Polarization-Diversity Optical Coherence Tomography Assessment of Choroidal Nevi

Yusi Miao^{1,†}, Hoyoung Jung^{2,†}, Destiny Hsu³, Jun Song⁴, Shuibin Ni⁵, Da Ma⁶, Yifan Jian⁵, Shuichi Makita⁷, Yoshiaki Yasuno⁷, Marinko V. Sarunic^{3, 8, 9}, Kirk A. J. Stephenson¹, Katherine Paton¹, Zaid Mammo^{1, *}, and Myeong Jin Ju^{1, 4, *}

¹Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver BC, Canada V5Z 3N9.

²Faculty of Medicine, University of British Columbia, Vancouver BC, Canada V6T 1Z3.

³School of Engineering Science, Simon Fraser University, Burnaby, BC Canada V5A 1S6.

⁴School of Biomedical Engineering, University of British Columbia, Vancouver, BC Canada V6T 1Z4.

⁵Case Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.

⁶Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA.

⁷Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan.

⁸Department of Medical Physics and Biomedical Engineering, University College London, UK.

⁹Institute of Ophthalmology, University College London, UK.

*Corresponding Authors: Dr. Myeong Jin Ju, Dr. Zaid Mammo

[†]These authors contributed equally

Address: 2550 Willow Street, Vancouver, BC, V5Z 3N9, Canada

E-mail: myeongjin.ju@ubc.ca, zaid.mammo@ubc.ca

Phone: 604 875 4555

Supplementary Materials

Ju <i>et al</i> . ⁵²	Makita <i>et al.</i> ³²	Sakai <i>et al</i> . ¹⁶	Schwarzhans	Current study
			<i>et al</i> . ^{53,54}	
100 kHz	100 kHz	100 kHz	70 kHz	400 kHz
$4.5 \times 4.5 \text{ mm}$	$6 \times 6 \text{ mm}$	$6 \times 6 \text{ mm}$	$8 \times 6 \text{ mm}$	16.5 × 16.5 mm
(15°)	(20°)	(20°)	$(28^{\circ} \times 21^{\circ})$	(55°)
300 A-scans	512 A-scans \times	1024 A-	1024 A-Scans	1000 A-scans \times
× 300 B-	1024 B-scans	scans $\times 256$ B-	$\times 250$ B-Scans	1000 B-scans
scans		scans		
0.9	6.5	> 2.62	> 3.65	2.5

Supplementary Table 1. Imaging speed and field-of-view (FOV) of polarization-sensitive optical coherence tomography (PS-OCT) in the literature.

Supplementary Figure 1. Schematic of the wide-field polarization-diversity optical coherence tomography (PD-OCT) system. M: mirror; PC: polarization controller; DC: dispersion compensation block; LP: linear polarizer; BS: beam splitter; PBS: polarization beam splitter; L1-L4: lens; ETL: electrical tunable lens; GS-X and –Y: x-axis and y-axis galvanometer scanner; V-and H-BPD: balanced photodetector for horizontally and vertically polarized signals.

Supplementary Figure 2. Post-processing pipeline of polarization-diversity optical coherence tomography (PD-OCT) acquisition data.

Supplementary Figure 3: Bland-Altman plot showing the relationship between the differences in lesion area measurement obtained with segmentation of polarization-diversity optical coherence tomography (PD-OCT) *en face* projection versus whole-volume segmentation of non-PD-OCT B-scans, and the mean of the two area measurements for each nevus (n = 11).

Supplementary Figure 4: Bland-Altman plot showing the relationship between the differences in lesion height measurement obtained with ultrasound versus segmentation of non-polarization-diversity optical coherence tomography (non-PD-OCT) B-scan, and the mean of the two height measurements for each nevus (n = 11).