, and therefore barcode abundance in both splits do not correlate. B. Results of a memory testing experiment described in A where 
barcoded cells were split into 4 plates after 7-8 doublings and treated with BRAFi/MEKi for 4 weeks. Scatter plots show a pairwise comparison of barcode frequen-
cies in each split. The high correlation in these plots indicated memory was conserved through these divisions. Plots labeled with Pearson correlation and P values 
calculated as two-tailed t-test. C. Data from the same experiment in B, but a sampling of barcodes was taken before cells were treated with BRAFi/MEKi. These 
scatter plots show the abundance of barcodes before treatment with BRAFi/MEKi on the x-axes, and the barcode abundances in each split on the y-axes. Plots 
labeled with Pearson correlation and P values calculated as two-tailed t-test. This data shows that barcode frequencies before adding BRAFi/MEKi does not 
correlate with barcode frequencies after treatment. Thus, BRAFi/MEKi selects for a specific cell state, rather than merely selecting for the most abundant 
barcodes. 
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Supplementary Figure 6: Effects of TGFB1 and PI3Ki on gene expression and proliferation rates. A. UMAP plots showing normalized gene expression of 
MITF, PMEL, FN1, and NGFR for each cell. The gene expression patterns are very similar to those of scRNA-seq of WM989 cells in Supp. Fig. 1D. MITF and 
PMEL are generally anticorrelated with FN1 and NGFR. B. UMAP plot showing Louvain clusters of all cells across all treatments from Fig. 4A. C. Box plot of the 
primed cell gene set signature score for each Louvain cluster. Clusters 4 and 10 have distinctly higher primed state signature scores and are thus classified as 
the primed state. Each data point represents an individual cell in the data set. D. Box plot of the EMT state signature score for cells in each treatment condition. 
This shows that TGFB1 treatment induced EMT genes. Each data point represents an individual cell in the data set, P values calculated using a two-sided Wilcox-
on rank sum test. E. UMAP plots showing normalized gene expression of TGFB1, TGFBR1, and TGFBR2. These TGF-β signaling-associated genes are again 
high in the primed state. Notably, TGFB1-treated primed cells have high levels of expression of TGFB1, TGFBR1, and TGFBR2. F. Heatmap of gene expression 
for example genes in a representative sample of cells from the untreated drug-susceptible, untreated primed, and TGFB1-induced primed cells. The heatmap 
depicts log10 normalized and scaled gene expression. We find for most primed cell genes that the TGFB1-induced primed cells have higher expression than the 
untreated primed cells. Notably, there are a few genes upregulated in untreated primed cells that are not upregulated in the TGFB1-treated primed cells including 
VGF and S100A6. G. Box plot of the fraction of lineages in the primed state in each condition. Each data point is a lineage from the data set. Only cells with at 
least 2 cells per lineage per condition were included in this plot. TGFB1 and PI3Ki produce a statistically significant increase and decrease in the fraction of primed 
cells, respectively. P values calculated using a two-sided Wilcoxon rank sum test. H. Paired dot plots showing that the proportion of cells from a lineage in the 
primed state changes depending on the pretreatment received. The same colored dots connected by a line are data points from the same lineage. These plots 
show 20 randomly selected lineages. I. Schematic of the variables tested in our model to identify different ways changes in the number of primed cells can occur. 
The parameters tested include: the drug-susceptible state death and proliferation rates, primed state death and proliferation rates, the transition rate from the 
drug-susceptible state to the primed state (k on), and the transition rate from the primed state to the drug-susceptible state (k off) J. To measure the effects of 
TGFB1 and PI3Ki on the proliferation of each cell population, we sorted drug-susceptible and primed cells into separate wells and then treated them with TGFB1 
or the PI3Ki (untreated control included). To track proliferation, we performed time-lapse microscopy over 5 days and counted nuclei every 4 hours. Plots show 
the doubling of nuclei in each condition. Error bars are the mean absolute deviation across 6 replicate wells. We find that both drug-susceptible cells and primed 
cells slow their proliferation in the presence of TGFB1 or the PI3Ki, but continue to divide. For the box plots in C, D, and G, the center line is the median, the box 
is the IQR, and the whiskers indicate 1.5 times the upper and lower IQR. All data points are shown.
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Supplementary Figure 7: Modulating the number of primed cells affects the resistant fate. A. Quantification  of live-cell imaging data. Cells were treated 
with their respective pretreatment for 5 days and then treated with BRAFi/MEKi for 40 days. Plots show the number of cells detected at each time point. Untreated 
and TGFB1 conditions have 2 replicates each, the TGFBRi and the PI3Ki conditions have one replicate each. B. Diagram showing the experimental design used 
to normalize for the effects of pretreatments on proliferation. For each replicate, we treated 9 wells with the pretreatment condition (only one shown in the 
diagram). After pretreatment 3 wells were fixed to get the number of cells after pretreatment, and the other 6 were treated with BRAFi/MEKi for 4 weeks. C. Box 
plot showing the normalized number of resistant cells for the specified pretreatment condition. P values were calculated using a two-sided t-test, n=3 biological 
replicates. D. Example images of fixed cells stained with DAPI for each condition after 5 days of pretreatment and 5 weeks of selection with the specified 
treatment. The scale bar in the first image represents 5mm and applies to all images in the panel, n=3 biological replicates with 6 technical replicates in each. E. 
Box plot quantifying the number of drug-resistant cells from scans like those shown in panel B across n=3 biological replicates, each with 6 technical replicates. 
P values were calculated using a two-sided t-test. For the box plots in C and E, the center line is the median, the box is the IQR, and the whiskers indicate 1.5 
times the upper and lower IQR. All data points are shown.



Supplementary Figure 8:

Supplementary Figure 8: Example of FACS sequential gating strategy. Stepwise example
gating for sorting based on expression of NT5E, NGFR, and/or EGFR. First gating to identify
cells, next subsetting for singlets, then selecting the top percentage of the target. Different
thresholds for NT5E, NGFR, and EGFR are specified for each experiment and described in the
methods.



Full blot for Supplementary Figure 4E:

Replicate data:

Supplementary Figure 9: Full blots from Supplementary Figure 4E and replicates.
The sizes for the ladder on the whole figure are 250 > 150 > 100 > 75 > 50 > 37 > 25. We used Bio-Rad
Precision Plus Dual Color Standards #1610374EDU.



Primers used to amplify lineage barcodes from 10X cDNA 

sequence in red is the index sequence

GH_i5.1.1 AATGATACGGCGACCACCGAGATCTACACCTAGCGCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
GH_i5.2.1 AATGATACGGCGACCACCGAGATCTACACTCGATATCACACTCTTTCCCTACACGACGCTCTTCCGATCT
GH_i7.3.1 CAAGCAGAAGACGGCATACGAGATGTCTCTACGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGACGAGCTGTACAAGTAGG
GH_i7.3.2 CAAGCAGAAGACGGCATACGAGATCAGATAGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTGGACGAGCTGTACAAGTAGG
GH_i7.3.3 CAAGCAGAAGACGGCATACGAGATTCTACGCAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTGCGGACGAGCTGTACAAGTAGG
GH_i7.3.4 CAAGCAGAAGACGGCATACGAGATCGACTCTGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCTCGGACGAGCTGTACAAGTAGG

Primers used to amplify lineage barcodes from gDNA

sequence in red is the index sequence

blue sequence is a "Stagger sequece" so that 

GHi5.2.1 AATGATACGGCGACCACCGAGATCTACACTAGATCGCACACTCTTTCCCTACACGACGCTCTTCCGATCTNHNNNNTCGACTAAACGCGCTACTTG
GHi5.2.2 AATGATACGGCGACCACCGAGATCTACACCTCTCTATACACTCTTTCCCTACACGACGCTCTTCCGATCTNHNNNNCGTCGACTAAACGCGCTACTTG
GHi5.2.3 AATGATACGGCGACCACCGAGATCTACACTATCCTCTACACTCTTTCCCTACACGACGCTCTTCCGATCTNHNNNNGACTCGACTAAACGCGCTACTTG
GHi5.2.4 AATGATACGGCGACCACCGAGATCTACACAGAGTAGAACACTCTTTCCCTACACGACGCTCTTCCGATCTNHNNNNATAGTCTCGACTAAACGCGCTACTTG
GHi5.2.5 AATGATACGGCGACCACCGAGATCTACACGTAAGCAGACACTCTTTCCCTACACGACGCTCTTCCGATCTNHNNNNTACGTCGACTAAACGCGCTACTTG
GHi5.2.6 AATGATACGGCGACCACCGAGATCTACACACTGCGTAACACTCTTTCCCTACACGACGCTCTTCCGATCTNHNNNNCCTAATCGACTAAACGCGCTACTTG
GHi5.2.7 AATGATACGGCGACCACCGAGATCTACACAAGGAGTAACACTCTTTCCCTACACGACGCTCTTCCGATCTNHNNNNTCGACTAAACGCGCTACTTG
GHi5.2.8 AATGATACGGCGACCACCGAGATCTACACCTAAGCCTACACTCTTTCCCTACACGACGCTCTTCCGATCTNHNNNNGCTCGACTAAACGCGCTACTTG
GHi5.2.9 AATGATACGGCGACCACCGAGATCTACACCGTCTAATACACTCTTTCCCTACACGACGCTCTTCCGATCTNHNNNNCTGTCGACTAAACGCGCTACTTG
GHi5.2.10 AATGATACGGCGACCACCGAGATCTACACTCTCTCCGACACTCTTTCCCTACACGACGCTCTTCCGATCTNHNNNNTATCAGTCGACTAAACGCGCTACTTG
GHi5.2.11 AATGATACGGCGACCACCGAGATCTACACTCGACTAGACACTCTTTCCCTACACGACGCTCTTCCGATCTNHNNNNATGCTCGACTAAACGCGCTACTTG
GHi5.2.12 AATGATACGGCGACCACCGAGATCTACACTTCTAGCTACACTCTTTCCCTACACGACGCTCTTCCGATCTNHNNNNGGATATCGACTAAACGCGCTACTTG
GHi7.2.1 CAAGCAGAAGACGGCATACGAGATTAAGGCGAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGTCCTGCTGGAGTTCGTGAC
GHi7.2.2 CAAGCAGAAGACGGCATACGAGATCGTACTAGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGTCCTGCTGGAGTTCGTGAC
GHi7.2.3 CAAGCAGAAGACGGCATACGAGATAGGCAGAAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTCAAGTCCTGCTGGAGTTCGTGAC
GHi7.2.4 CAAGCAGAAGACGGCATACGAGATTCCTGAGCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCACTTAAGTCCTGCTGGAGTTCGTGAC
GHi7.2.5 CAAGCAGAAGACGGCATACGAGATCGACTCCTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTGTCCTGCTGGAGTTCGTGAC
GHi7.2.6 CAAGCAGAAGACGGCATACGAGATTAGGCATGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTTGAGTCCTGCTGGAGTTCGTGAC
GHi7.2.7 CAAGCAGAAGACGGCATACGAGATATCGCTACGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGTAGTCCTGCTGGAGTTCGTGAC
GHi7.2.8 CAAGCAGAAGACGGCATACGAGATCAGAGAGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGATACTGTCCTGCTGGAGTTCGTGAC

Supplementary Table 1: Primers used to amplify lineage barcodes.



Supplementary Information

Michael Saint-Antoine and Abhyudai Singh

1 Introduction

As discussed previously in this paper, we are interested in studying the dynamics of melanoma cells that 
switch back and forth between two transient transcriptional states: a “drug-susceptible” state in which they 
die o↵ when exposed to the drug and a “primed” state in which they survive exposure to the drug. In this 
section, we discuss the results of an experiment in which populations of these cells were exposed to di↵erent 
treatments, to study their e↵ects on the fraction of cells in the primed state. We will then use stochastic 
simulations to model di↵erent possible mechanisms of these treatments, to see which model scenarios yield 
results that most closely match the real data.

The experimental procedure was as follows. A population of cells was grown out for approximately 7-8 
generations. The population was then split into two groups. One group was exposed to a treatment (either 
TGFB1, TGFBRi, or PI3Ki), while the other group was left as an untreated control. Both the treated and 
untreated groups were then grown out for approximately 2 more generations, and then finally sequenced 
to reveal the transcriptomic state of each cell. Throughout the experiment, the lineages of the cells were 
tracked. This allows us to compare the fraction of primed cells in the treated group and the untreated group 
for each lineage. When analyzing these results, we apply a threshold so that only lineages with at least 5 
cells total are considered, and this same threshold was applied to the simulation results of our stochastic 
model.

Supplementary Table 2: Fraction of Cells in Primed State – Treated vs. Untreated Statistics

TGFB1 TGFBRi PI3Ki
Untreated Treated Untreated Treated Untreated Treated

Mean 0.0342 0.2900 0.0328 0.0353 0.0328 0.0079
Std. Deviation 0.1130 0.2615 0.1076 0.1081 0.1092 0.0451

CV 3.3032 0.9019 3.2794 3.0611 3.3330 5.7077
Fano Factor 0.3732 0.2359 0.3529 0.3308 0.3639 0.2576

The results of this experiment are shown i n Supplementary Table 2. Here we consider the f ractions of primed 
cells for each lineage in the treated and untreated groups, and report the mean, standard deviation, coe�cient 
of variation, and Fano factor for these fractions across lineages. Note that the untreated groups in all three 
experimental cases show very similar statistics – a sign that the control groups are working as expected. 
Comparing the treated and untreated mean primed fractions in each case allows us to see the e↵ects of the 
treatments. In the case of TGFB1, the treatment increased the fraction of cells in the primed state. In the case 
of TGFBRi, the fraction of primed cells in the treated and untreated groups were very similar. In the case of 
PI3Ki, the treatment decreased the fraction of cells in the primed state.

Based on this experiment, we can clearly see the e↵ects of each treatment. However, the mechanisms 
that are giving rise to these e↵ects are still unknown. Take, for example, the case of the TGFB1 treatment. 
We can see that the treatment is increasing the fraction of cells in the primed state, but how exactly is 
this happening? Is the treatment increasing the rate at which cells switch into the primed state? Or is 
it decreasing the rate at which cells switch out of the primed state? Or could it be having some e↵ect on
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the proliferation rates? To study this, we use a stochastic model of the experimental cell population to run 
computer simulations of di↵erent possible scenarios to see which simulated scenarios most closely match the 
real data from the experiment. We apply this analysis to the TGFB1 and PI3Ki cases. Please note that this 
should be understood as a hypothesis-generating analysis, not a hypothesis-testing analysis. That is, the 
conclusions we draw from the model are not definitive confirmations of the true underlying mechanisms of 
each treatment, but rather clues that could help us design future experiments. The experimental data and 
Python code used for this analysis are available upon request from the authors.

2 Model Formulation

Let us consider a population of cells that proliferate and switch back and forth between the drug-susceptible 
state and the primed state. We use the integer-valued stochastic processes s(t) and p(t) to represent the 
number of cells in the drug-susceptible state and the number of cells in the primed state, respectively. Drug-
susceptible cells proliferate with rate r1 and primed cells proliferate with rate r2. Drug-susceptible cells 
switch to the primed state with rate kon (we also call this “switching on”) and primed cells switch back to 
the drug-susceptible state with rate koff (“switching o↵”). We refer to the average fraction of primed cells 
in the untreated state as fexp, and this number i s slightly di↵erent f or the di↵erent experimental cases.

Supplementary Table 3 shows the stochastic formulation of this model. Each row is an event that can occur 
in the cell population, requiring an update of s(t) and p(t), which keep track of the number of cells in each 
state. Each event occurs with the appropriate rate and propensity. We can use this setup to simulate the 
model using the stochastic simulation algorithm [1].

Supplementary Table 3: Stochastic Model

Event Var. Updates Rate Propensity
Drug-susceptible proliferation s ! s+ 1 r1 r1 · s

Primed proliferation p ! p+ 1 r2 r2 · p
Drug-susceptible to primed s ! s� 1 kon kon · s

p ! p+ 1
Primed to drug-susceptible s ! s+ 1 koff koff · p

p ! p� 1

Before fitting this model to data, we make some simplifying assumptions in order to reduce the number of
independent parameters we need to fit. First, we set the drug-susceptible state proliferation rate r1 = 1, so
that time in our model is normalized to the average generation time of cells in the drug-susceptible state.
So, our time unit is average drug-susceptible state generations, rather than hours, days, etc.

Next, we make a simplifying assumption in order to write kon in terms of koff . Consider a scenario in

which a large population of cells exists in a steady state, with no proliferation, and an average fraction of f̂
in the primed state at any given time. Under these theoretical conditions, f̂ can be written in terms of the
state-switching rates as:

f̂ =
kon

kon + koff
(1)

The intuition here is that if we know one of the switch-rates and the average primed fraction in the population,
we can figure out what the other switch rate must be in order to maintain that equilibrium. We make
the simplifying assumption that the average primed fraction across lineages in our experimental data is
approximately equal to this underlying theoretical steady state primed fraction: fexp ⇡ f̂ . Making this
assumption allows us to write the switch-on rate in terms of the switch-o↵ rate and the average primed
fraction:
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kon =
koff
1

fexp
� 1

(2)

A consequence of defining kon this way is that di↵erent experimental data sets can have di↵erent fractions
in the primed state, meaning di↵erent values for kon. That is why the kon values for the TGFB1 and PI3Ki
treatment scenarios are slightly di↵erent in the following sections.
After normalizing the model time units to average drug-susceptible generation time and making our simpli-
fying assumption to write equation (2), we are left with only two independent parameters to fit to the data:
r2 and koff .

3 Estimating Untreated Parameters

The next step in our analysis is to estimate parameters for the untreated cells. To do this, we use data from
another experiment in which cells were grown out for approximately 4 generations, and then sequenced to
reveal their transcriptional state. Again, the lineages of the cells were tracked, so we can look at the numbers
of drug-susceptible and primed cells from the same original lineage.

We use a modified minimum least-squares method to fit our untreated parameters to this data set. First,
we consider a deterministic version of the stochastic model proposed in the previous section:

ds

dt
= r1s� kons+ koffp (3)

dp

dt
= r2p+ kons� koffp (4)

We then make the same simplifying assumptions described in the previous section, setting r1 = 1 and
kon = koff

1
fexp

�1
. In the case of this experimental data set, the average fraction of primed cells across lineages

was 0.125, so fexp = 0.125. Plugging in this value gives us kon = koff

7 . So, the system of equations is:

ds

dt
= s� koff

7
s+ koffp (5)

dp

dt
= r2p+

koff
7

s� koffp (6)

In our model, we assume that a cell population is grown out from a single original cell, which could be either
drug-susceptible or primed. So, this system of ODEs has two possible initial conditions: (s(0) = 1, p(0) = 0)
or (s(0) = 0, p(0) = 1). We use the function notation s0(r2, koff ), p0(r2, koff ) to denote the solutions to
the ODEs at t = 4, with the initial condition of one drug-susceptible cell and zero primed cells. We use
the function notation s1(r2, koff ), p1(r2, koff ) to denote the solutions to the ODEs at t = 4, with the initial
condition of zero drug-susceptible cells and one primed cell.

We refer to the experimental drug-susceptible and primed cell counts for each lineage as ŝ and p̂, respec-
tively. We define a loss function as follows. For each experimental data point, we calculate the squared
errors for the drug-susceptible and primed counts, and add them together, assuming the initial condition
(s(0) = 1, p(0) = 0). We then do the same calculation, assuming the initial condition (s(0) = 0, p(0) = 1).
After calculating both of these measures, we take the minimum of the two and add that to our total loss.
We do this for each experimental data point. The mathematical formulation of this loss function is:

l(r2, koff ) =
NX

i=1

min {(s0(r2, koff )� ŝi)
2 + (p0(r2, koff )� p̂i)

2, (s1(r2, koff )� ŝi)
2 + (p1(r2, koff )� p̂i)

2}

(7)
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Then, we simply apply a numerical optimization in Python to find the values of r2 and koff that min-
imize the loss function.

min
r2,koff

l(r2, koff ) (8)

Supplementary Table 4 shows estimates f or these parameter values that we have obtained through this method. 
We use a bootstrapping technique, running the analysis 40 times on random samples of the original data set, in 
order to generate a distribution of results. We report the 2.5 percentile value, median, and 97.5 percentile value 
of the results, so that the range between the lower bound and upper bound includes 95% of observed parameter 
fit values. The data and Python code used for the fitting are available upon request. Please note that these 
parameter values should be taken as rough estimates, not as exact, certain values.

Supplementary Table 4: Estimated Parameter Values

Event description Parameter Fit Value
95% Lower Bound Median 95% Upper Bound

Primed cell proliferation r2 0.3714 0.4786 0.5605
Primed to drug-susceptible switch koff 0.1247 0.1666 0.2158

4 Experiment Simulation

As discussed previously, we have data from an experiment in which cells were grown out for a period of time
and then divided into two groups, with some given a treatment (TGFB1, TGFBRi, or PI3Ki), while others
were left untreated. Since lineages were tracked throughout this experiment, we can compare the fraction of
cells in the primed state for both treated and untreated cells within the same lineage. For example,
Supplementary Figure 10 is a plot of the fraction of treated cells in the primed state against the fraction 
of untreated cells in the primed state, for the TGFB1 experiment. Each point represents these fractions for
a single lineage.

Supplementary Figure 10: Fraction of primed treated cells vs. fraction of primed untreated cells per lineage, 
for the TGFB1 treatment case.

Our goal is to use the stochastic model described previously to generate simulated datasets like this for
di↵erent possible mechanisms of the treatments, and then see how closely the simulated results for di↵erent
possible scenarios fit the real data.

We simulate the experiment as follows. We begin with a single cell, which is randomly chosen to be in
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the primed state with probability fexp or to be in the drug-susceptible state with probability 1� fexp. The 
cell is grown out into a colony from t = 0  until t = 7 (approximately 7 drug-susceptible state generations in
our model). During this time, the cells proliferate and switch back and forth between the drug-susceptible and
primed states. For this part of the simulation, we use the fitted untreated parameters l isted i n Supplementary 
Table 4. At the end of this portion of the simulation, we are l eft with a simulated population of cells, which may be 
drug-susceptible, primed, or a mix. At this point, we divide the simulated cell population i n half, making the 
simplifying assumption that they are divided exactly in half, which both divisions having exactly the same 
number of primed cells and exactly the same number of drug-susceptible cells. When an odd number interferes 
with this, we round the quotient to make this division feasible.

From this point, we use the two groups of simulated cells to simulate the second part of the experiment, in 
which one group is exposed to the treatment while the other is left untreated. In terms of our simulation, 
we continue to use the same parameters for the untreated group. For the treated group, we continue the 
simulation, but change one of the parameters to model a possible mechanism of the treatment. The process 
of selecting these new, treated parameter values is described in the next section.

5 Estimating Treated Parameters

As explained in the previous section, we model the e↵ect of the treatment by changing one of the parameters, 
while keeping every other parameter the same as in the untreated case. For di↵erent scenarios, we change 
di↵erent parameters. Our ultimate goal is to compare the log-likelihood scores of di↵erent scenarios to see 
which ones can better explain the data. However, before we can compare across di↵erent scenarios, we must 
first select the treated parameter values for each case. We use a truncated, rough approximation of the 
maximum log-likelihood method to choose these parameter values.

Let us quickly review the concept of log-likelihood. Consider a set of experimental observations X1, X2, ..., XN . 
We can attempt to model the system that yielded these observations, using a set of input parameters ✓ that 
yields a probability distribution fX (X, ✓). For a given parameter set ✓, we can calculate the log-likelihood 
of observing the data points:

NX

i=1

log(fX(Xi, ✓)) (9)

Here log is the natural logarithm. Then, to fit our model to the data, our task is to search through the space
of possible parameter values to find the values of ✓ that maximize this measure of log-likelihood.

We use this approach to estimate the new treated parameter value for each treatment scenario. Since
we do not have an exact analytical solution for the joint probability distribution of the prime fractions
of treated and untreated cells in our model, we estimate this distribution empirically, by running many
simulations and binning the results. This involves running the simulated experiment many times for each
new parameter value being tested, so the process is quite computationally expensive and has a considerable
runtime. Due to this computational constraint, we estimate the empirical probability distributions for each
parameter set using only 1000 runs of the experiment simulation, a smaller than ideal number. This also
leads to another computational problem – when empirically estimating the distributions, it is possible to
have a bin with 0 observations in the model and at least 1 observation in the experimental data. This
causes a calculation error, since we cannot take the natural logarithm of 0. So, when binning the results
of simulations, we assume that each bin starts at 1, not 0, and count observations from there. To ensure
that this computational shortcut is not skewing the results, we will drop it in the following section when
we validate the log-likelihood scores for each scenario by using 1000000 runs of the model to generate the
distributions.

Using this log-likelihood parameter estimation method, we test 400 potential new parameter values for
each scenario, chosen from a uniform distribution, from the previous untreated parameter value to some
upper or lower bound. We save the value that yields the highest log-likelihood score, and use that as our
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new treated parameter value for that scenario. The new parameter values for each scenario are shown in the 
following two tables.

Supplementary Table 5: TGFB1 - Treated Parameter Estimation

Scenario Changed Parameter Untreated Value Treated Value
Drug-Susceptible Proliferation Decrease r1 1 0.0166

Primed Proliferation Increase r2 0.4786 2.9059

Switch-On Rate Increase kon
koff
1

fexp
�1

= 0.0059 0.0855

Dependent Switch-On Rate kon
koff
1

fexp
�1

= 0.0059 0.0013 · p
Switch-O↵ Rate Decrease koff 0.1666 0.0651

Supplementary Table 6: PI3Ki - Treated Parameter Estimation

Scenario Changed Parameter Untreated Value Treated Value
Drug-Susceptible Proliferation Increase r1 1 2.2954

Primed Proliferation Decrease r2 0.4786 0.0473

Switch-On Rate Decrease kon
koff
1

fexp
�1

= 0.0056 0.0012

Switch-O↵ Rate Increase koff 0.1666 3.3485

6 TGFB1 Treatment

We have observed that when the cell populations are treated with TGFB1, that yields an increased fraction
of cells in the primed state compared to an untreated control. However, the underlying mechanism behind
this is not known. We consider five possible scenarios that could yield an increase in the fraction of cells in
the primed state:

1. A decrease in the drug-susceptible proliferation rate r1

2. An increase in the primed proliferation rate r2

3. An increase in the switch-on rate kon

4. A decrease in the switch-o↵ rate koff

5. A scenario in which the switch-on rate kon depends on the number of primed cells p

For each of these possible scenarios, we ran a simulation of the experiment 1000000 times, and binned the 
results in order to generate an empirical probability distribution. We used this probability distribution of 
simulated results to calculate a log-likelihood score for each scenario. Note that in terms of log-likelihood, a 
higher number means a better fit, and a more negative number means a worse fit. The results are shown i n 
Supplementary Table 7, l  isted i n  order of best-fit t o  worst-fit.

Supplementary Figure 11 shows a visual representation of these results. For each plot of treated 
prime cell fractions to untreated prime cell fractions, the back dots show real data points from the 
experimental dataset. The blue shading shows the distribution of simulation results for each scenario. 
The shading is not exactly propor-tional to the distribution frequency, and has been adjusted to 
saturate at a level below the maximum to
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Supplementary Table 7: TGFB1 - Simulation Results

Scenario Changed Parameter Log-Likelihood Score
Primed Proliferation Increase r2 �50563.78
Dependent Switch-On Rate kon �54531.503

Drug-Susceptible Proliferation Decrease r1 �84862.688
Switch-On Rate Increase kon �88256.291
Switch-O↵ Rate Decrease koff �112885.818

Supplementary Figure 11: Fraction of primed treated cells vs. fraction of primed untreated cells per 
lineage, for the TGFB1 treatment case. Real data points, shown in black dots, are plotted over
the distribution of simulation results, shown with blue shading.
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highlight simulation outliers (in order to better to compare to the real data point outliers, which are visible).

Please note that many of the real experimental data points in these plots lie along the vertical axis (this may
be di�cult to see). We believe that the di↵erence in the log-likelihood scores between scenarios is largely the
result of their relative ability or inability to account for these data points. The Primed Proliferation Increase
and Dependent Switch-On Rate scenarios are able to account for these data points along the vertical axis (as
can be seen by their dark blue shaded bars along the vertical axis), while the Drug-Susceptible Proliferation
Decrease, Switch-On Rate Increase, and Switch-O↵ Rate Decrease scenarios do not account for them as well.

7 PI3Ki Treatment

In the PI3Ki treatment data, we observed a decrease in the fraction of cells in the primed state in the treated
sample compared to the untreated control. The underlying mechanism behind this is not known. In this
section, we consider four possible scenarios:

1. An increase in the drug-susceptible proliferation rate r1

2. A decrease in the primed proliferation rate r2

3. A decrease in the switch-on rate kon

4. An increase in the switch-o↵ rate koff

We applied the same analytical workflow here as in the TGFB1 analysis, running a simulation of the ex-
periment 1000000 times and binning the results in order to generate an empirical probability distribution. 
Again, we used this simulated probability distribution to calculate a l og-likelihood score f or each scenario. 
These results are shown i n Supplementary Table 8, i n order of best-fit to worst-fit.

Supplementary Table 8: PI3Ki - Simulation Results

Scenario Changed Parameter Log-Likelihood Score
Drug-Susceptible Proliferation Increase r1 �10544.337

Switch-O↵ Rate Increase koff �10991.598
Primed Proliferation Decrease r2 �11017.362

Switch-On Rate Decrease kon �11774.535

Supplementary Figure 12 shows a visual representation of these results, plotting the treated prime cell 
fractions against the untreated prime cell fractions. The black dots show real data points from the
experimental dataset, and the blue shading shows the distribution of simulation results for each scenario.
As with Supplementary Figure 11, the shading in Supplementary Figure 12 is not exactly proportional to the 
distribution frequency, and has been adjusted to saturate at a level below the maximum to highlight
simulation outliers.

Although it is slightly di�cult to see visually, we note that many of the real experimental data points lie along
the horizontal axis, and the relative goodness or badness of fit for the scenarios seems to be determined by their
ability or inability to account for these data points.
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Supplementary Figure 12: Fraction of primed treated cells vs. fraction of primed untreated cells per 
lineage, for the PI3Ki treatment case. Real data, shown in black dots, are plotted over the distribution of
simulation results, shown with blue shading.
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