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Figure S1: A single-cell atlas of the developing human fetal jaws, teeth, and salivary glands tissues

via sci-RNA-seq. (related to Figure 1)

(A) Depending on the tissue size at a given age, between 3 and 50 of each tissue sample were collected,

pooled into 12 samples, and sent for sci-RNA-seq. (B) At 9-11gw, dissecting individual toothgerms or

salivary glands in the bud stage was not feasible due to the large number of cells required to perform sci-

RNA-seq protocol. Instead, jaws were separated into two segments of posterior jaw, containing jaw tissue

distal of the canines (B, red boxes), and one segment of anterior jaw spanning from canine tooth to canine

tooth region (B, blue box). At 12gw and beyond, individual toothgerms and submandibular salivary glands

could be identified and isolated to be sequenced separately (C). Sequenced data was clustered, and the

resulting plot revealed that each major tissue type occupied a specific region of the plot, with some shared

support tissues localized in the center (D). Clusters were identifiable by the expression of known markers

for each tissue type in heatmap (E). QC table for all sequenced data (F).

Figure S2: Expression of known marker genes for dental mesenchyme derived cell types (related to

Figure 2)

Expression of known marker genes for each dental mesenchyme cell type shown in heatmap (A).

Expression over time heatmap of dental follicle marker IGFBP5 and subodontoblast markers SALL1 (B).

Gene plot of shared DP and DEM progenitor marker PRRX1 (C). Cell cycle scoring of dental mesenchyme

derived cell types (D). Mappings for dental mesenchyme-derived cell types at 13gw replicate (E) and 19gw

replicate (F) identified by analysis of RNAScope images which show mapping for SOB, DF, DEM, OB,

and POB cell types. Comparisons focused on the overlap between enriched marker genes of OB, SOB and

POB with previously published datasets by Jing et al for postnatal mouse in (G), and by Krivanek et al for

adult human dental pulp and apical papilla in (H). Gotrm analysis was done on the overlapped genes to

highlight the common biological processes between OB in fetal human postnatal mouse in (I), and with

adult human OB in (J).

Figure Legends:

Figure S3: Ameloblast developmental trajectory (related to Figure 3)

Expression of known markers at stages of dental epithelial lineage align with previously identified markers

in each tissue and appear at expected developmental timepoints (A). Density of cells plotted by age

demonstrating clusters enriched with more cells at a given timepoint (B). Gene plots and mean expression

per cluster summary plots in UMAP space generated for the markers used to infer the logic table (File S3)

which is used in the RNAScope mapping (C). The threshold expression per cluster was set to 25% of

maximum expression per gene. Light green clusters considered as high expressing, dark blue as low

expressing, and gray as low or no expression. Pathway analysis based on ligand receptor interaction

highlighting the difference between SII and SIO (D) generated by talklr. Differential expressed between SII

and SIO (E) used to generate GO terms to highlight the similarities and the differences between the two cell

types. Mappings for dental epithelium-derived cell types in a stage matched (13gw of incisor) replicate

sample (F) identified by analysis of RNAScope images showing the mappings for EK, OEE, IEE, CL, SII,

and SRI cell types, and at (19gw of incisor) replicate sample (G) mappings for IEE, PA, SII, SIO, OEE,

CL, SRI, SRO, eAM, and sAM cell types.

Figure S4: Spatial Expression of Odontoblast and Ameloblast Markers Differs Markedly from Early

to Late Toothgerm Development (related to Figure 2 and 3)

Ameloblast markers amelogenin (AMELX) and ameloblastin (AMBN) expression begins in the early

ameloblast after the early bell stage (A-H). Similarly, odontoblast marker dentin sialo phosphoprotein

(DSPP) begins in the odontoblast after the early bell stage (I-K’), and early ameloblasts express low level

of DSPP. However, Enamelin (ENAM) expression marks the secretory ameloblast (K-K’). Heatmaps of

expression over time of AMELX (B), AMBN (F), DSPP (J) and ENAM (L). A table summarizing the

protein expression level of the eAM, sAM and OB (M). Abbreviations: preodontoblast (POB), odontoblast

(OB), preameloblast (PA), early ameloblast (eAM), secretory ameloblast (sAM), incisal edge (IE), cervical

loop (CL). Scale bars: 100μm.



Figure S5: Pathway analysis in ameloblast trajectory (related to Figure 4)

(A) We developed a combined computations workflow to identify critical pathways at different

developmental steps, represented by the schematic in (A), yielding a ranking and contribution to ameloblast

differentiation for several major pathways (B) over several developmental stages. Using talklr ligand-

receptor analysis, we identified the sources of the outgoing signals at early stages of ameloblast

development (C-C’’’). The top three pathways per stage are indicated in ligand:receptor interaction graphs

(C). The thickness of the arrows indicates the number of unique possible interactions between clusters. The

arrowheads indicate the receiver cells that express the receptors. Red arrows highlighting the interactions

received by the cells of interest at each stage. Heatmaps are generated by first aggregating ligands gene

expression for each cell, and then the average values are calculated per cluster (C′′). Analyses demonstrate

that at the placode stage, BMP and Activin signals come from the mesenchyme (DEM) to the epithelium

while at the bud stage the oral and dental epithelium itself secrete WNT signals. In the early cap stages,

WNT signals come from the dental epithelium while the mesenchyme secretes FGF and BMP signals

toward the dental epithelium. At the late cap stage, following the development of the inner stellate

reticulum (SRI), WNT signals switch to non-canonical WNT signaling from the SRI to the enamel knot

(C′′′).

Figure S6: Differentiation of human induced pluripotent stem cells (hiPSCs) into pre-ameloblasts

(related to Figure 5)

(A) Brightfield images of hiPSCs, day 10 of in vitro differentiation, and isolated fetal oral epithelium after

culturing for seven days (A) show that oral epithelium differentiated from iPSCs exhibit the same

morphological characteristics as culture human oral epithelium. QRT-PCR (B) showed that compared to

undifferentiated hiPSCs, differentiated oral epithelium exhibited elevated levels of known oral epithelium

markers concomitant with a significant decrease in known pluripotency marker OCT-4. Additionally, the

neuroepithelial marker NESTIN, and the early mesodermal marker TBXT (BRACHYURY) are relatively

unchanged at day10 of the differentiation, indicative of a relatively lineage-specific differentiation.

Successful further differentiation of oral epithelium into ameloblasts was demonstrated by

immunofluorescence staining of day 16 (C), showing AMBN expression, and the membrane marker ZO1,

with quantification analysis finding approximately 25% of cells positive for AMBN expression. Each study

was performed in triplicate, with error bars representing ±SEM. Significance was determined by unpaired

Student’s t-test; ***p < 0.001; ****p < 0.0001. Day 10 (D) and Day 16 (E) samples were sequenced with

sci-RNA-seq. Cells were clustered and analyzed to identify clusters with similar gene expression patterns

to known cell types in fetal development (E). Gene expression density plots for known markers of different

phases of ameloblast development show continuity between day 10 and day 16, with early markers SOX2

and PITX2 being predominantly expressed by day 10 (F) and shifting toward ameloblast-specific markers

AMBN and SP6 in day 16 (G). LIGER joint clustering analysis of Day 16 differentiation cells and the in

vivo human fetal dental epithelium (Figure 3A) derived cells suggests the colocalization of AMBN

expressing cells from in vivo and in vitro in cluster 6(H). LIGER joint clustering analysis suggests 47% of

Day 16 cells share gene expression pattern of AM and PA (I), which allowed the labels to be transfer and

annotate the cell type identity on iAM Day 16 differentiation UMAP graph (J). QRT-PCR (K) showed

FGFR1 splice variant analysis in Day10 of ameloblast differentiation. FGF2 is abundantly expressed at

day10/day16(L).

Figure S7: Characterization of iAM and formation of iAM/OB organoids (related to Figure 6)

(A) Schematic of the mouse in vivo experiments describing the steps for injecting day16-iAM

subcutaneously into the left legs muscle of the adult SCID mice. The adult SCID mice at 2-month-old were

dissected at the site of injection to perform further analysis to locate the cells such as immunofluorescence

staining for human nuclear antigen in (B), AMELX (C), and Alizarin red staining showing mineralization

(D), and KRT14 in (E), for AMBN (F) and DSPP (G). Von-Kossa staining for calcification was performed

in a subsequent section in (H) showing black/brown staining localized to the injected cell region. Non-

injection site muscles used as a negative control for the immunostaining DSPP (I), AMELX (J), HuNu (K).

For the kidney capsule experiment, the injected cells were identified by HuNu staining (S7L–M), showing

the survival of AM and OB-lineages. Immunofluorescence staining showing ENAM positive isAM,

surrounded by DSPP positive DPSCs/OB in (N).
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