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REVIEWER COMMENTS
Reviewer #1 (Remarks to the Author): expertise in single cell RNA-seq methodology

This manuscript by Harmange et al. details a series of experiments using single-cell lineage tracing on
melanoma cancer cell lines to delineate plasticity-based mechanisms of drug resistance. Overall I
think the study could have great impact in the field of cancer biology, with deep implications for
understanding mechanistically how population dynamics within tumor cells are orchestrated.
Particularly, I find very interesting the identification of a set of drug-susceptible cells that are capable
of transitioning to a resistance-primed state. Although I believe these results are interesting, the
manuscript is a bit poorly organized. More than a few times I found it troubling to identify the
conclusions to certain results or I had to piece them together from other multiple parts of the main
text or the discussion. Other times, I felt like the authors jumped to conclusions without clearly
describing the results in the main text (even if the figure and experimental design schematics are
really helpful to make it cohesive). Altogether, this is not so much a problem with the
data/conclusions, but rather the organization and presentation of results. Otherwise, my major
concern relates to the supposed identification of “intermediate state” cells. Several data suggest to
me that this is not truly an intermediate population. First, authors do not find clear evidences of
intermediate states by UMAP or trajectory analysis (although this could be done in further depth).
Second, the intermediate states appear to be present (at some rate) in both sorted samples, so
defining the origin of these supposedly bi-fate clones in a definitive fashion seems difficult. Third, this
population is never isolated/enriched and tested independently to validate their behavior. Fourth, it is
not clear to me whether these clones that appear in both “susceptible” and “primed” regions are ever
found outside these intermediate states, indistinguishable from other fully susceptible cells. The
authors do identify enrichment of EMT/TGFbeta signaling pathway in them and then they use
activators to confirm that susceptible-cells can be turned into primed cells by simple addition of TGFb.
This last series of experiments, together with the state-switching stochastic model is, to me, the best
part of the paper. However, I remain unconvinced that the intermediate state is not in fact a
relatively long-lived, clonally-imprinted population of “bipotent” cells. In sum, I believe this is a very
good study that will have great impact in the field, but some issues need addressing before
publication. My point-by-point comments follow below:

In the description of the first experiment, at the beginning of the main text, lines 95-117 describe in
detail a single-cell lineage tracing to be performed (Fig 1A-C). But then, 119127 talk about the
single-cell clustering results obtained (Fig. 1D). And then lines 129-147 introduce experiments and
results with PI3K inhibitors (Fig. 1E-G), and they go on and on, without ever mentioning the lineage
tracing data. And, as a reader, I get completely lost. I think these experiments might be a bit out of
place in this section. I would perhaps first introduce the single cell data results clearly, then the
changes with inhibitors, (Fig 1D-G) and then start with describing methodologically the lineage
tracing approach in the next figure (Fig 2). Also, I don’t understand how these results (PI3Ki data) fit
together at this point in the manuscript. They seem a bit out of place, and perhaps better introduced
before the data from Figure 5?

If NT5E is a better marker to homogeneously enrich resistant cells, it should be validated against
NGFR-high and/or AXL-high cells instead of just to a mixed control (in Supp Fig 1F-G).

The lack of transitioning cells between the susceptible and primed cluster is interesting, but alternative
explanations are not sufficiently tested or discussed. First of all UMAP visualization can be misleading,
depending on the PCAs selected. Cell cycle score regression was not performed, and this may be
forcing the separation of the few “intermediate” cells around the plot, preventing identification of a
more clear transition bridge between susceptible-primed groupings. Also, different representations,
such as diffusion component analysis or force-directed layouts might be tested. These are sometimes
better at representing distances between the different transitioning cells. Do the authors suggest



that increasing the number of sampled cells would identify the trajectory properly? Or is it also
possible that the susceptible-to-primed state transition is not gradual or continuous?

In line 174, how is a “primed cell” and a “drug-susceptible” cell defined? This is not clearly described
in main text, legends or methods. What I got from reading the manuscript is that they are classified
by some form of cluster annotation. Previous publications from these authors have shown that these
marker-based clusters (AXLhigh, EGFRhigh) are “enriched” for resistant states, but don't purify them
to homogeneity. Wouldn't it be more stringent to classify them by a real drug-treatment response in
a split of the clones? Is anything preventing this?

The state-switch models used throughout are really useful. However, the first introduction to them
is a bit confusing (compared with their later implementation in lines 372-395, where they are more
clearly explained). As an example, in line 184, right after discussing the differential exp analysis,
the reader is obliged to remember what “from this data” means. And it doesn’t actually mean the
differential expression analysis discussed in lines 180-183 (just before), it actually means the clonal
data analysis from lines 171-179, or does it? This is confusing to me.

Many terms are used to define the transitioning drug-susceptible cells. Intermediate state,
intermediate cells, crossing-lineage. Some unified terms would help in understanding what is being
discussed. In line 211, it is said that the “intermediate cells” would have not been identified using
standard scRNAseq techniques. Some evidence of this would be helpful to strengthen this statement
(for instance, subclustering, PCA and reclustering analysis of the drug-susceptible clusters), especially
since 575 genes are differentially expressed between these and non-transitioning drug-susceptible
cells.

Determining the initial cell state of the labeled clones by sort-enrichment is probably insufficient and
single-cell RNAseq + clone splitting (as in Figure 5) would have been a better way of defining the initial
states of cells and their fate-switching. Instead, two different populations were sorted and separately
cultured and profiled some time after barcode labeling. But what were these populations really initially
(before so many doublings)? If one population was primed-enriched and the other one contains a mix
of both susceptible and primed-resistant states, then the origin of the bi-state clones could be
misinterpreted. Also, the label on Fig 1C seems misleading, because it suggests that drug-susceptible
cells were sort-enriched, and not a "mixed population” as stated in both the figure legend and text.
The switching from primed-to-susceptible is clear, but the switch from susceptible-to-primed is not as
clear to me if the sorted cells were not relatively pure at starting point. If this is all an issue of
AXL/NGFR/EGFR expression heterogeneity, then perhaps NT5E could be used to purify the susceptible
cells much better?

More worringly, EGFR, and especially AXL, expression seem to be slightly enriched partially in the
bottom right of the susceptible clusters, very close to the location of some of the
intermediate/switching states. In fact, in Supp Figure 1B, it seems that those intermediate states are
even enriched in the EGFR/NGFRhigh sample, though maybe a bit hidden by the layering. It would be
great to visualize the colors with some transparency, or generate separate plots/quantifications of
cluster enrichment for each sample to improve visualization. This all suggests that perhaps
“intermediate state” are actually deterministic, heritable, clonally-imprinted bi-potent states, closer to
the drug-susceptible region, that are deterministically giving rise to both susceptible and primed states
over time. This could be especially concerning if this population is present in both of the sorted
samples.

Do intermediate cells predictably become drug resistant with a higher rate than non-intermediate
drug-susceptible cells? Isolating these cells would be really important to validate these results.
Perhaps, if I am correct, then NT5Elow AXL/EGFR+ cells would be a reasonable suggestion to enrich
them, since it appears that AXL/EGFR are high at least in some regions of the intermediate state,
and NT5E is solely expressed at high levels in the primed clusters.



Is there a continuous trajectory of gene expression state changes throughout intermediate cells that
leads to primed cells? Or do the authors support the idea that this is rather a stochastic gene
expression state connected to a higher probability of transition to the resistance-primed state?

Expression scale in Fig 2] is missing.

The drug-induced fate-switching experiment in Figure 5 is really cool. A second untreated sample
would have been useful to quantify the baseline rate of lineage conversion of those clones. Maybe the
TGFBRi-treated sample serves that purpose to some extent, since there seems to be little to no effect
with this compound.

In the clone-splitting experiment, now, for the first time I find the most convincing data regarding the
primed-to-susceptible switch. Clearly this is only ocurring for a handful of clones here, so it’s difficult
to assess... however is it possible to compare this data with the bipotent fate data from figure 2 and
see the differences? I fear that clonally imprinted AXL/EGFRmid/+ states within the NT5E-low
subpopulation of susceptible cells might be at the origin of the bipotent behaviors observed, here
identified as “intermediate states”. This alternative interpretation needs to be challenged properly. Do
switching cells ever produce proper drug-susceptible cells that are indistinguishable from non-
switching cells?

In Figure 5G, the response of clones to TGFB1 is super heterogeneous. Are there any
(transcriptional) differences between the clones that “respond” to TGFB1 and become primed and
the clones that do not? Are they connected to the expression signature of the intermediate state?
It would really increase the impact of the manuscript if specific signatures within susceptible cells
are present and predict their TGFB1 response.

Reviewer #3 (Remarks to the Author): expert in single cell transcriptomics bioinformatics

The authors identify a rare population of melanoma cells which is primed for resistance to treatment
from a BRAF and MEK inhibitor combination. The authors characterize the kinetics of the transition
between the susceptible and resistant subpopulations using scMemorySeq. They also identify key
markers such as NT5E and the EMT-like state to define the primed state or cells transitioning to the
primed state. They go on to show that inhibiting PI3K signaling and supplementing TFGB1 ligand can
drive cells to switch to susceptible or primed states, respectively. Concerns with this paper relate to
the soundness of their conclusion about cellular memory which is critical to the novelty of the work
since the presence of such a pathway to cause resistance to BRAF/MEK inhibitor has been well
trodden (Smith et al Cancer Cell 2016), and evidence that a subpopulation is responsible has been
described (Fallahi-Sichani Mol. Bio.Sys 2017). In the absence of convincing and clear rationale for the
concept of cellular memory, it is unclear what else is being added here in the absence of any deep
biological or pharmacologic investigation.

Major Comments



Related to Fig. 1E and Supplementary Fig. 3A-C, the authors indicate that by modulating the number
of primed or susceptible cells they can alter the number of eventual resistant cells. However,
Supplementary Fig3D shows that different treatment strategies tested can result in differences in cell
doublings; these differences may affect endpoint quantification of the number of resistant cells and/or
colonies. The authors should show supporting proliferation and apoptotic data of their pretreatment
strategies or normalize data to pretreatment controls.

For example in Figure 1E, the authors claim that the dose used for pretreatment with the PI3K
inhibitor did not kill cells nor did it impact cell proliferation; however, in supplementary figure 3D,
pretreatment with PI3K is shown to result in decreased cell doublings. The authors should show their
analysis for cell proliferation and apoptosis upon PI3K inhibition and show how they derived at their
optimal concentration.

The authors claim that the primed and susceptible cell states are two discrete states as shown in the
two clusters seen in Fig. 1D, however in 5B there does not seem to be a similar discretization in the
untreated cells. Moreover, the switch between primed and susceptible seems to be a continuous
phenomenon evidenced by the distribution of NT5E expression in the population as shown in Fig. 4B
and 5B. Thus it would appear that cells are undulating through a continuum instead of jumping
between discrete configurations of those pathways and that some drugs are altering the level of this
specific gene signature. Could an alternative model be that NT5E/EMT level in all cells is turned up or
down by TGFB or PI3K inhibition, leading to some cells crossing a threshold, making it appear that
there is a switch in cell state? What if the histograms in 4B are overlaid, do the drugs inhibit or enhance
levels of NT5E in the majority of cells (i.e. shift in median level of NT5E)?

In Fig. 2D, MITF is downregulated in sister cells of primed cells compared to lineages without primed
cells. Also, in Fig. 2] the primed vs susceptible heatmap shows that MITF is further downregulated in
primed cells. It is very well established in the literature that BRAF/MEKi resistant cells in melanoma
upregulate MITF (Smith et al, 2016 Cancer Cell, Johannssen Nature 2013 among others). What is the
reason for this discrepancy, is there a process where the full resistant cells go from downregulating
MITF to then upregulating it?

Minor comments:

The NT5E high cutoff for untreated cells used in Fig. 4B should be changed such that the ratio of
primed to susceptible cells is the same as shown in the two clusters in both Fig. 1D and Fig 2B for
consistency. Ideally the cutoff should be based on the percent of cells that survive BRAFi/MEKi
treatment alone.

In the case of phenotype switching of barcodes from primed to susceptible and vice versa (Fig. 5G
and 5H), the fraction of cells from the respective lineages in the primed state for the untreated
sample should be shown for better readability of data.

In Fig. 3A, the authors should quantify the expression of SOX10 and NT5E in the region of interest
compared to a control region.

Fig. 3B and Fig 3D require controls (normal tissue or untransformed samples) for primed and
susceptible states in order to show that the heterogeneity captures something outside the normal
range of expression.

In Fig. 5G, a better visualization of the concept shown would be to take a representative number of
lineages (say 20 lineages) and connect them via a line across the different treatments. This would
show how each specific lineage changes in the fraction of primed cells by treatment.

The authors should show that they can recapitulate the two clusters observed in Fig. 1D UMAP from
the untreated cells in Fig. 5B,C,D to better define the primed and susceptible



populations. Can you take the annotations from this newly created UMAP and map them onto the
UMAP shown in Fig. 5B,C,D to see if it aligns with your definition of primed and susceptible
populations shown in that figure?

Given that primed and susceptible cells have different growth rates, it may be reasonable to assume
that there might be differences in the cell cycle which could explain the clusters in Fig 1D. The data
should have cell cycle markers regressed out. Supplementary data Fig. 2B shows a high difference in
% of cells in S phase between the two clusters. If the two clusters no longer remain after regressing
out those markers, then there is a significant flaw in using this method to call cells as primed or
susceptible.

Reviewer #4 (Remarks to the Author): expert in RNA biology and transcriptional regulation

Summary:

In this interesting study, Harmange and colleagues developed a single-cell RNA-sequencing based
approach to measure cell state memory in mammalian cells. This is of clinical relevance as it has
been previously shown that melanoma cells can switch between therapy resistance (primed) and
drug-naive cell states. To measure cellular memory the authors aimed to track transcriptional states
across cell lineages. Towards this, Harmange et al appled a barcoding library to melanoma cells and
subsequently profiled the transcriptome of those barcoded cells at a single-cell level after a certain
number of cell doublings. Through lineage tracing with cell barcoding the authors found that most
cells maintained their cell state memory, which was in contrast to their previous conclusions from
bulk RNA-sequencing studies that indicated dynamic fluctuation between therapy resistant and drug-
naive gene expression states in the same studied cell line. However, in their new manuscript using
single-cell analysis the authors identified a pool of cells that lost their gene expression memory and
they demonstrated that this lineage switching is dependent on PI3K and can be induced by TGFB1.
They also confirmed that similar gene expression signatures exist in mouse models and patient
samples. Finally, the authors demonstrated that the transcriptional memory remains stable over time
and that treatment with TGFB1 and PI3Ki induces primed and drug-susceptible states, respectively.
Although only a small fraction of cells switches states upon those treatments this is still sufficient to
alter the outcome of treatment regimens across a cell population.

Overall, the experimental approach (scMemorySeq) and conclusions of this study are novel, accurate,
clinically relevant and of great interest to a broad readership. The experiments are well controlled,
data are presented in a clear and visually attractive manner and methods are described in sufficient
details. Overall, this manuscript is suitable for publication after addressing the minor comments listed
below.

Minor comments:

- Line 50-53: It would be helpful if the authors could summarize their previous work in a bit more
detail. Maybe they could add 1-2 sentences briefly describing the technology and cancer type used
along with major finding from the cited studies.

- Line 242: delete “population”

- Line 335: Shouldn't this read "SOX-high” instead of "SOX-low"?

- The authors apply a PI3K inhibitor and show that this decreases drug resistance in melanoma
cells. PI3K inhibition should ideally be confirmed by assessing phosphorylation state of kinase
targets by western blotting.

- Also, can the authors comment on whether addition of TGFB1 induce any markers of EMT as
observed in intermediate cell states (using scRNA-seq data from Fig. 5)?

- Given the prominent association with primed cell state, the authors should consider

displaying the NT5E marker gene in the heat maps displayed in Fig. 5F. Do the NT5E transcript
levels correlate with the protein level shown in Fig. 4C?



Reviewer #5 (Remarks to the Author): expertise in melanoma drug resistance

In their manuscript, Harmange et al present a novel method for in vitro tracking of phenotypic
switching using barcoding and scRNAseq. Using this method, they explore the kinetics and dynamics
of cellular switching between a drug-sensitive state and a state primed for drug resistance in
melanoma. Authors then examine how pre-treating cells with inhibitors of TGFBR and PI3K based on
the transcriptional characteristics of resistance “primed” states affect these transitions. These data
provide insights into the molecular pathways which may regulate the transitions between cell states.
Data gathered in these studies was then utilized to parameterize a mathematical model of phenotypic
switching between the drug-susceptible and drug-primed state. Although many of the transcriptional
characteristics of the drug-sensitive and drug-resistant states have been defined previously, the
kinetics and dynamics of cell transitions through these states have never been explored and are of
high interest to the melanoma research community. This work also provides a deeper functional
dimension to some of the pathways previously implicated in BRAF inhibitor resistance.

Questions/concerns:

1. Is it possible that melanoma tumors have more than 1 drug resistance “primed” and more than 1
drug-sensitive state? There have been a few papers now that have identified 46 transcriptional states
in melanoma, most recently a paper from the Marine lab in Nature volume 610, pages 190-198
(2022). Is there any indication how the drug sensitive and drug “primed” states defined in this
manuscript fit within the 6 cellular state landscape described in the Marine lab study? It would be
helpful to understand how the states identified here fit into the published states. For example, is the
“primed” state the same cells that are identified as "mesenchymal-like”? and are the sensitive states a
combination of all others? Or are mesenchymal-like the very rare subset of the “primed” state that are
then also resistant to PI3Ki pre-treatment coupled with BRAF inhibitor treatment?

2. Is pre-treatment with PI3K more, less, or similarly as effective compared to simultaneous
combination treatment? This is an essential question that needs to be answered and would
have a large impact on how dynamic treatment strategies are developed preclinically and
clinically.

3. Importantly, the authors show that pre-treating cells with PI3K significantly reduces but does not
completely abolish the outgrowth of resistant cells. The authors should analyze the transcriptional
profiles of rare cells in the lineage which did not respond to PI3Ki. It is essential to know more about
these states, how they are different from BRAFi-sensitive and “primed” states, and potential insights
into how they can be targeted.

4. If the drug-susceptible cells in lineages with a high proportion of cells already in the primed state
are more easily switched into the primed state, is it possible to predict clinical response to BRAFi
based on the content of the primed state in a tumor?

5. The authors are tackling a phenomenon that has been studied intensely for the last decade. It
is important to be more thorough about setting the context for this study and make sure cite
additional papers related to:

a) Reversal to drug-sensitive state and leveraging of state dynamics in therapy scheduling

b) AXL/MITF/SOX10/FN1 transcriptional states related to BRAFi resistance

c) Role of TGFbeta in BRAFi response

d) Role of PI3K inhibitors in reversing BRAFi resistance

Although authors do cite some work in some of these areas, it could be more thorough.

Minor questions/concerns:
1. Why did almost half the cells profiled not have barcodes (related to results for Figure 1)?
Are barcodes lost over time or were barcoded and non-barcoded cells analyzed?



2. There is a typo on line 24



Reviewer #1: expertise in single cell RNA-seq methodology

This manuscript by Harmange et al. details a series of experiments using single-cell lineage tracing on
melanoma cancer cell lines to delineate plasticity-based mechanisms of drug resistance. Overall | think the
study could have great impact in the field of cancer biology, with deep implications for understanding
mechanistically how population dynamics within tumor cells are orchestrated. Particularly, | find very interesting
the identification of a set of drug-susceptible cells that are capable of transitioning to a resistance-primed state.
Although | believe these results are interesting, the manuscript is a bit poorly organized. More than a few times
| found it troubling to identify the conclusions to certain results or | had to piece them together from other
multiple parts of the main text or the discussion. Other times, | felt like the authors jumped to conclusions
without clearly describing the results in the main text (even if the figure and experimental design schematics
are really helpful to make it cohesive). Altogether, this is not so much a problem with the data/conclusions, but
rather the organization and presentation of results. Otherwise, my major concern relates to the supposed
identification of “intermediate state” cells. Several data suggest to me that this is not truly an intermediate
population. First, authors do not find clear evidences of intermediate states by UMAP or trajectory analysis
(although this could be done in further depth). Second, the intermediate states appear to be present (at some
rate) in both sorted samples, so defining the origin of these supposedly bi-fate clones in a definitive fashion
seems difficult. Third, this population is never isolated/enriched and tested independently to validate their
behavior. Fourth, it is not clear to me whether these clones that appear in both “susceptible” and “primed”
regions are ever found outside these intermediate states, indistinguishable from other fully susceptible cells.
The authors do identify enrichment of EMT/TGFbeta signaling pathway in them and then they use activators to
confirm that susceptible-cells can be turned into primed cells by simple addition of TGFb. This last series of
experiments, together with the state-switching stochastic model is, to me, the best part of the paper. However, |
remain unconvinced that the intermediate state is not in fact a relatively long-lived, clonally-imprinted
population of “bipotent” cells. In sum, | believe this is a very good study that will have great impact in the field,
but some issues need addressing before publication. My point-by-point comments follow below:

We thank the reviewer for their assessment of our work in the context of cancer biology. The reviewer
has pointed out some important considerations regarding the manuscript organization and potential for
bi-fate clones. To address these comments, we first restructured the manuscript to build out the results
in a more logical manner, which involved moving the PI3K inhibitor results from Fig. 1 into 6. We also
clarified the results throughout the text to better justify the conclusions.

The potential that the appearance of state-switching is due to bi-fate clones is an interesting alternative
hypothesis; however, our previous work on these cells, as well as further analysis of our new data,
shows that state-switching is indeed the cause of lineages appearing in both states. We describe this
further below in the section where the reviewer outlines this point more thoroughly.

In the description of the first experiment, at the beginning of the main text, lines 95-117 describe in detail a
single-cell lineage tracing to be performed (Fig 1A-C). But then, 119-127 talk about the single-cell clustering
results obtained (Fig. 1D). And then lines 129-147 introduce experiments and results with PI3K inhibitors (Fig.
1E-G), and they go on and on, without ever mentioning the lineage tracing data. And, as a reader, | get
completely lost. | think these experiments might be a bit out of place in this section. | would perhaps first
introduce the single cell data results clearly, then the changes with inhibitors, (Fig 1D-G) and then start with
describing methodologically the lineage tracing approach in the next figure (Fig 2). Also, | don’t understand
how these results (PI3Ki data) fit together at this point in the manuscript. They seem a bit out of place, and
perhaps better introduced before the data from Figure 5?

We completely agree with the reviewer’s suggestion for improving the paper’s organization. Per this
suggestion, we have made significant changes to the organization of the paper, including moving the



figures and text into the order recommended by the reviewer. We now start the paper by presenting the
scMemorySeq technique and experimental design in WM989 melanoma cells. We then focus on our
findings from scRNA-seq, analyzing the drug-susceptible and primed gene expression states (Fig. 1)
and showing that these states exist in vivo (Fig. 2). Next, we show how we use barcoding data to
identify the drivers of state switching (Fig. 3, 4), followed by our scRNA-seq experiment proving we can
drive state switching (Fig. 5). With the state-switching paradigm established we conclude the paper by
showing that manipulating state-switching has an impact on drug resistance (Fig. 6). We believe this
new organization is much more logical and easy to follow.

If NT5E is a better marker to homogeneously enrich resistant cells, it should be validated against NGFR-high
and/or AXL-high cells instead of just to a mixed control (in Supp Fig 1F-G).

We agree that to show NT5E is a good marker we must compare it to other markers. In the initial
version of the paper, we showed in Supp. Fig. 1G (now Supp. Fig. 2B) that the top 0.2% of
NGFR/EGFR high cells lead to similar amounts of resistance to the top 2% of NT5E high cells.

As recommended by the reviewer, we have now performed additional experiments to directly compare
the top 2% of NT5E-expressing cells, the top 0.2% of NGFR-expressing cells, the top 0.2% of
EGFR-expressing cells, and the top 0.2% of NGFR/EGFR-expressing cells (the gold standard used in
previous papers). We sort out a higher percentage of NT5E-high cells (which is less stringent) because
NTS5E-high cells make up a larger percentage of the population than NGFR and EGFR-high cells. We
sorted these samples and then treated each sample with BRAFi for 3 weeks. This data shows that
NT5E performs better than sorting for EGFR or NGFR alone and performs similarly well to sorting for
NGFR/EGFR high cells while capturing the whole primed cell population instead of just a subset (Supp.
Fig. 2A, B (shown below)).
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Supplementary Figures 2A and 2B: Validation of NT5E as a primed cell marker and comparison to EGFR and
NGFR. Plots showing the number of resistant cells after sorting by different markers and then treating with BRAFi. The left
plot compares all single markers and the right plot compares the gold standard NGFR/EGFR-high cells to NT5E-high
cells. Each condition has a minimum of 3 replicates and the error bars are the mean absolute deviation. The control
condition consists of the bottom 50% of cells for each marker.

The lack of transitioning cells between the susceptible and primed cluster is interesting, but alternative
explanations are not sufficiently tested or discussed. First of all UMAP visualization can be misleading,
depending on the PCAs selected. Cell cycle score regression was not performed, and this may be forcing the
separation of the few “intermediate” cells around the plot, preventing identification of a more clear transition
bridge between susceptible-primed groupings. Also, different representations, such as diffusion component
analysis or force-directed layouts might be tested. These are sometimes better at representing distances
between the different transitioning cells. Do the authors suggest that increasing the number of sampled cells



would identify the trajectory properly? Or is it also possible that the susceptible-to-primed state transition is not
gradual or continuous?

We thank the reviewer for suggesting additional analyses for identifying cells between the susceptible
and primed clusters. As suggested by the reviewer, we have now extensively tested different
dimensionality reduction methods and analysis approaches to visualize these two different populations
and added these plots to Supp. Fig. 1E-G, including regressing out the cell cycle, processing each
phase of the cell cycle independently, principal component analysis, diffusion component analysis, and
force-directed layout.

Upon regressing out the cell cycle effects, we found that the distinction between the drug-susceptible
state and the primed state remained, with a slight increase in the grouping of intermediate cells (Supp.
Fig. 1E). Because cell cycle regression might not be completely perfect, we also tested plotting cells
from each phase of the cell cycle individually and found that drug-susceptible and primed cells continue
to cluster separately for each phase (Supp. Fig. 1F). Alternative data visualizations, including the first
two principal components, diffusion component analysis, and force-directed layout, showed more cells
positioned between the drug-susceptible and primed states (Supp. Fig. 1G (also shown below)).

Moreover, we assessed various PC combinations in the UMAP analysis and determined that
incorporating more than six PCs distinctly separated the two populations. While we acknowledge that
optimizing parameters could potentially connect these two groups of cells, we emphasize that
dimensionality reduction methods can be highly manipulable. As a result, we base our state
assignments on high-dimensionality clustering rather than dimensionality reduction outcomes, defining
primed cells as those in Louvain clusters expressing numerous known primed state markers.

To acknowledge the above points in the manuscript we have added the following sentence:

“The distinction between these two states is robust and seen in high dimensional space by Louvain
clustering and by multiple dimensionality reduction methods (Supp. Fig. 1A, C, E-H).”

Since multiple visualization methods (PCA, diffusion component analysis, and force-directed layout) all
showed cells in between the two major clusters, we questioned whether these cells were the same
across the different visualization methods. To determine if they were the same, we established arbitrary
thresholds in PC1 to capture cells between the two major groups of drug-susceptible and primed cells,
which we refer to as "center cells" (see the first panel in the figure below). We then plotted these center
cells using other dimensionality reduction methods and found that the cells between the clusters were
indeed the same in both diffusion component analysis and force-directed layout. Interestingly, these
cells also appeared in the same areas of the UMAP plot as the intermediate state (although the cells
are far from an exact match). This suggests that different visualization methods can be used to estimate
which cells may be transitioning.

However, this approach necessitates selecting a visualization method believed to be most accurate,
which has no definitive answer, and determining appropriate thresholds in 2D space, which also has no
definitive answer (as mentioned, the thresholds used here are arbitrary). As a result, we contend that
utilizing lineage data to identify intermediate cells provides a more robust approach. This method allows
us to focus on cells that have undergone state changes, and although threshold selection is still
required, our metric takes into account the expression of over 500 genes deemed critical to the
state-switching process, as they are all upregulated in crossing lineages relative to non-crossing ones.



To emphasize the advantage of using lineage information over 2D representations, we have written the
following in the text:

“These rare intermediate state cells are confidently identified using lineage information, but are difficult
to accurately identify from the scRNAseq alone (Supp. Fig. 1G).”

While it is possible that increasing cell samples would more clearly identify a crossing trajectory using
UMAP, it is not necessarily true since crossing cells will always make up a small fraction of the cells.
We posit that the transition between the drug-susceptible and primed states, although potentially rapid,
is relatively continuous. To gain insight into the continuity of this process, we can refer to the heat map
in Fig. 3J showing the gene expression states of the drug-susceptible, intermediate, and primed states.
Here we observe that some genes show a gradual increase or decrease in their expression during state
switching, rather than abruptly transitioning from no expression to high expression. Importantly, we do
find genes that are specific to the intermediate cell state, including NFATC2 and MGP.
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Supplementary Figure 1G: scRNAseq data from Figure 1 plotted with different visualization methods. Cells are
colored by their state defined in our analyses.
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Figure: scRNAseq data from Figure 1 plotted with different visualization methods showing cells in between the
primed and drug-susceptible state based on PC1. Light blue designates the cells identified as the center of PC1.
These cells have some overlap with the cells identified by the barcodes (above and in Supp. Fig. 1G), but are largely
different. This supports the use of lineage barcodes to precisely identify this population of cells.

In line 174, how is a “primed cell’ and a “drug-susceptible” cell defined? This is not clearly described in main
text, legends or methods. What | got from reading the manuscript is that they are classified by some form of
cluster annotation. Previous publications from these authors have shown that these marker-based clusters
(AXLhigh, EGFRhigh) are “enriched” for resistant states, but don’t purify them to homogeneity. Wouldn't it be
more stringent to classify them by a real drug-treatment response in a split of the clones? Is anything
preventing this?

The reviewer makes an astute point regarding our terminology and definitions for priming. To address
this, we have revised the manuscript to clarify that the “drug-susceptible state” and “primed cell state”
are defined by our gene expression analyses. To identify cells for classification as drug-susceptible or
primed, we determined which Louvain clusters express high levels of primed marker genes. To make
this clear we have added the following to the caption of Supp. Fig. 1A:



“Clusters 2, 8, and 9 are labeled as primed cells based on their expression of known primed marker
genes and NT5E.

We connect the primed cell state with the priming behavior by showing that NT5E-high cells are much
more likely to survive BRAFI/MEKIi than the mixed or NT5E-low population. The reviewer accurately
notes that sorting for NTS5E (or other markers) only enriches for survival but does not guarantee that all
of these sorted cells will survive BRAFi/MEKI. Based on these experiments, we have updated the text
to emphasize that cells in the primed gene expression state have an increased likelihood, but not
certainty, of surviving BRAFI/MEKIi treatment. This is stated in the text as follows:

“Thus, we demonstrated that the marker gene NTS5E captures the entire cluster of transcriptionally
similar cells and that these cells are indeed more likely to be resistant to targeted therapy.”

Regarding the reviewer's suggestion to classify cells using the drug response in a split of clones, we
acknowledge the merits of doing this, but did not include it in our experimental design as it would have
made our interpretation of the state-switching data more challenging. Specifically, if we use a split of our
clones for drug treatment, we would have fewer cells from each lineage captured in the scRNA-seq.
This would make it more difficult to accurately know which lineages switched states and which did not.
Thus, for the goal of capturing state-switching and memory, we did not include a split of clones treated
with drug. Rather, we identified specific markers of these states and used sorting and drug treatment to
validate the results (Fig. 1E and Supp. Fig. 2A, B).

The state-switch models used throughout are really useful. However, the first introduction to them is a bit
confusing (compared with their later implementation in lines 372-395, where they are more clearly explained).
As an example, in line 184, right after discussing the differential exp analysis, the reader is obliged to
remember what “from this data” means. And it doesn’t actually mean the differential expression analysis
discussed in lines 180-183 (just before), it actually means the clonal data analysis from lines 171-179, or does
it? This is confusing to me.

We thank the reviewer for pointing out this confusion in the text. We have revised this line to clearly
state what data we use in the analysis. This line now reads as:

“To derive the rates of proliferation and state switching from the paired scRNAseq and barcoding data,
we used a stochastic two-state model (Supp. Methods 1).”

Many terms are used to define the transitioning drug-susceptible cells. Intermediate state, intermediate cells,
crossing-lineage. Some unified terms would help in understanding what is being discussed. In line 211, it is
said that the “intermediate cells” would have not been identified using standard scRNAseq techniques. Some
evidence of this would be helpful to strengthen this statement (for instance, subclustering, PCA and
reclustering analysis of the drug-susceptible clusters), especially since 575 genes are differentially expressed
between these and non-transitioning drug-susceptible cells.

We agree with the reviewer that unified terminology would enhance the clarity of the paper. We have
added text to more clearly explain that crossing lineages are lineages that are known to change states
and that these lineages were used to identify a gene list. This gene list was then used to create an
“‘intermediate state score” to determine which cells express the most important genes for state
switching. The cells with the highest intermediate state score are called intermediate state cells. We
added new text to clearly explain that intermediate state cells are defined as cells that score highly with
the intermediate state score. This is stated in the text as follows:



“We set a threshold on this score and classified the high-scoring cells as “intermediate state cells" (Fig.
3F).”

As suggested by the reviewer, we performed additional analyses to strengthen the statement that
“‘intermediate state cells” would not have been identified with standard scRNA-seq analysis techniques.
First, we demonstrate that employing multiple visualization techniques does not reveal a discernible
method for delineating intermediate cells using thresholds in 2D space (Supp. Fig. 1F, G). Furthermore,
we reanalyzed drug-susceptible cells exclusively and found that intermediate cells neither cluster
uniformly in 2D UMAP space nor occupy the same Louvain cluster (see below). This underscores the
utility of leveraging lineage information to detect cells in the intermediate state.
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Figure: Analysis of only the drug-susceptible cells from the single cell data in figure 1F. The left plot shows cells in
UMAP space labeled by their Louvain cluster. The right plot shows the same UMAP plot as the left but labels the
intermediate cells in purple.

Determining the initial cell state of the labeled clones by sort-enrichment is probably insufficient and single-cell
RNAseq + clone splitting (as in Figure 5) would have been a better way of defining the initial states of cells and
their fate-switching. Instead, two different populations were sorted and separately cultured and profiled some
time after barcode labeling. But what were these populations really initially (before so many doublings)? If one
population was primed-enriched and the other one contains a mix of both susceptible and primed-resistant
states, then the origin of the bi-state clones could be misinterpreted. Also, the label on Fig 1C seems
misleading, because it suggests that drug-susceptible cells were sort-enriched, and not a “mixed population”
as stated in both the figure legend and text. The switching from primed-to-susceptible is clear, but the switch
from susceptible-to-primed is not as clear to me if the sorted cells were not relatively pure at starting point. If
this is all an issue of AXL/INGFR/EGFR expression heterogeneity, then perhaps NT5E could be used to purify
the susceptible cells much better?

Justification for sorting: Overall, sorting has limitations, but given the effect sizes in our data, we can
rule out the possibility that the observed state-switching lineages are derived from contamination.

The reviewer is specifically concerned that drug-susceptible cells do not switch into the primed
state. If this is true, the only explanation for lineages that contain cells in both states would be that they
arise from primed cells that are in the mixed sample. Based on our scRNA-seq, the primed cell state
makes up 8% of the mixed population. If primed cells were the source of all lineages that contain both
states, the maximum number of crossing lineages that we could see would be 8%. However, our data
shows 21% of lineages from the mixed sample consist of cells in both states. Thus, some portion of
these lineages must have started from a cell in drug-susceptible state, thereby demonstrating that
drug-susceptible cells can switch into the primed state.

Furthermore, the mixed sample also contains 7% of lineages that are entirely primed. This number is
consistent with 8% of lineages starting with a primed cell and many of them remaining entirely primed.



Therefore, the 21% of lineages containing both states described above must predominantly originate
from cells in the drug-susceptible state.

The reviewer is also concerned about our choice to derive a mixed sample. We did not sort this sample
because the expected percentage of primed cells is relatively low, particularly compared to the
expected purity on the sorter. Given the logic above, we know that drug-susceptible cells must be
generating crossing lineages.

We also have experimental validation of the drug-susceptible to primed state switching in our prior work
using NGFR-reporters that directly show switching (see further discussion of this in the next comment
regarding the bi-potent clone hypothesis) (Shaffer et al. 2020).

While it might be possible to provide a more pure isolation of the drug-susceptible cells, we anticipate
that this would not change the claims or interpretation of the results. Specifically, it would not change
our claim that cells can switch from the drug-susceptible to primed state or the identification of the
intermediate cell state using lineages.

The reviewer also brings up the following comment (shown above as well):

If one population was primed-enriched and the other one contains a mix of both susceptible and

primed-resistant states, then the origin of the bi-state clones could be misinterpreted.
As described above, the state-switching phenomenon cannot be explained by impurities given that the
mixed lineages are at a higher frequency than any possible impurities. Thus, it is not possible that the
state-switching phenomenon comes from impurities. The reviewer is also concerned that the
intermediate cell state represents a bi-state clone. This intermediate cell state is present in 2% of cells
across the entire dataset. Thus, if only 2% of cells could generate both states, we should see only 2%
of lineages with mixed states. However, our data shows 18% of lineages contain mixed states (29% of
these in the prime-enriched sample and 71% in the mixed sample), thus mixed lineages occur at a
significantly higher frequency than the intermediate cell state, thereby ruling out the possibility that
these intermediate cells are the source of the mixed lineages.

The reviewer is correct about the label in Fig. 1C and this has been fixed in the manuscript.

More worryingly, EGFR, and especially AXL, expression seem to be slightly enriched partially in the bottom
right of the susceptible clusters, very close to the location of some of the intermediate/switching states. In fact,
in Supp Figure 1B, it seems that those intermediate states are even enriched in the EGFR/NGFRhigh sample,
though maybe a bit hidden by the layering. It would be great to visualize the colors with some transparency, or
generate separate plots/quantifications of cluster enrichment for each sample to improve visualization. This all
suggests that perhaps “intermediate state” are actually deterministic, heritable, clonally-imprinted bi-potent
states, closer to the drug-susceptible region, that are deterministically giving rise to both susceptible and
primed states over time. This could be especially concerning if this population is present in both of the sorted
samples.

The reviewer accurately notes that EGFR and AXL are slightly upregulated in the intermediate state.
We surmise that this occurs because these transitioning cells have not yet fully gained EGFR/AXL
expression when switching to the primed state or have not entirely lost expression of EGFR/AXL when
switching to the drug-susceptible state. However, the enrichment of sorted primed cells in this region is
likely due to the fact that during the expansion of lineages for ~4 doublings we are seeing cells in the
early stages of cells switching from the primed state to the drug-susceptible state, and not due to


https://paperpile.com/c/dGErHH/ycSEV

contamination in the sort. We do not believe it is due to the sort isolating intermediate cells accidentally
as we sorted the top 0.2% of NGFR/EGFR expressing cells in the experiment and if we look for the top
0.2% of NGFR EGFR expressing cells in our scRNA-seq mixed cell population we see that none of
them are in the intermediate state. This suggests that we are not accidentally enriching for many
intermediate cells during our sort, and rules them out as the origin of crossing lineages.

The reviewer has pointed out that EGFR and AXL expression is observed at a low to intermediate level
in the bottom of the cluster containing drug-susceptible cells. They propose a hypothesis that these
cells represent a bipotent stem cell that is able to generate both the drug-susceptible and
primed state. From both our experimental data in this paper and prior work, we can draw from multiple
lines of evidence to rule out this possible model:

1. The number of intermediate cells is too low to explain state switching. The strongest line
of evidence in our data is the frequency of these intermediate cells. In our scRNA-seq data, they
represent about 2% of cells at most. The reviewer is proposing that these cells were in both
samples used for our experiments. However, even if this population was in both samples, we
capture a much larger percentage, 18% (20% if only looking at the mixed sample), of lineages
that switch states overall. Thus, the frequency of the intermediate state is far too low to explain
the number of lineages that have switched states.

2. Clonal dilutions generate both states in all clones. In our previous work (Shaffer et al. 2017,
2020), we isolated single cells and allowed them to expand to generate clonally derived lines. In
these clonally derived lines, we find that all clones contain cells in both the primed and
drug-susceptible cell states. If there was a bi-potent progenitor cell, then only the clones derived
from this bi-potent progenitor would contain both cell states (and these would be at a lower
frequency in the data (2%) if based on the intermediate state).

3. Direct observation of state switching by time-lapse microscopy. In our previous work
(Shaffer et al. 2020), we tagged the endogenous locus of the NGFR gene to generate a
fluorescent reporter of the primed cell state. We then performed time-lapse imaging of these
cells. We observed that cells fluctuate from a state where they do not express NGFR into a state
with high levels of NGFR expression and then back into a state where they do not express
NGFR. If the intermediate cells were the source of primed cells, we would expect to see cells
with a medium level of NGFR expression that generate cells without NGFR expression or with
high NGFR, not the on-off phenotype we observe in time-lapse imaging.

To emphasize this prior work and that state switching has been previously shown, we added an
additional line to the text:

“‘Based on our previous work, we know that both the drug-susceptible and primed states exist in
untreated melanoma cells and that cells can fluctuate between these states (Shaffer et al. 2020).”

We have also implemented the reviewer’s visualization suggestions for Supp. Fig. 1B, and it can also
be seen below.
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Mixed sample
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Supplementary Figure 1B: scRNA-seq data with cells labeled by their sample in the experimental design. Cells in
blue are the cells in the mixed sample and cells in red are sorted primed cells based on the markers NGFR and EGFR.

Do intermediate cells predictably become drug resistant with a higher rate than non-intermediate
drug-susceptible cells? Isolating these cells would be really important to validate these results. Perhaps, if | am
correct, then NT5Elow AXL/EGFR+ cells would be a reasonable suggestion to enrich them, since it appears
that AXL/EGFR are high at least in some regions of the intermediate state, and NT5E is solely expressed at
high levels in the primed clusters.

From our single-cell RNA sequencing data, we can see that 41% of cells in the intermediate state are in
lineages that switched state (relative to 29% and 17% for drug-susceptible and primed lineages
respectively) suggesting that these cells are indeed much more likely to switch states. We agree with
the reviewer that isolating the intermediate cells would be ideal. We spent a significant amount of time
and resources trying to isolate these cells using multiple markers (including RAMP1, NTM, THBS1,
ANXA1, ALCAM, and ITGBS). However, we struggled to validate antibodies for any of these markers
because either the antibody was not specific or the antibody didn’t really stain a significant population of
cells.

Here, the reviewer proposes a combination of markers consisting of NT5E and AXL or EGFR. Trying to
use a combination of cell surface markers is a good idea, however, it is not possible since the
intermediate cells are not NT5E low, and are not high for other markers such as AXL, NGFR, and EGFR.
Scatter plots of the expression of these markers in cells (based on our scRNA-seq data) show that there is
no clear gating strategy to isolate intermediate cells based on these markers.
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Figure: Scatter plots of the expression levels of the specified genes to emulate where drug-susceptible,
intermediate, and primed cells would appear on a plot during sorting. Intermediate cells are labeled by purple dots
and are not a clearly identifiable population using these markers.

Is there a continuous trajectory of gene expression state changes throughout intermediate cells that leads to
primed cells? Or do the authors support the idea that this is rather a stochastic gene expression state
connected to a higher probability of transition to the resistance-primed state?

The transitions between states are continuous for many of the marker genes. This continuity can be
seen if we look at the expression levels of genes across the drug-susceptible, intermediate, and primed



states (see plot below). Furthermore, the heat map in Fig. 3J provides insight into the continuous nature
of these gene expression states. We also observe genes uniquely upregulated in the intermediate cell
states, such as NFATC2 and MGP.
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Figure: Box plot of the specified genes showing their expression level in each cell state. This plot shows that most
genes have an intermediate level of gene expression in the intermediate state indicating a continuous transition between
the drug-susceptible and primed states, passing through the intermediate state. Of note, MGP, NFATC2, and CEBPD
show higher expression in the intermediate cell state.

The drug-induced fate-switching experiment in Figure 5 is really cool. A second untreated sample would have
been useful to quantify the baseline rate of lineage conversion of those clones. Maybe the TGFBRI-treated
sample serves that purpose to some extent, since there seems to be little to no effect with this compound.

We agree with the reviewer that incorporating a second untreated sample could have been a valuable
addition. Our experimental design omitted this sample to minimize the number of cell divisions, thereby
increasing our confidence that the majority of cells had not switched states during expansion (prior to
applying the different drugs). Nonetheless, we agree that TGFBRI can serve this purpose to a certain
extent and have added an additional analysis of this data. When considering lineages with two or more
cells in each condition, we observe no statistically significant change in the fraction of primed cells
when comparing untreated and TGFBRI treated cells. In contrast, TGFB1 induces a statistically
significant increase, and PI3Ki leads to a statistically significant decrease in the fraction of primed cells
(Supp. Fig. 6G (below)).
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Supplementary Figure 6G: Box plot of the fraction of primed cells in lineages in each condition. By including all the
lineages we show a statistically significant increase in the proportion of primed cells with TGFB1 treatment and a
statistically significant decrease in the proportion of primed cells with PI3Ki treatment.

In the clone-splitting experiment, now, for the first time | find the most convincing data regarding the
primed-to-susceptible switch. Clearly this is only occurring for a handful of clones here, so it's difficult to
assess... however is it possible to compare this data with the bipotent fate data from figure 2 and see the
differences? | fear that clonally imprinted AXL/EGFRmid/+ states within the NT5E-low subpopulation of
susceptible cells might be at the origin of the bipotent behaviors observed, here identified as “intermediate
states”. This alternative interpretation needs to be challenged properly. Do switching cells ever produce proper
drug-susceptible cells that are indistinguishable from non-switching cells?

We agree with the reviewer that the clone-splitting experiment provides strong confirmation of cells
switching between the primed and susceptible states. As the reviewer astutely points out, we only
observe a small number of clones that start fully primed, reflecting their low frequency in the population.
We emphasize the analysis of lineages that begin entirely in one state because state switching is the
only mechanism by which these lineages can change their proportion of primed cells (and not through
changes in death or proliferation rates of either state).

We next used a model to gain further confirmation of the state-switching mechanism. To leverage all of
the lineage data (not just the lineages that start with cells that are entirely in the drug-susceptible or
primed state), we built a model consisting of state switching, growth, and death parameters for a more
robust analysis. This model clearly identified state switching as the cause of changes in the proportion
of primed cells. Since this data makes us confident that state switching causes the changes in the
proportion of primed cells, we can now compare the fraction of primed cells for all the lineages in each
condition (instead of limiting the analysis to lineages that started purely in one state as before). By
looking at all the lineages this way we can clearly see that there is a significant reduction in the
proportion of primed cells when they are treated with PI3Ki (Supp. Fig. 6G (seen above)). In fact,
treatment with PI3Ki causes a reduction in the fraction of primed cells for 93% of lineages, indicating
that this response is not happening only in a few clones, but rather that it is happening for nearly all of
them. We have clarified this in the text by saying the following:

“Of note, 2 lineages did not respond to the PI3K. However, by analyzing all lineages, we find that 93%
of lineages reduce their fraction of primed state cells when treated with PI3Ki (Supp. Fig. 6G).”

The reviewer also asks about bipotent behaviors in this comment:



| fear that clonally imprinted AXL/EGFRmid/+ states within the NT5E-low subpopulation of susceptible cells
might be at the origin of the bipotent behaviors observed, here identified as “intermediate states”.

See the full discussion above regarding the bi-potent stem cell hypothesis. We can rule out this
possibility with multiple lines of evidence: 1. the frequency of switching lineages compared to the
intermediate states, 2. reporter cell lines showing bi-directional switching, 3. clonal isolates that are
capable of producing each cell state. Together, these experiments rule out the possibility of a
low-frequency bi-potent state driving the phenomenon. Furthermore, we show in the plots above that
EGFRINT5E combinations do not specifically highlight the intermediate cell states.

The reviewer asks about switching cells and how they compare to the other cell states in this comment:

Do switching cells ever produce proper drug-susceptible cells that are indistinguishable from non-switching

cells?

In the data, we find that the cells in lineages that switch states are indeed indistinguishable from
lineages that maintain their state. The evidence supporting that switching cells are indistinguishable is
that cells in state-switching lineages appear in all Louvain clusters, indicating that they adopt all the
sub-states within the drug-susceptible and primed states, rather than being restricted to a unique state
(see figure below).

To demonstrate that the drug-susceptible cells produced by PI3Ki treatment are not significantly
different from naturally occurring drug-susceptible cells, we present a heat map (Fig. 5F) indicating no
notable differences between untreated and PI3Ki-treated drug-susceptible cells. To further investigate
potential differences, we conducted differential gene expression analysis comparing PI3Ki-treated cells
in fully drug-susceptible lineages from the control group to PI3Ki-treated cells in lineages with reduced
proportions of primed cells relative to the control group. This analysis aimed to identify any gene
expression disparities between cells that became drug-susceptible due to PI3Ki treatment and those
that were always drug-susceptible.

Our findings revealed that only two genes, SERPINE2 and S7100A6, exhibited slight upregulation in
cells transitioning to drug susceptibility. Interestingly, these two genes are highly upregulated in the
primed state. As numerous cells that switched states express these genes at similarly low levels as
cells that remained drug-susceptible, this minor difference detected is likely attributed to the fact that we
captured some cells that had not yet fully downregulated these genes. Overall, this evidence suggests
that we can effectively convert primed cells into drug-susceptible cells that are indistinguishable from
drug-susceptible cells that did not undergo a transition.

l Lineage type

[l Switching
Drug-susceptible

-..--ll [ Primed
2 3 4 5 6 7 8 9

Louvain cluster

.y
o
(=]
=]

500

Number of cells

0 1 10

Figure: Bar graph showing the number of cells from different lineage types exist in each Louvain cluster.
Switching lineages are those that contain both drug-susceptible and primed cells, drug-susceptible lineages are those that
contain only drug-susceptible cells, and primed lineages are those that only contain primed cells.

In Figure 5G, the response of clones to TGFB1 is super heterogeneous. Are there any (transcriptional)
differences between the clones that “respond” to TGFB1 and become primed and the clones that do not? Are



they connected to the expression signature of the intermediate state? It would really increase the impact of the
manuscript if specific signatures within susceptible cells are present and predict their TGFB1 response.

The reviewer is correct that the response to TGFB1 is not the same across all lineages. This variation
could be attributed to some lineages requiring more time to change states. Nonetheless, the response
to TGFB1 is relatively consistent in its directionality, as 75% of lineages demonstrate an increase in
their proportion of primed cells within the 5 days.

As the reviewer suggested, we performed additional analysis on the lineages that did not respond to
TGFB1. By comparing the gene expression of the lineages that did and did not respond to TGFB1, we
found no substantial gene expression differences explaining the differences in response. Only one gene
was enriched in non-responding compared to responding lineages, which was SH3BGRL3 (Log2 fold
change 0.26).

The modeling of these experiments offers some additional insight into the differences between these
lineages. Surprisingly, we found that lineages with a higher proportion of cells already in the primed
state were more likely to respond to TGFB1 treatment. Thus, there appears to be something about
these lineages that makes them more likely to switch states, but these factors are not captured in our
scRNA-seq data.

Reviewer #2: expertise in bioinformatics analysis of transcriptomic data

The authors identify a rare population of melanoma cells which is primed for resistance to treatment from a
BRAF and MEK inhibitor combination. The authors characterize the kinetics of the transition between the
susceptible and resistant subpopulations using scMemorySeq. They also identify key markers such as NT5E
and the EMT-like state to define the primed state or cells transitioning to the primed state. They go on to show
that inhibiting PI3K signaling and supplementing TFGB1 ligand can drive cells to switch to susceptible or
primed states, respectively. Concerns with this paper relate to the soundness of their conclusion about cellular
memory which is critical to the novelty of the work since the presence of such a pathway to cause resistance to
BRAF/MEK inhibitor has been well trodden (Smith et al Cancer Cell 2016), and evidence that a subpopulation
is responsible has been described (Fallahi-Sichani Mol. Bio.Sys 2017). In the absence of convincing and clear
rationale for the concept of cellular memory, it is unclear what else is being added here in the absence of any
deep biological or pharmacologic investigation.

We understand the concerns of the reviewer and would like to emphasize the evidence of memory in
these cells, the essential role memory plays in our methods, and address the concerns around the
novelty of these pathways in the context of melanoma.

First, we would like to highlight the proof of memory in this system, which is shown by multiple lines of
evidence. In Fig. 3A, we show that most lineages maintain their gene expression state over time with
very few cells changing their cell state. Additionally, in Supp. Fig. 5B-C, we show that the maintenance
of cellular memory across cell divisions can be seen at the phenotypic level. In these experiments, we
barcoded cells and allowed them to go through 7 doublings. We then split them 4 ways and treated
them with BRAFI/MEKi. We found that the same lineages became resistant in each plate,
demonstrating that there is memory of the resistance phenotype. This concept is important to the
discoveries in this paper, as without cells maintaining states through cell divisions, we would not be
able to capture cells undergoing state transitions as illustrated in Supp. Fig. 3E. Furthermore, without



memory, we would not be able to prove state switching in our scMemorySeq experiment, which applies
different treatments to the same lineages. This experiment relies on cellular memory to ensure that
each lineage, which is split across the different conditions, contains cells that are in the same gene
expression and phenotypic state.

Regarding the novelty of the findings, the reviewer references papers that are critical to our
understanding of melanoma resistance, but these papers address the changes that occur in cells after
treatment with targeted therapy. In this manuscript, we focus on using our scMemorySeq approach to
study the heterogeneity of cell states and cell state dynamics before targeted therapy is added.
Further, we show how manipulating these states can lead to better therapeutic outcomes. Some
literature has reported the effects of TGFB1 on increasing drug resistance to targeted therapy, but to
our knowledge, the ability of PI3Ki to force cells into a more drug-susceptible state has not been
reported in the literature. This highlights a novel approach to treating cancers, in which cell states are
controlled before targeted therapy to achieve better therapeutic outcomes.

Major Comments

Related to Fig. 1E and Supplementary Fig. 3A-C, the authors indicate that by modulating the number of primed
or susceptible cells they can alter the number of eventual resistant cells. However, Supplementary Fig3D
shows that different treatment strategies tested can result in differences in cell doublings; these differences
may affect endpoint quantification of the number of resistant cells and/or colonies. The authors should show
supporting proliferation and apoptotic data of their pretreatment strategies or normalize data to pretreatment
controls.

The reviewer makes a very good point that we must account for the effects of differences in proliferation
or apoptotic death from the pretreatment. As suggested by the reviewer, we performed additional
experiments to quantify the effects of pretreatment on cell number and then normalize our data based
on these effects. Specifically, we repeated our pretreatment experiment in Fig. 6A, but added additional
wells that we fixed after pretreatment. We then quantified the number of cells in these wells and used
that number to normalize the number of resistant colonies, thus allowing us to precisely measure the
number of resistant cells relative to the number of cells at the initiation of BRAFi/MEKIi. We performed
this experiment with 6 technical replicates and 3 biological replicates. With the normalized data, we find
that TGFB1 increases resistance and that PI3Ki decreases resistance (by 36%). This result allows us to
conclude that although PI3Ki has a modest effect on proliferation, state switching to the
drug-susceptible state by PI3Ki is a larger contributor to the reduction in resistance. We have added
these normalized counts to the paper (Supp. Fig. 7C) and they can also be seen below. We have also
added this information to the main text by saying the following:

In reference to the TGFB1 result:

“Given the potential for the pretreatment time window to affect cell growth, we normalized the resistant
data by the number of cells present after pretreatment in each condition. With this normalization, we
found that TGFB1 increased the amount of resistance by 2.8 times compared to the control (Supp. Fig.
7B, C).”

In reference to the PI3Ki result:

“We next performed the same normalization as described above for TGFB1. We found that with this
normalization, PI3Ki pretreatment decreased the number of resistant cells by 36% (Supp. Fig. 7B, C).”
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Supplementary Figure 7C: Box plots showing the normalized number of resistant cells after pretreatment and
BRAFI/MEKI. During pretreatment, cells were either untreated, treated with TGFB1, or treated with PI3Ki. After
pretreatment, we fixed a sample and counted the number of cells in each condition. The other samples were then treated
with BRAFI/MEKIi for four weeks. Normalized values are the number of resistant cells divided by the number of initial cells
after the pretreatment. P-values were calculated using a Wilcoxon test. TGFB1 increases resistance and PI3Ki decreases
resistance upon normalizing for the number of cells present after the pretreatment period.

For example in Figure 1E, the authors claim that the dose used for pretreatment with the PI3K inhibitor did not
kill cells nor did it impact cell proliferation; however, in supplementary figure 3D, pretreatment with PI3K is
shown to result in decreased cell doublings. The authors should show their analysis for cell proliferation and
apoptosis upon PI3K inhibition and show how they derived at their optimal concentration.

The reviewer has raised a valid concern regarding the effect of PI3Ki on cell proliferation. In order to
determine the appropriate dose for these experiments, we tested the effects of a range of doses of
PI3Ki on proliferation and death using time-lapse microscopy (Supp. Fig. 4A, B (shown below)). To
measure cell growth, we counted the number of nuclei over time. To measure cell death, we added a
red dye to the media, which would stain the nuclei of cells with compromised membrane integrity.
Based on this data, we concluded that the 2uM dose would have minimal effects on cell proliferation
and death. We have added data to Supp. Fig. 4A and 4B and updated the text with the following
description of the dose:

“Importantly, we selected the dose of 2uM for the PI3Ki as it has minimal effects on cell viability and
growth rate and effectively blocks PI3K signaling (Supp. Fig. 4A, B, E).”

It is worth noting that while the 2uM dosage of PI3Ki only has a small effect on proliferation, this
seemingly small change does impact the cell counts after 5 days of treatment. These effects can be
seen in Supp. Fig. 7A (previously Supp. Fig. 3D), as pointed out by the reviewer. To account for these
differences in cell numbers after PI3Ki for 5 days compared to untreated cells, we added new
experiments in which we normalize the final number of resistant cells as suggested above (Supp. Fig.
7C).
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Supplementary Figure 4A and B: Plots of PI3Ki dose validation. The left plot shows the number of cell doublings over
5 days with different doses of PI3Ki. The right plot shows the doubling of cell death in each condition (doubling is used to
normalize for the amount of death at the initial time point).

The authors claim that the primed and susceptible cell states are two discrete states as shown in the two
clusters seen in Fig. 1D, however in 5B there does not seem to be a similar discretization in the untreated
cells. Moreover, the switch between primed and susceptible seems to be a continuous phenomenon evidenced
by the distribution of NT5E expression in the population as shown in Fig. 4B and 5B. Thus it would appear that
cells are undulating through a continuum instead of jumping between discrete configurations of those pathways
and that some drugs are altering the level of this specific gene signature. Could an alternative model be that
NTSE/EMT level in all cells is turned up or down by TGFB or PI3K inhibition, leading to some cells crossing a
threshold, making it appear that there is a switch in cell state? What if the histograms in 4B are overlaid, do the
drugs inhibit or enhance levels of NT5E in the majority of cells (i.e. shift in median level of NT5E)?

The reviewer proposes that the primed and drug-susceptible gene expression states are actually
continuous while we describe them as discrete in the manuscript.

First, we would like to advise the reviewer to exercise caution when interpreting how cells appear in
UMAP space. Although these visualizations offer a general sense of the data, there are numerous
methods for dimensionality reduction, which may yield different results (Supp. Fig. 1G). For this reason,
we employ clustering in high-dimensional space to classify cells as drug-susceptible or primed
(specifically, we consider primed cells to be those in Louvain clusters expressing multiple known primed
state markers). We refer to the system as discrete because the ultimate phenotype of these cells is
binary: they either survive or die upon exposure to targeted therapy. However, at the gene expression
level, we do observe a continuous dimension to state-switching (for some genes), which helps us
identify the intermediate state. Importantly, while there are some genes that show this continuous
pattern of expression, there are other genes that are specific to the intermediate state (including MGP
and NFATC2) and not expressed in either the drug-susceptible or primed.

We agree with the reviewer that TGFB1 and PI3Ki are modulating these cells across a continuum.
However, at a point along this continuum, the cells change sufficiently that the phenotype indeed
becomes different — as shown in our drug treatment data Fig. 6B. At this point, the cells are functionally
different and therefore it is appropriate to define them as changing to either a primed or
drug-susceptible state.

As the reviewer suggested, we also performed an additional analysis to measure the shift in NT5E
expression using flow cytometry. We found that TGFB1 increases both the mean and median NT5E
staining, while PI3Ki decreases both the mean and median. This data further illustrates that TGFB1 and
PI3Ki can induce state switching and shift the NT5E expression of the majority of cells (Supp. Fig. 4D).
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Supplementary Figure 4D: Density plot of flow cytometry data showing NT5E expression in cells treated with
their respective condition. The mean and median are labeled for each condition. The shift in the median indicates that
there is a population-level change in NTSE expression with each treatment, not just a large change in a small
subpopulation of cells.

In Fig. 2D, MITF is downregulated in sister cells of primed cells compared to lineages without primed cells.
Also, in Fig. 2J the primed vs susceptible heatmap shows that MITF is further downregulated in primed cells. It
is very well established in the literature that BRAF/MEK:i resistant cells in melanoma upregulate MITF (Smith et
al, 2016 Cancer Cell, Johannssen Nature 2013 among others). What is the reason for this discrepancy, is there
a process where the full resistant cells go from downregulating MITF to then upregulating it?

The reviewer is correct that our data shows that MITF is downregulated in cells in the primed gene
expression state. It is important to note that the states we describe in our paper occur before the
administration of targeted therapy, whereas most previous literature focuses on states following
treatment with targeted therapy. We find that the MITF-high and MITF-low gene expression states exist
prior to treatment and can predict which cells will develop resistance upon treatment (Supp. Fig. 2A, B).

In both papers referenced here (Smith et al. 2016; Johannessen et al. 2013), the authors examine
MITF expression in cells after they have been treated with MAPK inhibitors. Furthermore, although
these papers describe a MITF-high resistant state, there is also substantial evidence in the literature
that resistant cells can be MITF-low (Muller et al. 2014; Rambow et al. 2018; Karras et al. 2022). This
highlights an interesting feature of melanoma that different gene expression states can be observed in
resistant cells.

In the model we employ here, we have evidence that the MITF-low cells are the ones that will become
resistant to targeted therapy once it is applied. Since we do not perform RNAseq on these cells after
drug treatment, we do not have any evidence to support MITF eventually becoming upregulated
(although this is possible). Similar patterns of MITF expression were also observed in our prior work as
well, including Shaffer et al Nature 2017 and Emert et al Nature Biotech 2021 (Shaffer et al. 2017;
Emert et al. 2021). Interestingly, previously published CRISPR screens using these same cell lines did
identify genetic knockouts that could generate resistance with MITF-high expression (Torre et al. 2021).
Thus, while our primed population is MITF-low before treatment, it is clear that resistance to
BRAFI/MEKIi can occur with MITF-high or MITF-low states.
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Minor comments:

The NTS5E high cutoff for untreated cells used in Fig. 4B should be changed such that the ratio of primed to
susceptible cells is the same as shown in the two clusters in both Fig. 1D and Fig 2B for consistency. Ideally
the cutoff should be based on the percent of cells that survive BRAFI/MEKI treatment alone.

As suggested by the reviewer, we have added a new analysis in which the NT5E-high cutoff is based
on the percentage of primed cells in Fig. 1F. In Supp. Fig. 4C, we now show an 8% cutoff as this is the
predicted percentage of primed cells from our scRNA-seq data. Importantly, using this cutoff, our
conclusions regarding TGFB1 and PI3Ki remain unchanged (Supp. Fig. 4C (shown below)). For figure
2C, we use a 2% threshold because we have phenotypically validated this threshold. For this validation,
we sorted the top 2% of NT5E expressing cells and found that they were more resistant to targeted
therapy (Supp. Fig. 2B).

N
|

Log,,(percent of cells in the
primed state)

Untreated TGFB1  TGFBRI PI3Ki TGFB1 TGFB1
+TGFBRi  +PI3Ki

Supplementary Figure 4C: Box plot of flow cytometry data generated with an 8% cutoff for primed cells in the
untreated sample. In this plot, a cell is considered to be primed if its NT5E expression is greater than or equal to the top
8% of the untreated cells. This percentage is based on the number of primed cells in the scRNA-seq data shown in Fig.
1D. The other box plots show the percentage of primed cells across different conditions using the same cutoff in NT5E to
define a primed cell.



In the case of phenotype switching of barcodes from primed to susceptible and vice versa (Fig. 5G and 5H),
the fraction of cells from the respective lineages in the primed state for the untreated sample should be shown
for better readability of data.

This is a valuable suggestion from the reviewer and we have added these conditions to the figure (Fig.
5G and 5H).
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Figure 5G and 5H: Phenotype switching diagrams and data. On the left (G) is a schematic of lineage-based analysis
to test for state switching into the primed state. Box plots show the fraction of cells in each lineage that are in the primed
state across all the conditions. The lineages shown on this plot are exclusively those that were completely
drug-susceptible in the untreated sample. On the right (H) is a schematic of lineage-based analysis to test for state
switching into the drug-susceptible state. Box plots show the fraction of cells in each lineage that are in the primed state
across all the conditions.

In Fig. 3A, the authors should quantify the expression of SOX10 and NT5E in the region of interest compared
to a control region. Fig. 3B and Fig 3D require controls (normal tissue or untransformed samples) for primed
and susceptible states in order to show that the heterogeneity captures something outside the normal range of
expression.

The reviewer raises an important point regarding the value of comparing expression differences to a
control. In the case of HCR FISH in tissue, since these are melanoma cells in a mouse PDX model, we
do not have paired human WT melanocytes within this model. However, our data does effectively
demonstrate much higher levels of NT5E and significantly lower expression of SOX170 in these rare
cells compared to other cells in the tumor. Here, the other cells within the tumor serve as the control for
comparison.

While we do not have wild-type human melanocytes in our mouse model. We leveraged scRNA-seq of
wild-type human melanocytes (Belote et al. 2021) to further address this point. We used the primed cell
gene expression state and scored both melanoma biopsies and WT melanocytes. We found that the
range of primed cell scores is significantly larger in melanoma biopsies compared to WT melanocyte
biopsies, thus supporting that this heterogeneity would not be observed in melanocytes (Supp. Fig. 3B
(shown below)). This suggests that the high primed cell signature in melanoma represents meaningful
biological differences that do not occur in normal melanocytes.
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Supplementary Figure 3B: Box plot showing the range of primed gene set enrichment scores per patient in
melanocytes versus melanoma. This data shows that the differences in primed gene set enrichment score seen in
melanoma represent a meaningful difference in cell state that is not present in wild-type melanocytes.

In Fig. 5G, a better visualization of the concept shown would be to take a representative number of lineages
(say 20 lineages) and connect them via a line across the different treatments. This would show how each
specific lineage changes in the fraction of primed cells by treatment.

We thank the reviewer for this suggestion and generated an additional supplementary figure to show
the type of visualization requested (Supp. Fig. 6H (shown below)).
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Supplementary Figure 6H: Paired dot plots showing example lineages change their proportion of primed cells
based on treatment. Each point and line color corresponds to the same lineage. This plot shows that the large majority of
20 random lineages plotted increase their proportion of primed cells when treated with TGFB1 and decrease their
proportion of primed cells when treated with PI3Ki.

The authors should show that they can recapitulate the two clusters observed in Fig. 1D UMAP from the
untreated cells in Fig. 5B,C,D to better define the primed and susceptible populations. Can you take the
annotations from this newly created UMAP and map them onto the UMAP shown in Fig. 5B,C,D to see if it
aligns with your definition of primed and susceptible populations shown in that figure?

The reviewer makes a good point that we should validate that the untreated primed cells in Fig. 5 are
similar to those in Fig. 1. We do note that although the UMAP representation can be helpful to
understand the data, the level of separation between clusters of cells in UMAP is not easily
interpretable. Thus, it is more informative to look at high-dimensional Louvain clustering to identify



states. To that end, we now describe how the identity of primed cells was determined based on
identifying Louvain clusters with high primed gene set signature score (Supp. Fig. 6C (shown below)).
We say this in the text in the following manner:

“To classify cells as primed or drug-susceptible, we selected Louvain clusters 4 and 10, as these
clusters contained the majority of cells expressing the known primed state marker genes (Fig. 5D,

Supp. Fig. 6B, C).”
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Supplementary Figure 6C: Box plot of the primed gene set signature score of cells in each Louvain cluster.
Clusters 4 and 10 were classified as primed clusters since they have much higher primed gene set signature scores than

the other clusters.

Furthermore, to show that these states are the same across sequencing runs, we plotted all untreated
WMO9O89 samples into one UMAP plot (from the experiments in Fig. 1, Fig. 5, and Supp. Fig. 1H). We

maintained the annotations as

primed or drug-susceptible as determined in each plot individually and

show that the primed cells still all group together (figure below).
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Figure: UMAP of all untreated WM989 cells sequenced in the paper. Cells are colored using the primed and
drug-susceptible labels determined in each individual experiment.

Given that primed and susceptible cells have different growth rates, it may be reasonable to assume that there
might be differences in the cell cycle which could explain the clusters in Fig 1D. The data should have cell
cycle markers regressed out. Supplementary data Fig. 2B shows a high difference in % of cells in S phase
between the two clusters. If the two clusters no longer remain after regressing out those markers, then there is
a significant flaw in using this method to call cells as primed or drug-susceptible.



The reviewer has a valid concern that the cell cycle may be driving the different states. We have added
a supplementary figure regressing out the cell cycle and plotting cells from each of the cell cycle
phases individually (Supp. Fig. 1E, F (shown below)). Each of these plots still captures the two states,
demonstrating that the states exist across cells in different phases of the cell cycle.
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Supplementary Figure 1 E and F: The separation between the primed and drug-susceptible state cells is not
dependent on the cell. The first plot shows a UMAP projection after cell cycle regression. Cells are colored by their
phase in the cell cycle. The three plots on the right are UMAP plots with cells from each phase of the cell cycle plotted
individually. In these plots, cells are colored by their gene expression state.

Reviewer #3: expertise in transcriptional regulation

Summary:

In this interesting study, Harmange and colleagues developed a single-cell RNA-sequencing based approach
to measure cell state memory in mammalian cells. This is of clinical relevance as it has been previously shown
that melanoma cells can switch between therapy resistance (primed) and drug-naive cell states. To measure
cellular memory the authors aimed to track transcriptional states across cell lineages. Towards this, Harmange
et al appled a barcoding library to melanoma cells and subsequently profiled the transcriptome of those
barcoded cells at a single-cell level after a certain number of cell doublings. Through lineage tracing with cell
barcoding the authors found that most cells maintained their cell state memory, which was in contrast to their
previous conclusions from bulk RNA-sequencing studies that indicated dynamic fluctuation between therapy
resistant and drug-naive gene expression states in the same studied cell line. However, in their new
manuscript using single-cell analysis the authors identified a pool of cells that lost their gene expression
memory and they demonstrated that this lineage switching is dependent on PI3K and can be induced by
TGFB1. They also confirmed that similar gene expression signatures exist in mouse models and patient
samples. Finally, the authors demonstrated that the transcriptional memory remains stable over time and that
treatment with TGFB1 and PI3Ki induces primed and drug-susceptible states, respectively. Although only a
small fraction of cells switches states upon those treatments this is still sufficient to alter the outcome of
treatment regimens across a cell population.

Overall, the experimental approach (scMemorySeq) and conclusions of this study are novel, accurate, clinically
relevant and of great interest to a broad readership. The experiments are well controlled, data are presented in
a clear and visually attractive manner and methods are described in sufficient details. Overall, this manuscript
is suitable for publication after addressing the minor comments listed below.

Minor comments:

- Line 50-53: It would be helpful if the authors could summarize their previous work in a bit more detail. Maybe
they could add 1-2 sentences briefly describing the technology and cancer type used along with major finding
from the cited studies.

Thank you for the suggestion. We have added some more information about the findings of previous
work to contextualize our findings at the start of the results section. We added the following:

“Based on our previous work, we know that both the drug-susceptible and primed states exist in
untreated melanoma cells and that cells can fluctuate between these states (Shaffer et al. 2020). When
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targeted therapy is applied, cells in the primed state have a higher likelihood of resistance, whereas
cells in the drug-susceptible state succumb to the treatment (Shaffer et al. 2017).”

- Line 242: delete “population”
Corrected, thank you.

- Line 335: Shouldn’t this read “SOX-high” instead of “SOX-low”?
The reviewer is correct, we have fixed this in the text.

- The authors apply a PI3K inhibitor and show that this decreases drug resistance in melanoma cells. PI3K
inhibition should ideally be confirmed by assessing phosphorylation state of kinase targets by western blotting.

The reviewer makes a valid point that we should test how the PI3Ki works in our melanoma cells. We
performed additional experiments in which we used a western blot to show that the PI3Ki can block
activation of the PI3K pathway, even in the presence of insulin growth factor (IGF) stimulation.

Moreover, we show that the PI3Ki eliminates PI3K signaling in the primed cell state (Supp. Fig. 4E
(below)).

Mix untreated
Mix starve

Mix + IGF

Mix + PI3Ki + IGF
Primed untreated
Primed + PI3Ki

p-AKT(S473) =

Total AKT| " am Sam S seem sas  Saas

ACHIN | v o —— ——— -

Supplementary Figure 4E: Western blot showing phospho AKT. In the labels, mix is an unsorted sample of WM989

cells. Primed is the top 2% of NT5E-expressing cells. This data shows that the PI3Ki used at 2uM effectively blocks PI3K
signaling.

- Also, can the authors comment on whether addition of TGFB1 induce any markers of EMT as observed in
intermediate cell states (using scRNA-seq data from Fig. 5)?

Yes, TGFB1 induces markers of EMT. To make this clear we have mentioned in the text and added a
supplementary figure showing an increased amount of EMT gene expressed in TGFB1 treated cells
(Supp. Fig. 6D (shown below)). We have added the following to the text:

“Importantly, the primed cell state induced by treatment with TGFB1 was transcriptionally very similar to

untreated cells in the primed state, and induced EMT and TGF-f signaling genes (Fig. 5F, Supp. Fig.
6D, E).”


https://paperpile.com/c/dGErHH/Cev4R

p<2.22e-16

f p <2.22e-16 !

o T p<222e-16 '
o
[$]
2]
(0]
2 0.20
T
C
k)
(%]
(D]
()
C
5 $ + +
— 0.10
=
w

Control TGFB1 TGFBRI PI3Ki

Supplementary Figure 6D: Box plot of the EMT gene set signature score of cells in each treatment condition. The
EMT signature score is considerably higher in the TGFB1-treated cells, indicating that TGFB1 increases the expression of
EMT genes.

- Given the prominent association with primed cell state, the authors should consider displaying the NT5E
marker gene in the heat maps displayed in Fig. 5F. Do the NTSE transcript levels correlate with the protein
level shown in Fig. 4C?

NT5E is a row in the heatmap in Fig. 5F, but it was previously difficult to discern. We have now
improved the clarity of the labels for better visualization. Overall, we find that sorting cells based on
their NT5E protein levels indeed enriches for primed cells that become resistant when therapy is
applied. We compare this to previous markers including EGFR and NGFR that are also expressed in
primed cells. We find that all three of these markers are present in the primed state by scRNA-seq and
enrich for the cells that will become when drug is applied (Fig. 1D, Supp. Fig. 2A). Thus, these results
indicate that both protein and RNA are high in primed cells for the primed cell markers NT5E, NGFR,
and EGFR.

Reviewer #5 (Remarks to the Author): expertise in melanoma drug resistance

In their manuscript, Harmange et al present a novel method for in vitro tracking of phenotypic switching using
barcoding and scRNAseq. Using this method, they explore the kinetics and dynamics of cellular switching
between a drug-sensitive state and a state primed for drug resistance in melanoma. Authors then examine how
pre-treating cells with inhibitors of TGFBR and PI3K based on the transcriptional characteristics of resistance
“‘primed” states affect these transitions. These data provide insights into the molecular pathways which may
regulate the transitions between cell states. Data gathered in these studies was then utilized to parameterize a
mathematical model of phenotypic switching between the drug-susceptible and drug-primed state. Although
many of the transcriptional characteristics of the drug-sensitive and drug-resistant states have been defined
previously, the kinetics and dynamics of cell transitions through these states have never been explored and are
of high interest to the melanoma research community. This work also provides a deeper functional dimension
to some of the pathways previously implicated in BRAF inhibitor resistance.

Questions/concerns:

1. Is it possible that melanoma tumors have more than 1 drug resistance “primed” and more than 1
drug-sensitive state? There have been a few papers now that have identified 4-6 transcriptional states in
melanoma, most recently a paper from the Marine lab in Nature volume 610, pages 190-198 (2022). Is there
any indication how the drug sensitive and drug “primed” states defined in this manuscript fit within the 6 cellular
state landscape described in the Marine lab study? It would be helpful to understand how the states identified



here fit into the published states. For example, is the “primed” state the same cells that are identified as
“‘mesenchymal-like”? and are the sensitive states a combination of all others? Or are mesenchymal-like the
very rare subset of the “primed” state that are then also resistant to PI3Ki pre-treatment coupled with BRAF
inhibitor treatment?

The reviewer makes a valuable suggestion to more clearly relate our findings to previously defined
states in melanoma. Importantly, most of the states defined in the melanoma resistance literature are
derived from cells that have already been exposed to targeted therapy. A key distinction is that our data
is from drug-naive cell states that exist prior to treatment but are predictive of treatment response.
Bearing this in mind, we compared the expression states found in two papers, (Rambow et al. 2018)
and the suggested Karras et al. 2022 paper (Karras et al. 2022). By comparing these with our own
data, we can see that the primed cell state is a mix of the invasive, neural crest-like, stress-like, and
mesenchymal-like states. From this analysis, we can see that primed cells express genes from multiple
of these categories, but these categories do not clearly identify subsets of our primed state. Rather the
primed state is some mixture, which may have its own further subclassification that does not follow
those in these papers. The text now clearly states that there are similarities between states found in this
paper and previous work by saying the following:

“We also found that primed cells have similarities to previously published gene expression states
associated with drug resistance in melanoma (Supp. Fig. 2C) (Rambow et al. 2018; Karras et al. 2022;
Mdller et al. 2014; Zuo et al. 2018; Sun et al. 2014; Capparelli et al. 2022; Smith et al. 2016; Ji et al.
2015; Girotti et al. 2013).”

We have also added a figure showing the gene sets of the states found in these papers on our data in
Supp. Fig. 2C which we show below:
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Supplementary Figure 2C: UMAP plots showing the gene set signature score of different states found in the
literature in WM989 cells. These plots demonstrate that the primed state represents a combination of states previously
described in the literature, but that it does not perfectly align with any one of these.
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2. Is pre-treatment with PI3K more, less, or similarly as effective compared to simultaneous combination
treatment? This is an essential question that needs to be answered and would have a large impact on how
dynamic treatment strategies are developed preclinically and clinically.

This is a good suggestion by the reviewer to compare cotreatment with PI3Ki compared to
pretreatment. We performed cotreatment experiments in which we treated cells with BRAFI/MEKI/PI3Ki
and compared them with cells pretreated for 5 days with PI3Ki and then treated with BRAFi/MEKi. We
found that treating with all three inhibitors at the same time eliminated almost all cells and performed
better than pretreatment. However, this is a highly toxic combination that has not been possible in
patients due to side effects. Generally, blocking both the MAPK pathway and PI3K pathway at the same
time is highly toxic, which has required other studies to use low doses of these drugs limiting the
effectiveness of this otherwise promising treatment (McNeill et al. 2017; Bardia et al. 2020; Shapiro et
al. 2020). By using the pretreatment method, we may be able to get some of the effectiveness of the
combination treatment by using higher doses of drugs while minimizing toxicities. We have now
included this data in the text by saying the following:

Furthermore, treating cells with PI3Ki and targeted therapy at the same time was even more effective
than pretreatment, nearly eliminating all resistance (Supp. Fig. 7D, E). Although blocking the PI3K
pathway at the same time as the MAPK pathway is effective at killing melanoma cells, it is toxic to
patients which has forced clinical trials to use low doses of these drugs, thus limiting the effectiveness
of this otherwise promising combination (McNeill et al. 2017; Bardia et al. 2020; Shapiro et al. 2020).”

We have also added this data in Supp. Fig. 7D and E (shown below).
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Supplementary Figure 7D and E: Cotreating with BRAFi, MEKIi, and PI3Ki dramatically decreases resistance. On
the left are representative wells showing the nuclei (shown as black dots) after the specified treatment. On the right is the
quantification of the data across 3 biological replicates, each with 6 technical replicates.

3. Importantly, the authors show that pre-treating cells with PI3K significantly reduces but does not completely
abolish the outgrowth of resistant cells. The authors should analyze the transcriptional profiles of rare cells in
the lineage which did not respond to PI3Ki. It is essential to know more about these states, how they are
different from BRAFi-sensitive and “primed” states, and potential insights into how they can be targeted.

We agree with the reviewer that a clear gene expression distinction between cells in lineages that
respond to PI3Ki treatment and those that do not would be insightful. To uncover such differences, we
performed a differential gene expression analysis on cells in lineages that responded to PI3Ki treatment
versus those that did not. Unexpectedly, we found minimal significant differences. Specifically, we only
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find one gene LMOZ2 which is slightly upregulated in non-responding lineages and which has no clear
role in state switching. We have added these new analyses to the paper in Supp. Table 3, and added
the following to the text:

“Moreover, there were no systematic gene expression differences that explained the differences in
responsiveness to PI3Ki (Supp. Table 3).”

4. If the drug-susceptible cells in lineages with a high proportion of cells already in the primed state are more
easily switched into the primed state, is it possible to predict clinical response to BRAFi based on the content
of the primed state in a tumor?

We agree with the reviewer that determining the proportion of primed cells in a tumor before treatment
with BRAFi would be a useful way to evaluate the clinical relevance of primed cells. This analysis was
previously done by Konieczkowski et al. where they showed that patients that had MITF-/AXL+ (primed
cells) in their drug-naive biopsies had a shorter progression-free survival on BRAFI/MEKIi than patients
with  MITF+/AXL- (drug-susceptible) cells (Konieczkowski et al. 2014). This finding highlights the
potential clinical benefit of reverting the primed state before the addition of BRAFI/MEKi clinically. We
have added this information to the text by saying the following:

“Furthermore, a previous analysis of data from the cancer genome atlas showed that the presence of
MITF-low/AXL-high cells (as also seen in our primed cell state) in drug-naive patient tumors was
predictive of a shorter progression-free survival rate (Konieczkowski et al. 2014). Together, these data
demonstrate the generalizability of the primed cell state and suggest that it might be predictive of
response to BRAFI/MEKI.”

5. The authors are tackling a phenomenon that has been studied intensely for the last decade. It is important to
be more thorough about setting the context for this study and make sure cite additional papers related to:

a) Reversal to drug-sensitive state and leveraging of state dynamics in therapy scheduling

b) AXL/MITF/SOX10/FN1 transcriptional states related to BRAFi resistance

c) Role of TGFbeta in BRAFi response

d) Role of PI3K inhibitors in reversing BRAFi resistance

Although authors do cite some work in some of these areas, it could be more thorough.

We thank the reviewer for this guidance in framing our study and have added a more thorough
discussion of the context for this work in both the introduction and discussion. For each of these
categories outlined, we have added additional papers to strengthen the context of our paper.

Minor questions/concerns:
1. Why did almost half the cells profiled not have barcodes (related to results for Figure 1)? Are barcodes lost
over time or were barcoded and non-barcoded cells analyzed?

There are multiple reasons why cells may not have a barcode, and the percentage of recovered
barcodes is consistent with what others have been able to do (Raj et al. 2018; Bowling et al. 2020). The
most likely place to lose a barcode is during the preparation of the 10X libraries. Barcodes are captured
in the same way other transcripts in the cell are captured, which is by binding the poly-A tail on the
MRNA transcript, but this process only samples a small percentage of the transcripts of the cells. Thus,
it is possible that in the sampling of the transcriptome, a barcode transcript never gets captured. Also,
even if a lineage barcode is captured in this first step, it may not get amplified as amplification of a
transcript requires successful template switching for primers to bind, which is not an efficient process.
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Finally, to avoid false positives, we set very conservative cutoffs throughout our analysis pipeline on
what we confidently call a lineage barcode. While this ensures that we are confident in the lineages that
we do identify, it is possible that we are also losing barcode data from other cells.

2. There is a typo on line 24

Thank you, we have corrected this typo in the text.
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REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author):

The manuscript by Harmange et al. has been significantly improved following the suggestions from
multiple reviewers. The new manuscript is a streamlined version that is easier to read and interpret, at
least in my opinion. The authors have also responded to most of my criticisms in a successful way. My
most important concern, regarding "bipotency”, has been successfully addressed. However, there is
still the distinct possibility that a subset of clones have a higher heritable likelihood of state-switching,
which is being identified (enriched) here as the "intermediate state". How can the authors discard this
possibility?

Reviewer #3 (Remarks to the Author):

The paper is improved by the further analysis, particularly the cell cycle normalization. I also agree
the novelty of the paper lies in the analysis of heterogeneity before treatment, as opposed to previous
papers that have focused on targeting drivers that emerge after treatment. I believe this could made
more clear, potentially in the abstract

Reviewer #4 (Remarks to the Author):

The authors have addressed all my comments and I recommend publication in Nature
Communications.

Reviewer #5 (Remarks to the Author):

The authors have sufficiently addressed my comments and concerns in the revised manuscript. Based
on this, I recommend this manuscript be accepted for publication.



REVIEWERS' COMMENTS
Reviewer #1 (Remarks to the Author):

The manuscript by Harmange et al. has been significantly improved following the suggestions
from multiple reviewers. The new manuscript is a streamlined version that is easier to read and
interpret, at least in my opinion. The authors have also responded to most of my criticisms in a
successful way. My most important concern, regarding "bipotency", has been successfully
addressed. However, there is still the distinct possibility that a subset of clones have a higher
heritable likelihood of state-switching, which is being identified (enriched) here as the
"intermediate state". How can the authors discard this possibility?

We thank the reviewer for their comments. We agree that the manuscript is streamlined and
easier to read. We also agree with the reviewer that it is possible that a subset of the clones
have a higher likelihood of state-switching, and that this could be heritable and represented by
the intermediate state. Since we can not rule out this possibility, we have added an additional
line to the text to communicate this possibility to the reviewer. This line is as follows:

While we observe many lineages that contain cells from both states (3 and 4), it is possible that
a subset of cells have a higher propensity for state switching and generate these mixed state
lineages.

Reviewer #3 (Remarks to the Author):

The paper is improved by the further analysis, particularly the cell cycle normalization. | also
agree the novelty of the paper lies in the analysis of heterogeneity before treatment, as opposed
to previous papers that have focused on targeting drivers that emerge after treatment. | believe

this could made more clear, potentially in the abstract

We thank the reviewer for this suggestion and updated the abstract to emphasize this point of
novelty. This is the updated line:

Applied to melanoma cells without therapy, we quantify long-lived fluctuations in gene
expression that are predictive of later resistance to targeted therapy.

Reviewer #4 (Remarks to the Author):

The authors have addressed all my comments and | recommend publication in Nature
Communications.



Reviewer #5 (Remarks to the Author):

The authors have sufficiently addressed my comments and concerns in the revised
manuscript. Based on this, | recommend this manuscript be accepted for publication.
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