
A. Interpreting scTOP scores

In theory, the attractor-network order parameters we have adapted for gene expression data range between negative
one and positive one. An attractor state order parameter with a value of positive one means the system is perfectly
aligned with that particular attractor state, and negative one means it is the exact opposite of that attractor state.
Zero means that it is neither correlated nor anti-correlated with that attractor state.

In practice, scTOP scores generally do not reach positive one. scRNA-seq data contains significant numbers of
dropouts, and these zeroes decrease the magnitude of the scTOP score. When an aggregate score is taken, the effect
of dropouts is decreased and the scTOP score increases. This is important to keep in mind when interpreting scTOP
scores; any score above 0.1 is notable, and since the data is so noisy even the best-case score may be well below 1.
It’s helpful to have a control population to compare with, to have a measure of the range of best-case scTOP scores.
This is also why it’s best to compare distributions of scores rather than scores for individual cells, since noise plays a
non-negligible role.

scTOP scores are rarely negative. Negative values for scTOP scores correspond to cases where the sample gene
expression profile is the opposite of the reference profile. For example, a score of -1 would indicate that all the genes
which are highly-expressed in the reference are lowly-expressed in the sample, and vice versa. There are cases where
the scores are low, negative values, indicating that the sample does not align well with the reference and that some
genes which are highly- (lowly-) expressed in the reference are lowly- (highly-) expressed in the sample. From the
data, it appears that it’s unlikely for gene networks to contain cell types which are opposites of one another. One
possible reason is that some genes, like housekeeping genes, are similarly expressed across all cell types. Also, it’s
possible that cells which expressed the exact opposite genes of any given cell type would not be able to survive.

B. Comparison to other linear methods

scTOP is mathematically and conceptually distinct from other linear methods such as Principal Component Analysis
(PCA). PCA takes input data and finds the vectors in feature space along which the most sample-to-sample variation
occurs. PCA is unsupervised and assumes nothing is known about the input data. The principal components need to
be examined to determine their biological relevance. The major difference with scTOP is that scTOP takes input data
and a reference basis of known cell types. The input data is decomposed onto the vectors defined by the reference basis
instead of vectors corresponding to the most sample-to-sample variation. With scTOP, the resulting decomposition
has a direct interpretation: alignment with each of the known cell types within the reference basis. It’s not possible
to find the decomposition onto known cell types with PCA, because PCA doesn’t have the extra information about
pre-defined cell type expression profiles.
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To summarize, scTOP and PCA both transform the sample data to a different coordinate system, but there are
major differences between the spaces that these methods project onto. The following table breaks down the differences
between these spaces.

scTOP space PCA space

Defined by an input reference basis of known cell
types

Calculated by PCA by finding the orthogonal vec-
tors (principal components) that best explain the
variation in data

Can be non-orthogonal (e.g. can have highly-
correlated cell types)

Orthogonal by definition

Dimensions have clear biological interpretation:
alignment with cell types

Dimensions need to be closely analyzed to be in-
terpreted

C. Preprocessing

The raw scRNA-seq count data for each dataset was downloaded as a matrix of mRNA counts corresponding to 
genes and cells. An example of such a matrix is shown in step 0 of figure S1, where each row is a different gene, and 
each column is a different c ell. Throughout this figure, the histogram to  the right of  each step shows the distribution 
of entry values for the first column ( cell) i n the matrix, and the h istogram b elow the s tep shows the d istribution of 
entry values for the second row (gene Rpl7) of the matrix. The histograms are presented as examples of how the 
distributions (for each cell and gene) of gene expressions change as the data is preprocessed.

In the first step of preprocessing, each cell is normalized independently. This step is taken because scRNA-seq
generally measures relative rather than absolute expression levels within a cell. In order to facilitate the comparison
of cells across sequencing conditions, we transform the normalized RNA counts into quantities that are centered around
the mean expression level. Z-scores are exactly such a quantity; they measure the number of standard deviations away
from the mean. To calculate the z-scores after step 1, we convert the normalized gene expressions into percentiles
by ranking each gene in a given cell from lowest to highest, then dividing by the number of genes (plus one so that
the highest rank is not assigned the 100th percentile). For example, if a cell has 1000 genes sampled and Rpl7 is the
highest-expressing gene, it will be given rank 1000 and labeled as the 99th percentile. If two or more genes are tied
for rank, as is the case for zero-values, they are assigned the average of the ranks they would have been assigned if
they were not tied (see rankdata function from the Python package Scipy). To convert from percentiles to z-scores,
we assumed a normal distribution with mean 0 and standard deviation 1 and applied the corresponding quantile
function.

1. Preprocessing rationale

In order to mitigate batch effects, the preprocessing step in scTOP takes each cell and ranks each gene according to
expression. These ranks are converted into percentiles, which are then transformed into z-scores assuming a normal
distribution.

By ranking the genes before converting to z-scores, we are ignoring the absolute values of RNA counts and instead
focusing on the relative values. Some sequencing platforms may measure many more counts than others; although we
can’t recover the unmeasured counts that are lost via dropouts, we can remove the effect of differences in counts by
ranking. We assume that each cell contains similar numbers of mRNA and that the actual number of RNA doesn’t
matter as much as the relative expression of different genes. For example, the highest-expressed gene in one cell
should be comparable to the highest-expressed gene in another cell, regardless of RNA count. Ignoring the absolute
values of RNA counts reduces the differences caused by different scRNA-seq technologies and experiments, as shown
in section D.

The second preprocessing step is to convert the ranks to z-scores, assuming a normal distribution. This step results
in a mean of zero and standard deviation of one. In data analysis, it is beneficial to standardize the data before
comparing across datasets because this prevents a disproportionate bias towards features with large values. In the
case of scTOP, having a mean of zero and a standard deviation of one is especially important because the underlying
math relies on the dot product of two uncorrelated vectors to be zero and the magnitude of a vector to be one.

By ranking and z-scoring, we remove undue weighting of genes according to magnitude of expression, instead
prioritizing the relative expression.
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Step 0: RNA counts
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Step 2: Rank each sample independently
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Step 1: Normalize each sample independently
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Step 3: Z-score each sample independently

Fig. S1. Data distributions at each preprocessing step. Step 0 shows the original RNA count matrix before preprocessing, 
where each entry corresponds to the number of RNA detected for a particular gene in a particular cell. The rows of each matrix 
correspond to genes, and the columns correspond to cells. The histograms to the right of each matrix show the distribution of 
an example cell, while the histograms below each matrix show the distribution of an example gene. Step 1 of preprocessing is 
to normalize each cell. Steps 2 and 3 convert the normalized gene expressions to z-scores. Step 2 ranks the genes in each cell 
according to magnitude and converts the rank into a percentile. Step 3 uses a quantile function, assuming a normal distribution 
with mean zero and standard deviation one, to convert from percentiles to z-scores.

D. Batch effects

scRNA-seq data produced using different sequencing platforms from different experiments may introduce variation
in the form of batch effects. Because the pre-processing step in scTOP prioritizes the relative rather than absolute
expression of genes, batch effects are mitigated.

Tran et al. [1] consolidated datasets from different experiments for the purposes of benchmarking various batch-
effect correction methods. One of these is a dataset containing scRNA-seq human pancreatic data from five different
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Fig. S2. Pancreatic data from different experiments using different scRNA-seq technologies. The reference basis uses data 
from Baron et al. [2], and the cells that are projected onto this basis are from Muraro et al. [3], Segerstolpe et al. [4], Wang et 
al. [5], and Xin et al. [6] (A) Kernel density estimate (KDE) plot of alpha scTOP scores for alpha cells (solid) and beta cells 
(dashed), and a box-and-whisker plot of alpha scTOP scores for alpha cells. (B) KDE plot of beta scTOP scores for beta cells 
(solid) and delta cells (dashed), and a box-and-whisker plot of beta scTOP scores for beta cells.

sources [2] [3] [4] [5] [6], using various sequencing technologies. We used scTOP to analyze these datasets. Figure S2 
illustrates that scTOP is not significantly affected by  differences between bat ches. Because the  Baron et al.  dataset 
had the most cells per cell type, we used it to create a reference basis consisting of alpha, beta, ductal, acinar, delta, 
gamma, stellate, and endothelial gene expression profiles. We p rojected c ells f rom t he o ther f our e xperiments onto 
the Baron reference basis. The top row shows kernel density estimate (KDE) plots for cells that match the reference 
cell type (e.g. alpha scores for alpha cells) with solid lines, and cells that do not match the reference type but have 
higher scores than the other non-matching types (e.g. alpha scores for beta cells) with dashed lines. The bottom row 
shows box-and-whisker plots for the cells that match the reference type.
Despite coming from different sources, the distributions of scores are similar. There is also a clear bimodal distri-

bution for cells that match the reference type and cells that don’t. This bimodality is a clear indication that batch
effects don’t cause misidentification.

According to Ziegenhain et al. [7], Smart-seq2 detects the most genes per cell when compared to other sequencing
methods of that time. This decrease in dropouts may explain why the Segerstolpe data (which is the only experiment
that used Smart-seq2) has slightly higher projections than the other datasets.

As part of preprocessing, scTOP ranks the genes for each cell and then converts the ranks to z-scores assuming a 
normal distribution. The ranking step is important because the relative expression of genes in a given cell is more 
reliable than the absolute expression, since some sequencing methods may result in more counts than others. In the 
field of scRNA-seq analysis, it is more common to preprocess RNA counts without ranking them. To validate the 
ranking step, we recreated figure S2 without ranking the genes. The preprocessing for figure S3 involved calculating 
the z-scores for each cell after taking the logarithm of the counts plus one. As shown in the figure, there is significantly 
more overlap of score distributions for cells of different t ypes. This method o f p reprocessing makes t he algorithm 
worse at distinguishing between cell types. Also, there is less overlap between the score distributions of cells of the 
same type across data sets. This suggests that ranking is important for mitigating batch effects.

E. Reference basis construction

Creating an appropriate reference basis is vital to the accuracy of scTOP. There are many existing scRNA-seq
atlases, such as the Mouse Cell Atlas; using them with scTOP requires some amount of curation. For each reference
dataset, we took an average over each population corresponding to a given cell type. The average gene expression
profiles were preprocessed and then used as the reference profiles for each cell type. Often, it was necessary to perform
additional curation of the reference basis. Cell types were dropped from an atlas if they did not include enough cells
(i.e., if they contained < 100 cells) or were found to be poorly defined (i.e., not enough marker genes to distinguish
that cell type from others). Common instances of the latter were cell types that differed only in the expression of a
single gene.

Ensuring that each reference gene expression profile sampled enough cells was essential. This is because the number
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Fig. S3. Pancreatic data from different experiments using different scRNA-seq technologies. This figure is the same as 
figure S2(a) except the ranking step of preprocessing has been removed. scTOP performs worse when processed RNA counts 
are used instead of gene rankings. The top shows a kernel density estimate (KDE) plot of alpha scTOP scores for alpha cells 
(solid) and beta cells (dashed), and a box-and-whisker plot of alpha scTOP scores for alpha cells.

of cells determines how well-sampled the reference cell type is. Although cell types have distinct transcriptomic
patterns, they are not all transcriptomically identical. There are variations in gene expression levels between cells of
the same type due to differences in cell-level processes such as cell division or environmental stimuli. Averaging over
a population of cells which are some cell type X creates an approximate gene expression profile of the archetypal X
cell.

1. Mouse Cell Atlas

The Mouse Cell Atlas (MCA) contains hundreds of thousands of cells from tissues across the mouse body at various
stages of development. For the reference basis created from the Mouse Cell Atlas (MCA), we dropped cell types that
had fewer than 100 cells. For cell types that had greater than or equal to 100 cells, we averaged across the entire
population for each one, then preprocessed. For cell types that were divided according to high expressions of various
genes, we combined them into one cell type. For example, the original MCA contained dozens of clusters of mammary
gland secretory alveoli cells such as “secretory alveoli cell, Hes1 high” or “secretory alveoli cell, Gpx3 high.” These
were all combined into one cell type, “mammary gland secretory alveoli.” This is because we wanted each reference
basis type to act as an archetype rather than a perfect representation of every possible iteration of a cell type; each
reference type represents a basin of attraction, and the basins were defined by the overall cell type, not whether
individual genes were particularly high within that cell type. We cleaned each of the MCA type labels and ended up
with cell types defined by the organ of origin, specific cell type, and time point of collection (e.g., “lung ciliated cell
week 6-10”). The time points of cell types in the MCA were either E14.5 or somewhere between week 6 and week 10
post-birth. The resulting reference basis contained 221 cell types.

F. Accuracy measures

For table 1, the top1 accuracy was determined by applying scTOP to a cell, finding the type with the highest score,
and checking whether that type matched the cell’s true type. Top3 was similarly determined, except instead of just
checking the highest-scoring type, we checked whether the true type was included in the top 3 highest-scoring types.

Development: doi:10.1242/dev.201873: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



By looking at the scTOP scores for cells whose true type did not match the reference type, we set a score of 0.1 as 
the lower bound for identifying a type. As shown in figure S5 (c) and (f), when the reference type does not match the 
sample type, the scores for individual cells fall well within [-0.1, 0.1], even when most of the reference basis is missing.

In table 1, we labeled cells as unspecified if the highest scTOP score was less than 0 .1. This provides a useful metric 
for determining whether a query cell belongs to one of the cell types in the reference basis. If the highest scTOP 
score is lower than 0.1 for a query cell, this indicates that the reference basis lacks the relevant types or was poorly 
constructed (see section G 1 for a discussion of ill-defined bases).

scTOP can only identify cells that exist within the reference basis. As such, the accuracy scores were calculated
only for the cells whose true type (as determined by the annotations from the authors) was included in the reference
basis for the corresponding analysis. For cells whose true types were not represented in the basis, the unspecified rate
was very high. This indicates that the rate of false positives is very low.

G. Robustness of scTOP

scTOP is consistent between iterations of the algorithm, and it is robust to changes in the reference basis. As 
shown in figure S5, many scTOP scores do not change significantly even when most of the reference basis is removed. 
Generally, scores for cells that match the reference type do not change much even when only 25% of the original basis 
is retained (figure S5 (d), (e)). The largest difference occurs for cells that are similar to the reference type, such as 
the AT1 score for AT2 cells (figure S5 (g)). These scores tend to increase because removing other types from the 
basis reduces the ability to de-correlate effectively. I n o ther w ords, s cTOP i s more l ikely t o c onfuse s imilar types 
when it has fewer reference types to compare. This effect is most apparent when relevant types are removed from the 
basis. Figures S5 (j) and (k) show that all lung types score higher for AT1 and AT2 when only lung alveolar types 
are included in the basis. Figures S5 (c) and (f) show that irrelevant scores, such as bladder and thymus cells, do 
not change much even when large portions of the basis are removed. scTOP does not confuse sample cells for types 
that are dissimilar even with a small reference basis because there is no need to de-correlate between types that are 
naturally not correlated.

1. Cases where it does not work

The performance of scTOP relies on the quality of the reference basis. scTOP is expected to give inaccurate results
in cases where the reference basis is ill-defined. The underlying assumption of the algorithm is that the reference basis
consists of accurate gene expression profiles of cell types that are attractor basins. In other words, the reference types
are assumed to represent stable cell types rather than cell states that are on the path to the true cell type basins.
For example, scTOP performs poorly when using a reference basis consisting of early embryonic identities because
the cell types are not sufficiently differentiated from one another. Adapting scTOP to such early lineage data is an
important and interesting problem.

The other part of the assumption is that the reference types should be accurate profiles of the cell type of interest. 
As discussed in section E, reference types are created from averaging over cells, and the more cells included in 
this average, the better-sampled the type is. As expected, scTOP gives unreliable results when the reference gene 
expression levels do not accurately reflect t he t rue c ell t ypes’ g ene e xpression l evels. A n i mportant f actor i n the 
accuracy of scRNA-seq is the amplification s tep: a fter RNA i s e xtracted, i t i s amplified to  im prove th e sensitivity 
of sequencing, but not all RNA is amplified at the same r ate. This results in inflated counts fo r some genes but not 
others. Unique molecular identifiers (UMIs) a re v ital f or r educing the i nflating effect of amplification [8].  UMIs  tag 
the RNA before amplification and are present post-amplification; th is makes it  possible to  see which amplified RNA 
came from the same original molecule and prevents uneven double-counting of RNA. We have found that scTOP gives 
more accurate results when used with reference and query datasets that use UMIs, compared to scTOP results using 
data that did not use UMIs.

H. AT1/AT2 marker genes

In figure 2, data points were colored according to AT1 and AT2 marker gene expression. For each cell, the average
was taken over the expressions of a set of marker genes. The AT1 marker gene set was:

• Ager

• Akap5
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7

Fig. S4. Scatter plots of in vitro hematopoietic clone families from Weinreb et al., with scTOP scores for progenitor, neutrophil, 
and monocyte types, and colored by normalized gene expression. In Weinreb et al. figure 4  (a), cells v isualized using pseudo-
time inference were separated into branches. The monocyte branch appeared to have half of its cells expressing dendritic cell 
genes and the other half expressing neutrophil genes. This figure plots those same cells on progenitor, neutrophil, and monocyte 
axes. The colors correspond to neutrophil, dendritic cell, and monocyte marker genes. (a) Hematopoietic cells colored according 
to the expression of neutrophil marker genes S100a8 and Elane. (b) Hematopoietic cells colored according to the expression of 
dendritic cell marker genes Cd74 and H2-Aa. (c) Hematopoietic cells colored according to the expression of monocyte marker 
genes Csf1r and Klf4.
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• Aqp5

• Cldn18

• Clic3

• Clic5

• Col4a3

• Col4a4

• Cryab

• Cyp2b10

• Emp2

• Fam189a2

• Gprc5a

• Hopx

• Hs2st1

• Igfbp2

• Krt7

• Lmo7

• Mal2

• Pdpn

• Prdx6

• Pxdc1

• Rtkn2

• Scnn1g

• Spock2

• Tspan8

• Vegfa

The AT2 marker gene set was:

• Abca3

• Acot7

• Acoxl

• Acsl4

• Ank3

• Atp8a1

• Cd74

• Cebpa

• Cpm
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• Ctsh

• Cxcl15

• Dram1

• Egfl6

• Elovl1

• Etv5

• Fabp5

• Fasn

• Hc

• Lamp3

• Lgi3

• Lpcat1

• Lyz2

• Mlc1

• Muc1

• Napsa

• Npc2

• Ppp1r14c

• S100g

• Scd1

• Sfta2

• Sftpa1

• Sftpb

• Sftpc

• Sftpd

• Slc34a2

• Zdhhc3
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Fig. S5. Distributions of scTOP scores for lung cells from Herriges et al., using varying portions of the Mouse Cell Atlas as 
the basis. The label above each plot indicates the Herriges et al. sample subset, while the x-axis label indicates the scTOP 
reference type. ”All lung types” means that all of the lung types from the data set were included. (a) - (i) show how scTOP 
scores change when 25-100% of the basis is used. (j) - (k) show how scTOP scores change when the basis is changed from the 
full basis (which includes many tissues and organs) to just the lung types and to just the two alveolar types. (c) and (f) show 
scTOP scores for random irrelevant types, Bladder Epithelium and Thymus B Cell, to show that the scTOP scores remain low 
for types that do not match the sample.
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Fig. S6. The AT1/AT2 combination state (most apparent in days P3 and P7) do not uniquely express genes of AT1/AT2 
transitional states described by previous papers. Alveolar cells from Zepp et al. are plotted on AT1 and AT2 axes, separated 
by day. Each cell is colored by the expression z-score of a particular gene, and the particular gene is different i n e ach row. 
The gene used to color the cells is indicated by the color bar on the far right of each row. (a) Alveolar cells colored by Axin2, 
showing that the AT1/AT2 combination cells do not appear to belong to the Axin2+ sublineage described by [9]. (b) Alveolar 
cells colored by Krt8 and Trp53 expression, which are genes corresponding to alveolar differentiation intermediate cells (ADI) 
described by [10]. AT1, AT2, and the combination AT1/AT2 state all express Krt8 and Trp53 at similar levels. (c) Alveolar 
cells colored by expression of pre-alveolar type-1 transitional cell state (PATS) genes described by [11]. AT1, AT2, and the 
combination AT1/AT2 state all express Cldn4 at similar levels. AT1 and AT1/AT2 combination cells both express Krt19 at 
similar levels, although AT1 cells express the gene at higher levels. (d) Alveolar cells colored by expression of damage-associated 
transient progenitor (DATP) genes described by [12]. AT1, AT2, and the combination AT1/AT2 state all express Il1r1 and 
HIF1a at similar levels.
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Fig. S7. Bar plot showing the top ten aggregate scores for the AT2 populations from the various endogenous and transplanted 
sources shown in Figure 9 of the main text. The cell types are ranked according to the magnitude of scores for the SCA1+ 
population.
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