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We shall state without proof some results on the asymptotic distribution
as X -- o of the sum

Y= Xl+ ...+ XN
of a random number of independent random variables, where the Xj have
the same fixed distribution function F(x) = P[Xj K x] and where N is
a non-negative integer-valued random variable independent of the Xj,
whose distribution function depends on a parameter X. We shall use
the notation

a = E(Xj), C2 = Var(Xj)(O< c2< 00),
a=E(N), y2 =Var(N)(O 72<o), M = (N-a)/y,
0(t) = E(ei), 92 = aC2 + y2a2 6 =(a)la,
Z = (Y - E(Y))/V/Var(Y) = (Y -aa)/l, (p(t) = E(euz).

THEOREM 1. If as X o

a2 C0O Y=°(f), (1)
then for any t, as X -- o0

.p(t) = 0(5t)e-l/212(1582) + o(l). (2)

COROLLARY 1. If (1) holds and if as X o

a272= O(a), (3)
then for any t,

lim p(t) = e-1/2t2 (4)

so that Y is asymptotically normal.
COROLLARY 2. If (1) holds and ifM has a non-normal limiting distribu-

tion function G(x), so that

lim 0(t) = g(t) (5e)-/2t
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and if

ac2lim = S(O 4 s < oo), (6)
V-0 coy2a

then

lim so(t) = g( t j(e-7)211(sll+q)
X-).co /+ s

so that Z has a non-normal limiting distribution function.
It is easy to show that if M has a limiting distribution! function G(x)

such that G(x) >0 for every x, then as X -> oo, a o and y = o(a),
so that (1) holds.
COROLLARY 3. If N is asymptotically normal then Y is asymptotically

normal.
An example in which (1) does not hold is the following: for any positive

integer X let N have the values X, 2X with P[N = X] = P[N = 2X] = 1/2,
and let a = 0. Then a2 = (3Xc2)/2, y = X/2, -y * o(a2). Here we may
show directly that

lim .P(t) = '/2{e1/3j2 + e'2/0'}
X-0 co

which is the characteristic function of a mixture of two different normal
distributions. This is a special case of the following theorem.
THEOREM 2. If

a = O, lim -y/a =r(O < r < o), (8)
co

and if M has a limiting distribution function G(x) (necessarily such that
G(x) = 0 for some x), then

lim .p(t) = erel/2'tdG,(x), (9)

where

G1(x) = G(x 1) (10)

It follows that Z has the limiting distribution function

H(x) = J'Ho ()dGj(y), (11)

where

Ho(x) e2 1/21du (12)

is the normal distribution function with means 0 and variance 1.
A full account of these results will be published elsewhere.
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