Supplementary Materials For

GalNAc-T isozyme surface charge governs charge substrate preferences to modulate mucin type Oglycosylation

Collin Ballard², Miya Paserba², Earnest James Paul Daniel^{2,3}, Ramon Hurtado-Guerrero^{4,5,6,7}, Thomas A Gerken^{2,1}

²Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA, ³present address Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA, ⁴BIFI and Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, 50018, Spain, ⁵Department of Cellular and Molecular Medicine, ⁶Department of Dentistry, Faculty of Health Sciences, Copenhagen Center for Glycomics (CCG), University of Copenhagen, Copenhagen N DK-2200, Denmark, ⁷Fundación ARAID, Zaragoza, 50018, Spain

¹To whom correspondence should be addressed: Tel: 216-368-4556; Fax: 216-368-4223; e-mail: <u>txg2@cwru.edu</u>

Supplementary Figures:

Supplementary Figural S1: Template Structures and peptides used for homology modeling of the GalNAc-Ts

Supplementary Figure S2: GalNAc-T surface electrostatic potentials for all template models

Supplementary Figure S3: GalNAc-T surface electrostatic potentials for all template models

Supplementary Figure S4: Electrostatics of the LA repeat regions of the LDL receptor reveal defined regions of negative flanking charge.

Supplementary Figure S5: PGANT surface electrostatic potentials for all template models

Supplementary Figure S6: Structures showing *in vivo* GalNAc-T N- & O-glycosylation sites.

Supplementary Figure S7: Comparison of GalNAc-T11 and PGANT35A Specificity

Supplementary Figure S8: Comparison of GalNAc-T3 and GalNAc-T6 Specificity

Supplementary Tables

Supplementary Table SI: Sequences of peptides bound to GalNAc-Ts in the presence of Mn²⁺ and UDP

Supplementary Table SII: In vivo GalNAc-T N-glycosylation sites

Supplementary Table SIII: In vivo GalNAc-T O-glycosylation sites

Supplementary Table SIV: Previously unpublished enhancement values (EV) for hGalNAc-T11, PGANT35A (dT1) and hGalNAc-T6.

Supplementary Movies (as separate files)

Movies of the 250ns MD simulations for tgGalNAc-T3, hGalNAc-T12, and T2 bounds to charged peptides. Charged peptide residues are color coded blue for the positive Arg residues, red for the negative Asp residues, and white/green for the neutral Gly and Ala residues.

Supplementary Movie 1: 250nSec MD trajectory of the most active RR peptide bound to tgGalNAc-T3 (PDB 6S24)

Supplementary Movie 2: 250nSec MD trajectory of the least active DD peptide bound to tgGalNAc-T3 (PDB 6S24)

Supplementary Movie 3: 250nSec MD trajectory of the most active DR peptide bound to tgGalNAc-T12 (PDB 6XPU)

Supplementary Movie 4: 250nSec MD trajectory of the least active RD peptide bound to tgGalNAc-T12 (PDB 6XPU)

Supplementary Movie 5: 250nSec MD trajectory of the most active DD peptide bound to tgGalNAc-T2 (PDB5AJP)

Supplementary Movie 6: 250nSec MD trajectory of intermediately active GG peptide bound to tgGalNAc-T2 (PDB5AJP)

Supplementary Movie 7: 250nSec MD trajectory of least active RR peptide bound to tgGalNAc-T2 (PDB5AJP)

Supplementary Figure S1:

GalNAc-T template structures used for homology modeling of the GalNAc-Ts studied in this work (see Materials and Methods). A) Template structures, with the bound peptides used to model the GalNAc-Ts left-compact lectin structure (tgGalNAc-T3, PDB: 6S24), the extended lectin structure (hGalNAc-T2, PDB: 2FFU) and the right compact lectin structure (hGalNAc-T2 PDB: 5AJP). B) Sequences of the bound peptides in part A that were aligned onto each of our GalNAc-T homology structures. T* represents Thr-O-GalNAc.

Supplementary Figure S2:

Electrostatic surface potentials for all GalNAc-Ts studied. Each transferase was homology modeled against the three lectin domain orientations given in **Supplementary Figure S1** and are listed in the order given in **Figure 2**. The left column represents the lectin left compact structure (tgGalNAc-T3 PDB 6S24), middle column, extended lectin orientation (hGalNAc-T2 PDB: 2FFU), and right column, lectin right compact orientation (hGalNAc-T2 PDB: 5AJP). Bound peptides were aligned around the T/S-PXP sequence motif in each structure after superimposing the catalytic domains with bound peptides in PyMOL.

Supplementary Figure S3:

Electrostatic surface potentials for all GalNAc-Ts studied. Each transferase was homology modeled against the three lectin domain orientations given in **Supplementary Figure S1** and are listed in the order given in **Figure 3**. The left column represents the lectin left compact structure (tgGalNAc-T3 PDB 6S24), middle column, extended lectin orientation (human GalNAc-T2 PDB: 2FFU), and right column, lectin right compact orientation (human GalNAc-T2 PDB:

5AJP). Bound peptides were aligned around the T/S-PXP sequence motif in each structure after superimposing the catalytic domains with bound peptides in PyMOL.

Supplementary Figure S4:

Electrostatics of the LA repeat regions of the LDL receptor reveal defined regions of negative flanking charge. A) The electrostatic surface potential (blue) of GalNAc-T11. B) The location of the Thr residues of the low-density-lipoprotein receptor (LDLR) glycosylated by this isozyme. C) Electrostatic distributions of the LDLR surrounding these residues (black circles) showing areas of highly negative flanking charge (red) likely to enhance GalNAc-T11 binding (C).

Supplementary Figure S5:

Homology Models and electrostatic surface potentials of the PGANT based on the templates in **Supplementary Figure S1**. Left column tgGalNAc-T3 (PDB 6S24), second column hGalNAc-T2 (PDB: 2FFU), and third column hGalNAc-T2 (PDB: 5AJP) templates respectfully. The rightmost column gives the electrostatic surface potentials of the hGalNAc-T orthologues that were studied showing partial conservation of surface charge.

Supplementary Figure S6:

In-Vivo reported O-glycosylation sites and reported and predicted N-glycosylation sites for the studied GalNAc-Ts. Shown are the structures of *h*GalNAc-T1, -T3, -T4, -T5, -T6, -T7, -T11, -T12, -T13 & -T16 and *tg*GalNAc-T3 showing reported O-glycosylation sites (orange), reported (red) and/or predicted (blue) N-glycosylation sites, where the Thr or Asn residues are shown as spheres (see **Supplemental Table SII and SIII**). The shown bound peptide structures (green, blue and yellow), ²⁺Mn (purple) and UDP (green) were obtained from the homology model templates as described **Figure 2**. The N-terminal stem regions have been omitted in the

structures while the structures are shown to maximize visualizing the glycosites relative to the peptide binding site. Note the C-terminal Thr554 O-glycosite identified for GalNAc-T1 is absent in the PDB 6S24 template structure.

Supplementary Figure S7:

Comparison of the peptide substrate specificity of hGalNAc-T11 and its fly orthologue PGANT35A. A) Bar graph plot comparing hydrophobic residue enhancement values (EV) of hGalNAc-T11 (T11) and PGANT35A (T35A). B) Bar graph plot comparing hydrophilic residue enhancement values (EV) of hGalNAc-T11 (T11) and PGANT35A (T35A). C) Scatter plots of EVs for hGalNAc-T11 and PGANT35A showing their relative correlation. EV values are given in **Supplementary Table SIV**.

Supplementary Figure S8

Comparison of the peptide substrate specificity of subfamily Ic members hGalNAc-T3 and T6. A) Bar graph plot comparing hydrophobic residue enhancement values (EV) of hGalNAc-T3 (T3) and hGalNAc-T6 (T6). B) Bar graph plot comparing hydrophilic residue enhancement values (EV) of hGalNAc-T3 (T3) and hGalNAc-T6 (T6). C) Scatter plots of EVs for hGalNAc-T3 and T6 showing their relative correlation. EV values for hGalNAc-T6 are given in **Supplementary Table SIV**, EV values for hGalNAc-T3 have previously been reported (Gerken et al 2011).

Supplementary Figure S1: Template Structures and peptides used for homology modeling of the GalNAc-Ts Studied

A) PDB Structure Templates from X-Ray Crystallography

B) Bound Substrate Sequences

P3: GAT*GAGAGAGTTPGPG (PDB: 6S24) EA2: PTTDSTTPAPTTK (PDB: 2FFU) AC13: GTTPSPVPTTSTT*SAP (PDB: 5AJP)

Supplementary Figure S2: Electrostatic Surface Potentials for the GalNAc-Ts in Figure 3

Supplementary Figure S4: Electrostatics of the LA Repeat Regions of the LDL Receptor Reveal Defined Regions of Negative Flanking Charge

Supplementary Figure S5: PGANT and Orthologue Surface Electrostatic Potentials

Supplementary Figure S6: In-Vivo Reported O-Glycosylation and Reported and Predicted N-Glycosylation Sites on the Characterized GalNAc-Ts

Supplementary Fig. S7: Comparison of GalNAc-T11 and PGANT35A Specificity

Figure S7

Supplementary Fig. S8: Comparison of GalNAc-T3 and GalNAc-T6 Specificity

Figure S8

Supplementry Table SI

Peptide sequences of peptides bound to GalNAc-T crystal structures in the presence of Mn+2 and UDP shown in Fig 1.

<u>GalNAc-T</u>	PDB	Peptide	Sequence ^a					
Τ2	2FFU	EA2	ST \mathbf{T} PAPTTK					
T2	5AJP	AC13	TTP S PVPTTSTT*SAA					
T2	4D0Z	mEA2	S T CPAA					
Т3	6S24	P3	AT*GAGAGAGT \mathbf{T} PGP					
Т3	6S22	FGF23c	NT*PIPRRH $\underline{\mathbf{T}}$ RSA					
Τ4	6H0B	DGP6	$ ext{GAGAGAGT}^{\mathbf{T}} ext{PGPG}$					
T12	6PXU	DPG-5-17	$ ext{GAGAT*GAGAGYYI} \mathbf{T}$ PRT*GAGA					

^aAcceptor site underlined and in bold, T* represents Thr-O-GalNAc.

Supplementry Table SII

In-Vivo reported and predicted N-glycosylation sites on the characterized GalNAc-Ts

Transferase	N-Linked Glycan Residue (Reported)	N-Linked Glycan Residue (Predicted)
HsGalNAc-T1	N95 ^c	N552 [∟]
HsGalNAc-T2	None	None
HsGalNAc-T3	N132 ^c , N297 ^c	N484 ^C
TgGalNAc-T3	N482 ^C	N617 ^L
HsGalNAc-T4	None	N471 ^L
<i>Hs</i> GalNAc-T5	N776 ^c , N845 ^L	N217 ^s , N256 ^s , N273 ^s , N316 ^s , N362 ^s , N395 ^s , N406 ^s , N578 ^c , N827 ^L , N912 ^L
HsGalNAc-T6	None	N86 ^s , N476 ^c
HsGalNAc-T7	None	None
HsGalNAc-T11	N428 ^C	None
HsGalNAc-T12	None	None
HsGalNAc-T13	None	N94 ^{C/s} , N116 ^C , N551 ^L
HsGalNAc-T16	None	None

^s Residue located on N-terminal stem.

^CResidue located on catalytic domain, in red.

^LResidue located on the lectin domain, in red.

Supplementry Table SIII

In-Vivo reported O-glycosylation sites on the characterized GalNAc-Ts

Transferase	O-Linked Glycan Residue (Reported)
HsGalNAc-T1	T554 ^L
HsGalNAc-T2	S5 ^s , S29 ^s , S59 ^s , S67 ^s , T70 ^s S94 ^s , T368^{Cnp},
	S402 ^{Cnp}
HsGalNAc-T3	S124 ^s , T130 ^s , T131 ^s
TgGalNAc-T3	N.D
HsGalNAc-T4	S46 ^s , S50 ^s , T56 ^s , S60 ^s , T379^{Cnp}
HsGalNAc-T5	S69 ^s , S70 ^s , T94 ^s , T108 ^s , T134 ^s , T138 ^s , T144 ^s ,
	T149 ^s , S154 ^s , S155 ^s , S159 ^s , T163 ^s , T164 ^s ,
	S172 ^s , S192 ^s , S200 ^s , S202 ^s , S204 ^s , S205 ^s ,
	S207 ^s , S208 ^s , S221 ^s , T224 ^s , S231 ^s , S243 ^s ,
	T244 ^s , S249 ^s , S262 ^s , T274 ^s , S275 ^s , T282 ^s ,
	S292 ^s , T296 ^s , S300 ^s , S302 ^s , S320 ^s , T327 ^s ,
	S356 ^s , S360 ^s , S367 ^s , S368 ^s , S369 ^s , S370 ^s ,
	S379 ^s , T381 ^s , S402 ^s , S408 ^s , S418 ^s , T420 ^s ,
	T429 ^s , S431 ^s , T648^{Ccp}
HsGalNAc-T6	T38 ^s , S48 ^s , S67 ^s , T81 ^s , S84 ^s , S88 ^s , T95 ^s , S123 ^s ,
	S155 ^c , T333^{Ccp} , S600 ^L
HsGalNAc-T7	T29 ^s , S36 ^s , S39 ^s , S103 ^s , T114 ^s , T119 ^s , T121 ^s ,
	T368 ^c , S483^{cp}
HsGalNAc-T11	S45 ^s , S51 ^s , T60 ^s , S64 ^s , S96 ^s , T136^{Ccp}, T318^C ,
	S460 ^{CL}
HsGalNAc-T12	T55 ^s , T289^{Ccp} , S556 ^L
HsGalNAc-T13	S51 ^s , T282 ^c
HsGalNAc-T16	S34 ^s , S35 ^s , S47 ^s , T55 ^s , T61 ^s , T63 ^s , S65 ^s , S112 ^s ,
	T279 ^c , T281 ^c , S496 ^L

^s Residue located on N-terminal stem.

^c Residue located on catalytic domain, in red.

^{Cp} Residue located on catalytic domain potentially affecting peptide substrate binding, in bold red.
^{Cnp} Residue located on catalytic domain potentially affecting N-terminal substrate binding, in bold red.
^{Ccp} Residue located on catalytic domain potentially affecting C-terminal substrate binding, in bold red.
^L Residue located on the lectin domain, in red.

^{CL} Residue located on the flexible linker connecting the catalytic and lectin domains, in red.

Notes for Supplementry Table SIV

Previously unpublished enhancement values (EV) for hGalNAc-T11, PGANT35A (dT1) and hGalNAc-T6.

EV values were obtained using 3 different random peptides, PVI, PVII and PVIII as described in the Materials and methods. EV values (and their standard deviations, SD) are given for -/+ 5 residues of the acceptor site at position 0. "n" represents the number of experimental determinations obtained for each amino acid residue, which range from 2 to 21 determinations depending on transferase.

Supplementary Table SIV:

Previously Unpublished Enhancement Values

hGalNAc-T11				POSITION									
n=5-21	l	EV	EV	EV	EV	EV	EV	EV	EV	EV	EV	EV	
unpubli	shed	-5	-4	-3	-2	-1	0	+1	+2	+3	+4	+5	
G	Avg	1.20	1.18	0.92	1.13	1.42		0.75	1.86	1.04	1.30	1.20	
	SD	0.20	0.17	0.25	0.21	0.29		0.32	0.31	0.29	0.24	0.21	
Α	Avg	1.25	1.14	1.15	1.09	1.88		1.21	1.64	0.93	1.12	1.10	
	SD	0.14	0.10	0.16	0.13	0.35		0.23	0.43	0.23	0.11	0.15	
Р	Avg	1.39	1.33	1.34	1.22	2.06		3.22	1.26	4.58	2.62	1.79	
	SD	0.31	0.26	0.29	0.28	0.63		0.88	0.18	1.14	0.59	0.25	
V	Avg	0.96	0.99	0.96	0.87	1.40		1.26	0.91	0.67	0.96	1.14	
	SD	0.06	0.07	0.16	0.10	0.23		0.18	0.11	0.14	0.11	0.15	
I	Avg	0.62	0.62	0.99	0.68	0.51		1.00	0.57	0.35	0.60	0.44	
	SD	0.11	0.08	0.53	0.12	0.10		0.21	0.19	0.07	0.05	0.37	
L	Avg	0.70	0.74	0.92	0.94	0.41		0.49	0.51	0.45	0.61	0.64	
	SD	0.11	0.10	0.23	0.24	0.13		0.07	0.12	0.30	0.10	0.40	
Μ	Avg	0.63	0.67	0.88	0.93	0.45		0.84	0.82	0.49	0.65	0.78	
	SD	0.05	0.06	0.21	0.25	0.08		0.20	0.28	0.15	0.05	0.06	
F	Avg	0.57	0.64	1.07	0.87	0.70		0.29	0.44	0.32	0.57	0.68	
	SD	0.14	0.11	0.53	0.40	0.26		0.09	0.18	0.07	0.10	0.14	
Y	Avg	0.97	1.09	1.21	1.12	0.94		0.41	0.65	0.65	1.01	1.04	
	SD	0.17	0.20	0.24	0.22	0.16		0.13	0.17	0.21	0.08	0.08	
E	Avg	0.83	0.86	0.98	1.10	0.57		1.04	1.07	0.65	0.73	0.90	
	SD	0.14	0.15	0.36	0.37	0.37		0.33	0.33	0.33	0.15	0.20	
D	Avg	0.74	0.75	1.10	1.12	0.76		1.24	1.20	1.07	1.08	1.17	
	SD	0.13	0.12	0.41	0.32	0.31		0.44	0.37	0.39	0.42	0.42	
Q	Avg	0.80	0.89	0.97	1.06	0.36		0.86	0.77	0.40	0.65	0.81	
	SD	0.19	0.22	0.20	0.20	0.13		0.18	0.15	0.06	0.09	0.18	
Ν	Avg	0.99	1.09	1.09	1.00	0.54		0.52	0.79	0.45	0.88	0.92	
	SD	0.17	0.16	0.17	0.16	0.13		0.13	0.13	0.05	0.07	0.06	
R	Avg	0.95	0.93	0.87	0.85	0.58		0.54	0.57	0.43	0.67	0.82	
	SD	0.44	0.36	0.34	0.27	0.21		0.18	0.15	0.16	0.12	0.13	
Κ	Avg	0.93	0.94	0.72	0.74	0.49		0.51	0.52	0.41	0.59	0.72	
	SD	0.27	0.30	0.35	0.27	0.30		0.28	0.26	0.25	0.30	0.29	
н	Avg	0.82	0.77	0.75	0.70	0.47		0.37	0.57	0.39	0.41	0.46	
	SD	0.28	0.20	0.15	0.13	0.13		0.13	0.13	0.10	0.09	0.09	
S	Avg	1.19	1.19	1.22	1.15	1.50		1.27	1.81	1.30	1.24	1.32	
	SD	0.13	0.10	0.13	0.13	0.11		0.36	0.28	0.19	0.11	0.14	

Supplementary Table SIV continued:

PGANT35A (dT1)												
n=2-6		ÈEV	EV	EV	EV	EV	EV	EV	EV	EV	EV	EV
Ref: unp	oublished	-5	-4	-3	-2	-1	0	+1	+2	+3	+4	+5
G	Avg	1.20	1.19	1.06	1.22	1.50		0.88	1.80	1.03	1.10	0.98
	SD	0.16	0.11	0.15	0.10	0.22		0.15	0.26	0.11	0.10	0.12
Α	Avg	1.24	1.15	1.16	1.06	1.54		1.17	1.33	0.94	1.02	1.02
	SD	0.12	0.08	0.10	0.06	0.24		0.05	0.10	0.03	0.04	0.04
Р	Avg	1.17	1.11	1.07	1.07	1.51		2.36	1.20	4.32	2.33	1.64
	SD	0.33	0.25	0.19	0.20	0.29		0.48	0.11	1.18	0.50	0.27
V	Avg	0.96	1.00	1.00	0.85	1.48		1.37	0.85	0.63	1.00	1.18
	SD	0.06	0.11	0.11	0.08	0.40		0.16	0.09	0.05	0.19	0.19
I	Avg	0.92	0.88	0.96	0.93	0.75		1.26	0.62	0.50	0.88	1.12
	SD	0.01	0.00	0.02	0.01	0.02		0.14	0.01	0.02	0.05	0.02
L	Avg	0.90	1.00	1.04	1.12	0.60		0.79	0.59	0.42	0.83	1.13
	SD	0.04	0.01	0.02	0.01	0.08		0.04	0.08	0.09	0.08	0.08
Μ	Avg	0.72	0.75	0.76	0.75	0.51		0.69	0.66	0.48	0.77	0.89
	SD	0.01	0.01	0.00	0.00	0.01		0.03	0.01	0.02	0.02	0.04
F	Avg	0.74	0.82	0.80	0.79	0.69		0.43	0.50	0.44	0.67	0.81
	SD	0.01	0.01	0.01	0.00	0.02		0.01	0.02	0.03	0.04	0.01
Y	Avg	0.98	1.13	1.12	1.14	1.07		0.50	0.65	0.65	0.94	1.00
	SD	0.10	0.12	0.10	0.06	0.16		0.02	0.05	0.11	0.10	0.07
Е	Avg	0.80	0.81	0.88	0.95	0.46		0.88	1.00	0.56	0.69	0.80
	SD	0.15	0.13	0.09	0.04	0.07		0.07	0.04	0.04	0.03	0.04
D	Avg	0.61	0.62	0.66	0.71	0.48		0.78	0.62	0.63	0.72	0.80
	SD	0.03	0.01	0.01	0.02	0.04		0.02	0.01	0.05	0.01	0.03
Q	Avg	1.02	1.05	1.11	1.23	0.48		1.14	0.88	0.46	0.75	0.98
	SD	0.12	0.09	0.07	0.04	0.00		0.05	0.00	0.01	0.01	0.04
Ν	Avg	0.81	0.87	0.96	0.92	0.61		0.52	0.51	0.38	0.75	0.77
	SD	0.06	0.07	0.04	0.09	0.01		0.01	0.03	0.03	0.02	0.02
R	Avg	0.69	0.66	0.71	0.70	0.57		0.56	0.57	0.46	0.59	0.71
	SD	0.15	0.14	0.14	0.15	0.13		0.13	0.14	0.18	0.14	0.15
κ	Avg	1.16	1.27	1.20	1.19	0.99		1.00	1.01	0.87	1.03	1.13
	SD	0.08	0.09	0.13	0.14	0.22		0.18	0.15	0.15	0.12	0.10
н	Avg	0.59	0.64	0.68	0.66	0.50		0.41	0.46	0.34	0.36	0.43
	SD	0.10	0.12	0.12	0.14	0.06		0.05	0.06	0.02	0.03	0.06
S	Avg	0.83	0.90	0.89	0.89	1.18		0.95	1.48	0.81	1.11	0.99
	SD	0.01	0.05	0.05	0.06	0.07		0.09	0.09	0.05	0.15	0.09

Supplementary Table SIV continued:

hGalNAc-T6		POSITION										
n=2-11 E\			EV	EV	EV	EV	EV	EV	EV	EV	EV	EV
Ref: unp	oublished	-5	-4	-3	-2	-1	0	+1	+2	+3	+4	+5
G	Avg	1.12	1.03	0.96	0.93	0.65		0.65	1.23	0.80	0.87	0.83
	SD	0.08	0.07	0.05	0.12	0.11		0.17	0.16	0.20	0.19	0.19
Α	Avg	1.11	1.04	1.03	1.50	1.42		1.10	1.28	1.03	0.92	0.91
	SD	0.13	0.07	0.12	0.23	0.15		0.08	0.08	0.15	0.15	0.12
Р	Avg	1.12	1.27	1.22	1.37	1.48		2.23	1.38	2.22	1.53	1.23
	SD	0.10	0.15	0.09	0.09	0.32		0.53	0.15	0.35	0.17	0.21
V	Avg	1.12	1.30	1.38	1.13	2.50		1.53	0.98	1.03	1.17	1.15
	SD	0.11	0.12	0.17	0.19	0.21		0.21	0.10	0.11	0.11	0.09
1	Avg	1.07	1.19	1.30	0.99	2.63		1.28	0.77	0.76	1.01	1.07
	SD	0.12	0.03	0.04	0.06	0.35		0.16	0.18	0.08	0.09	0.08
L	Avg	0.72	0.79	0.80	0.79	0.41		0.64	0.52	0.66	0.85	1.01
	SD	0.17	0.14	0.15	0.14	0.06		0.11	0.04	0.10	0.19	0.26
М	Avg	0.93	0.94	1.07	1.02	0.67		0.77	1.05	0.90	1.15	1.27
	SD	0.11	0.04	0.12	0.14	0.17		0.16	0.19	0.19	0.30	0.36
F	Avg	1.09	1.40	1.15	1.07	1.76		0.58	0.58	0.70	0.85	1.00
	SD	0.06	0.31	0.09	0.04	0.16		0.04	0.05	0.03	0.04	0.03
Y	Avg	1.04	1.07	1.05	1.02	0.89		0.49	0.49	0.66	0.84	0.93
	SD	0.14	0.14	0.12	0.11	0.04		0.05	0.09	0.12	0.08	0.11
Е	Avg	0.88	0.77	0.72	0.61	0.42		0.65	0.72	0.58	0.83	0.93
	SD	0.19	0.14	0.11	0.14	0.12		0.14	0.11	0.11	0.14	0.16
D	Avg	0.94	0.80	0.75	0.56	0.24		0.34	0.63	0.55	0.95	0.94
	SD	0.12	0.09	0.11	0.08	0.07		0.07	0.07	0.09	0.07	0.07
Q	Avg	0.81	0.85	0.87	0.75	0.54		0.83	0.80	0.88	0.85	0.89
	SD	0.19	0.17	0.17	0.05	0.09		0.07	0.06	0.23	0.19	0.12
Ν	Avg	0.97	0.94	0.93	0.93	0.46		0.42	0.74	0.79	0.99	0.96
	SD	0.07	0.08	0.05	0.08	0.02		0.04	0.06	0.05	0.08	0.04
R	Avg	0.89	0.80	0.77	0.68	0.54		0.68	0.72	0.64	0.70	0.70
	SD	0.51	0.45	0.38	0.27	0.18		0.19	0.14	0.16	0.16	0.14
Κ	Avg	0.72	0.66	0.77	0.59	0.34		0.66	0.86	0.95	0.91	0.96
	SD	0.05	0.06	0.04	0.05	0.09		0.09	0.14	0.14	0.14	0.21
н	Avg	0.58	0.58	0.60	0.52	0.42		0.33	0.40	0.38	0.55	0.54
	SD	0.11	0.10	0.10	0.12	0.09		0.08	0.05	0.05	0.10	0.07
S	Avg	1.25	1.03	0.96	1.08	1.22		0.78	1.28	1.13	1.01	1.16
	SD	0.23	0.02	0.18	0.09	0.21		0.09	0.06	0.10	0.05	0.19