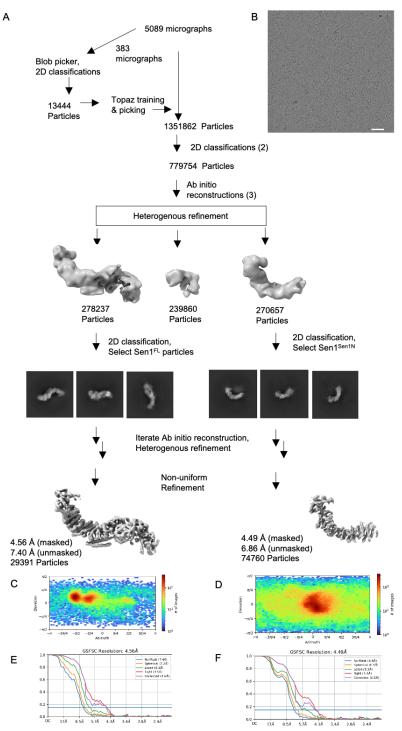
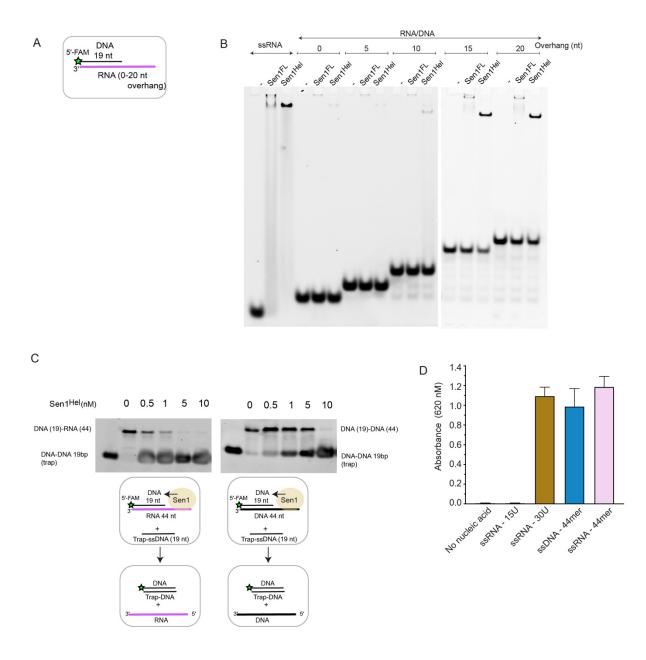


Supplementary Figure 1. Purification and characterization of *Chaetomium thermophilum* Sen1, Related to STAR methods

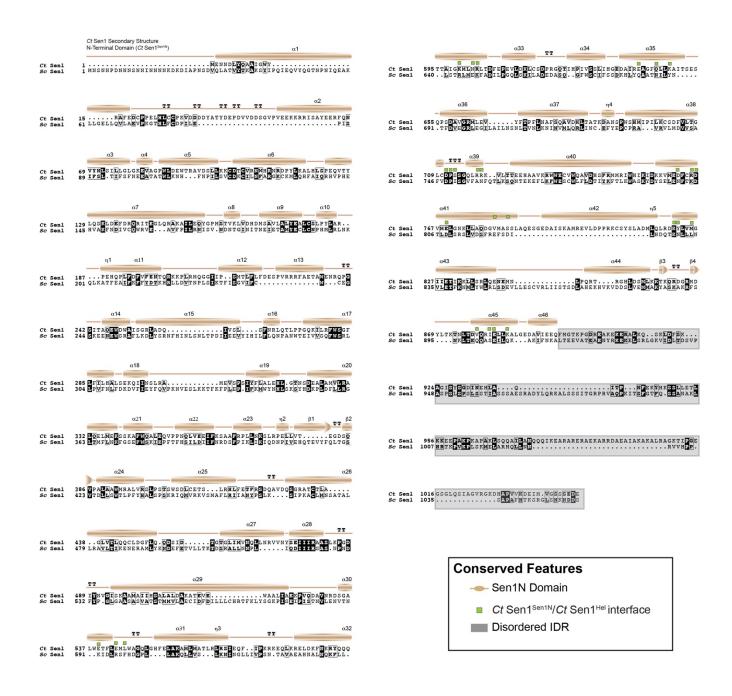

(A) Domain architecture of CtSen1. Brown lines mark boundaries of trypsin stable domains.

(B) Purification scheme for YFP-CtSen1. Anti-GFP nanobody conjugated sepharose resin binds tightly to YFP-CtSen1. The purified protein is released from the column by overnight cleavage with TEV-

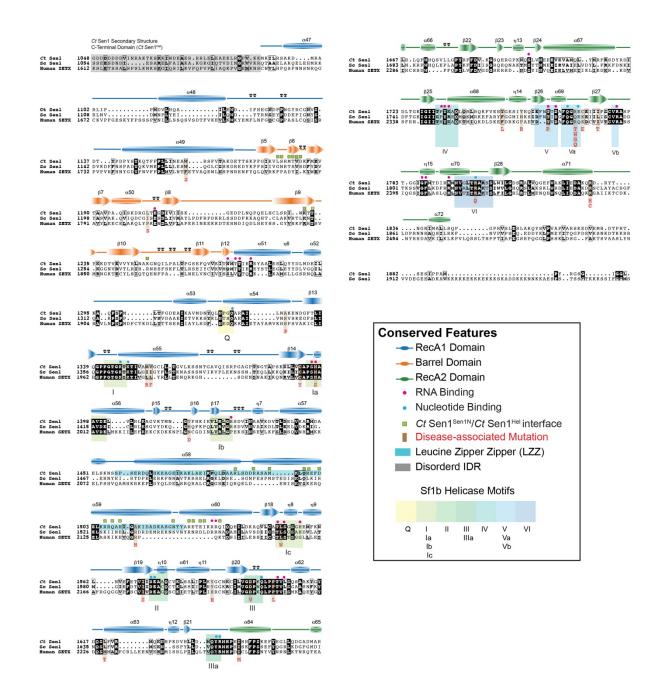
protease, and subsequently purified by size-exclusion and ion exchange chromatography.


Representative gels of the TEV elution, ion exchange and SEC, and purified protein are shown. (C) Limited trypsin proteolysis of CtSen1^{FL} yields two stable Sen1 domains.

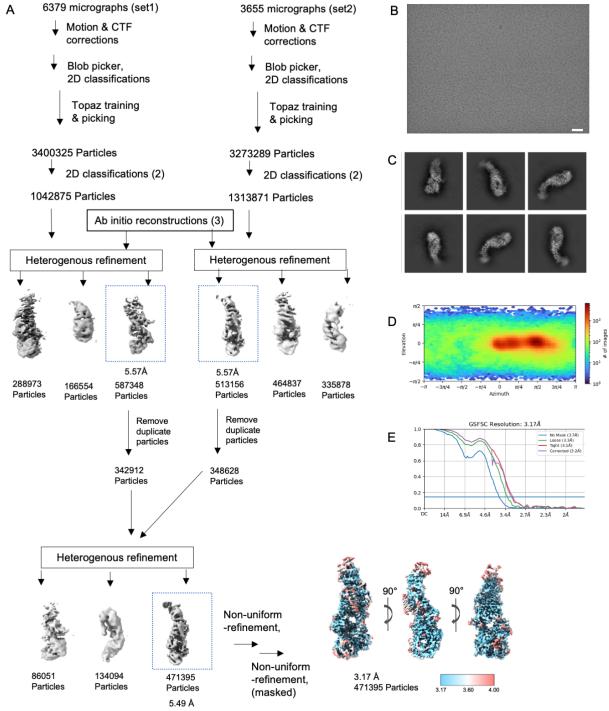
(D) IUPred (Dosztanyi et al., 2005) disorder plot of CtSen1 shows two structured regions of the protein map to the N- and C-terminal domains defined by tryptic proteolysis.


Supplementary Figure 2. Cryo-EM data collection and processing for Sen1^{FL} and Sen1^{Sen1N}, **Related to Figure 1 and STAR methods**

- (A) Flowchart of CryoSparc image processing for Sen1^{FL}
- (B) Example micrograph of Sen1 ^{N-PP-C}. Scale bar 20 nm.
- (C) Angular distribution plot of particles used in the Sen1^{FL} reconstruction.
- (D) Angular distribution plot of particles used in the Sen1^{Sen1N} reconstruction.
- (E) Fourier Shell correlation for the Sen1^{FL} reconstruction.
 (F) Fourier Shell correlation for the Sen1^{Sen1N} reconstruction.


Supplementary Figure 3. RNA-DNA binding and helicase activity of Sen1^{FL} and Sen1^{Hel}, Related to Figure 2 and STAR Methods

(A) EMSA substrates for assays shown in panel "b" vary the length of RNA overhang.
(B) EMSA analysis of Sen1^{FL} and Sen1^{Hel}. RNA-DNA substrates (10 nM, Sub1-Sub4) were incubated with Sen1^{FL} (50 nM) or Sen1^{Hel} (50 nM) on ice for 15 min. Samples were resolved on 6% TBE gels and FAM-labeled reaction products were visualized on a Typhoon FLA 9000 scanner (GE Healthcare).
(C) Sen1^{Hel} activity on RNA-DNA hybrid (left) versus and equivalent DNA-DNA duplex (right).
(D) Sen1^{Hel} (5 nM) was incubated with 15U-RNA, 30U-RNA, 44-DNA and 44-RNA (Supplementary Table 4) at 5 μM and ATP (1 mM) for 15 min at 37°C. The hydrolysis products were detected using colorimetric Malachite Green Phosphate Assay Kit. Absorbance was measured at 620 nm.


Supplementary Figure 4. CtSen1 sequence alignments, Related to Figure 2

Sequence alignment of the Sen1 amino terminal Sen1N region. Alignments were generated in ClustalW, rendered within Espript, and annotated in Adobe Illustrator. Secondary structure from Espript is noted, TT= tight turn.

Supplementary Figure 5. CtSen1 sequence alignments, Related to Figure 2

Sequence alignment of the Sen1 helicase domain. Alignments were generated in ClustalW, rendered within Espript, and annotated in Adobe Illustrator. Secondary structure from Espript is noted, TT= tight turn.

Supplementary Figure 6. Cryo-EM data collection and processing for Sen1^{N-PP-C}, Related to Figure 5

- (A) Flowchart of CryoSparc image processing for Sen1^{N-PP-C}.
 (B) Example micrograph of Sen1^{N-PP-C}. Scale bar 20 nm.
- (C) Representative 2D class averages of Sen1^{N-PP-C}
- (D) Angular distribution plot of particles used in the Sen1 ^{N-PP-C} reconstruction.
- (E) Fourier Shell correlation for Sen1^{N-PP-C}.

Domain	Human SETX*	ScSen1	CtSen1	Disease	Possible Structural Impacts	
Helicase	F 1756 S	W 1166 S	W 1158 S	AOA2	Folding	
Helicase	P 1805 S	V 1205 S	L 1203 S	AOA2	RNA binding, Folding	
Helicase	A 1945 P	S 1346 P	L 1329 P	AOA2	Folding	
Helicase	L 1976 R	I 1370 R	M 1353 R	AOA2	Folding	
Helicase	L 1977 F	I 1371 F	V 1354 F	AOA2	Folding	
Helicase	C 2006 Y	C 1409 Y	C 1392 Y	AOA2	RNA Binding, Folding	
Helicase	N 2010 S	N 1413 S	N 1396 S	AOA2	RNA binding	
Helicase	N 2037 D	H 1433 D	T 1406 D	AOA2	Folding	
Helicase	R 2136 H R 2136 C	D 1550 H D 1550 C	K 1532 H K 1532 C	ALS4 ALS4	RNA/DNA hybrid binding	
Helicase	L 2155 W	L 1569 W	L 1551 W	AOA2	RNA binding/Folding	
Helicase	I 2179 S	I 1588 S	I 1570 S	AOA2	Folding	
Helicase	H 2197 R	Y 1606 R	Y 1588 R	AOA2	Folding	
Helicase	D 2207 V	D 1616 V	D 1598 V	AOA2	ATP binding/hydrolysis	
Helicase	P 2213 L	P 1622 L	P 1604 L	AOA2	RNA binding	
Helicase	M 2229 T	L 1638 T	L 1620 T	AOA2	Folding	
Helicase	I 2264 M	I 1661 M	I 1645 M	AOA2	Folding	
Helicase	F 2363 L	F 1767 L	Y 1749 L	AOA2	Folding, Surface binding site	
Helicase	P 2368 R	N 1772 R	T 1754 R	AOA2	Folding, Surface binding	
				AOA2	site	
Helicase	T 2373 P	T 1779 P	T 1761 P	AOA2	RNA binding	
Helicase	R 2380 T	Q 1786 T	R 1768 T	AOA2	Protein folding,	
	R 2380 W R 2380 G	Q 1786 W Q 1786 G	R 1768 W R 1768 G	AOA2 AOA2	conformational change	
	R 2380 Q	N/A	R 1768 Q	AOA2 AOA2		
Helicase	K 2382 E	K 1788 E	C 1770 E	AOA2	Protein folding, conformational change	
Helicase	I 2386 T	L 1792 T	I 1774 T	AOA2	Folding	
Helicase	R 2414 Q	R 1820 Q	R 1801 Q	AOA2	ATP binding/hydrolysis	
Helicase	R 2444 H	R 1850 H	R 1831 H	AOA2	Folding	
	R 2444 C	R 1850 C	R 1831 C	AOA2	-	

Supplementary Table 1. AOA2 and ALS4 mutations in Sen1 helicase domain, Related to Figure 7

[S1],[S2]

Oligo Name	5' Mod	Sequence (5'-3')	3' Mod
FAM 19- DNA	6-FAM	GCCTGGTCGTGAGTTGTAG	
19-DNA		GCCTGGTCGTGAGTTGTAG	
19-Trap DNA		CTACAACTCACGACCAGGC	
44-DNA		TTCATTTCAGACCAGCACCCACTCACTACAACTCACGACCAGGC	
19-RNA		CUACAACUCACGACCAGGC	
24-RNA		ACUCACUACAACUCACGACCAGGC	
29-RNA		CACCCACUCACUACAACUCACGACCAGGC	
34-RNA		ACCAGCACCCACUCACUACAACUCACGACCAGGC	
39-RNA		UUCAGACCAGCACCCACUCACUACAACUCACGACCAGGC	
44-RNA		UUCAUUUCAGACCAGCACCCACUCACUACAACUCACGACCAGGC	
BHQ1 44-RNA		UUCAUUUCAGACCAGCACCCACUCACUACAACUCACGACCAGGC	BHQ1
15U- RNA		υυυυυυυυυυυ	
30U- RNA		υυυυυυυυυυυυυυυυυυυυυυ	
FAM 40- RNA		GUCCACGAAACGAAAACGAAAUAAAUCUCUUUGUAAAACG	6-FAM

Supplementary Table 2. DNA and RNA substrate oligonucleotides, Related to STAR methods

Supplementary Table 3. DNA and RNA substrate assembly legend, Related to STAR methods

Substrate Name	Component Oligonucleotides	
Sub1	FAM 19-DNA + 19-RNA	
Sub2	FAM 19-DNA + 24-RNA	
Sub3	FAM 19-DNA + 29-RNA	
Sub4	FAM 19-DNA + 34-RNA	
Sub5	FAM 19-DNA + 39-RNA	
Sub6	19-DNA + 44-RNA	
Sub7	FAM 19-DNA + BHQ1 44-RNA	
Sub8	FAM 40-RNA	

- S1. Chen Y. Z., Bennett C. L., Huynh H. M., Blair I. P., Puls I., et al., (2004). DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am. J. Hum. Genet. 74, 1128–1135.
- S2. Chen, X., Muller, U., Sundling, K.E., and Brow, D.A. (2014). Saccharomyces cerevisiae Sen1 as a model for the study of mutations in human Senataxin that elicit cerebellar ataxia. Genetics *198*, 577-590. 10.1534/genetics.114.167585.