⁵ Cf. Bochner, S., "Group Invariance of Cauchy's Formula in Several Variables," Ann. Math., 45, 686 (1944).

⁶ Tamarkin, J. D., and Zygmund A., "Proof of a Theorem of Thorin, Bull. Am. Math. Soc., 50, 279 (1944).

ON THE ASYMPTOTIC DISTRIBUTION OF THE SUM OF A RANDOM NUMBER OF RANDOM VARIABLES

By Herbert Robbins

DEPARTMENT OF MATHEMATICAL STATISTICS, UNIVERSITY OF NORTH CAROLINA

Communicated by Marston Morse, January 9, 1948

We shall state without proof some results on the asymptotic distribution as $\lambda \to \infty$ of the sum

$$Y = X_1 + \ldots + X_N$$

of a random number of independent random variables, where the X_j have the same fixed distribution function $F(x) = P[X_j \leq x]$ and where N is a non-negative integer-valued random variable independent of the X_j , whose distribution function depends on a parameter λ . We shall use the notation

$$a = E(X_j), \quad c^2 = Var(X_j)(0 < c^2 < \infty),$$

$$\alpha = E(N), \quad \gamma^2 = Var(N)(0 \leq \gamma^2 < \infty), \quad M = (N - \alpha)/\gamma,$$

$$\theta(t) = E(e^{uM}), \quad \sigma^2 = \alpha c^2 + \gamma^2 a^2, \quad \delta = (\gamma a)/\sigma,$$

$$Z = (Y - E(Y))/\sqrt{Var(Y)} = (Y^{\bullet} - \alpha a)/\sigma, \quad \varphi(t) = E(e^{uZ}).$$

Theorem 1. If as $\lambda \to \infty$

$$\sigma^2 \to \infty, \qquad \gamma = o(\sigma^2),$$
 (1)

then for any t, as $\lambda \to \infty$

$$\varphi(t) = \theta(\delta t) e^{-1/2t^2(1-\delta^2)} + o(1).$$
(2)

COROLLARY 1. If (1) holds and if as $\lambda \to \infty$

$$a^2\gamma^2 = o(\alpha), \tag{3}$$

then for any t,

•

$$\lim_{\lambda \to \infty} \varphi(t) = e^{-1/2t^2}, \qquad (4)$$

so that Y is asymptotically normal.

COROLLARY 2. If (1) holds and if M has a non-normal limiting distribution function G(x), so that

$$\lim_{\lambda \to \infty} \theta(t) = g(t) \neq e^{-1/st^2},$$
 (5)

Vol. 34, 1948

$$\lim_{\lambda \to \infty} \frac{\alpha c^2}{\gamma^2 a^2} = s(0 \leq s < \infty), \tag{6}$$

then

$$\lim_{\lambda \to \infty} \varphi(t) = g\left(\frac{t}{\sqrt{1+s}}\right) \cdot e^{-1/2t^2(s/1+s)}$$
(7)

so that Z has a non-normal limiting distribution function.

It is easy to show that if M has a limiting distribution function G(x) such that G(x) > 0 for every x, then as $\lambda \to \infty$, $\alpha \to \infty$ and $\gamma = o(\alpha)$, so that (1) holds.

COROLLARY 3. If N is asymptotically normal then Y is asymptotically normal.

An example in which (1) does not hold is the following: for any positive integer λ let N have the values λ , 2λ with $P[N = \lambda] = P[N = 2\lambda] = \frac{1}{2}$, and let a = 0. Then $\sigma^2 = (3\lambda c^2)/2$, $\gamma = \lambda/2$, $\gamma \pm o(\sigma^2)$. Here we may show directly that

$$\lim_{\lambda \to \infty} \varphi(t) = \frac{1}{2} \{ e^{-\frac{1}{2}t^2} + e^{-\frac{3}{2}t^2} \},$$

which is the characteristic function of a mixture of two different normal distributions. This is a special case of the following theorem.

THEOREM 2. If

$$a = 0, \quad \lim_{\lambda \to \infty} \gamma/\alpha = r(0 < r < \frac{\P}{4} \infty), \tag{8}$$

and if M has a limiting distribution function G(x) (necessarily such that G(x) = 0 for some x), then

$$\lim_{\lambda \to \infty} \varphi(t) = \int_0^\infty e^{-1/2t^2 x} dG_1(x), \qquad (9)$$

where

$$G_1(x) = G\left(\frac{x-1}{r}\right). \tag{10}$$

It follows that Z has the limiting distribution function

$$H(\mathbf{x}) = \int_0^\infty H_0\left(\frac{\mathbf{x}}{\sqrt{y}}\right) dG_1(y), \qquad (11)$$

where

$$H_0(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-1/2u^2} du$$
 (12)

is the normal distribution function with means 0 and variance 1.

A full account of these results will be published elsewhere.