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A Related work

In the following, we provide an overview of methods predicting population responses and recent
developments on optimal transport for single-cell biology data.

A.1 Single-cell perturbation response prediction

With increasing data availability, a diverse set of approaches has been proposed to model cellular
perturbation responses, ranging from mechanistic to current deep learning-based approaches.
Mechanistic models (82, 83) define mathematical models of molecular interactions to model the
effect of perturbation. These methods, however, are restricted to simpler and well-understood
systems as they do not capture highly nonlinear perturbation responses of a heterogeneous
cell population. Further, these methods are limited in their applicability as they do not scale
to genome-wide measurements (84, 85, 86). Linear models (87, 88), on the other hand, predict
changes in cellular gene expression levels using regularized regression methods, where the model
predicts a gene’s expression level as a linear combination of effects of different perturbations,
fitting the regulatory effect of each perturbation on each gene. Due to assuming only linear
relationships of individual genes in response to a perturbation, these methods are similarly un-
able to capture complex and inhomogeneous population responses upon perturbation. Heydari
et al. (89), on the other hand, predict perturbation responses through inferring the underlying
gene regulatory network. Prediction of the perturbed states is achieved through a dynamic
simulation of those logical gene networks. Thus, the predicted perturbed states are restricted
to only the selected set of genes used to build the corresponding regulatory network. Lastly,
current state-of-the-art methods (90, 91, 14) aim to learn low-dimensional representations of
inputs using autoencoders such that perturbation effects can be applied with simple linear
interpolations in representation space. Thus, they predict perturbation responses via linear
shifts in a learned low-dimensional latent space. These models are attractive because they are
fully parameterized, enabling us to make predictions on unseen cells. By tackling the task of
perturbation response predictions via the even more challenging task of learning a meaningful
low-dimensional embedding, these methods can be expected to, at best, only perform moder-
ately well. Therefore, we sought to learn a fully parameterized perturbation model that robustly
describes the cellular dynamics upon intervention while accounting for underlying variability
across samples. More details on both methods are provided in Supplementary Section A.1.1.

A.1.1 Modeling perturbation responses as shifts in latent space

Consider a single-cell dataset of a binary perturbation. Let {x1 . . . xn}, xi ∈ X , drawn from
ρc ∪ ρk and let c(i) ∈ {0, 1} indicate the perturbation status of a single cell,

c(i) =

{
0, if xi ∼ ρc
1, if xi ∼ ρk.

scGen Given representations {z1 . . . zn} of {x1 . . . xn}, learned by an autoencoder, with
encoder ϕ and decoder ψ, scGen (91) predicts a perturbation response using latent space
arithmetic. Let z̄(l) be the mean of representations in condition l

z̄(l) =
1

|{i : c(i) = l}|
∑

ziδc(i)l,

the perturbed state of x′ ∼ ρc is predicted as

ψ(ϕ(x′)− z̄(0) + z̄(1)).

cAE The conditional autoencoder is based on a popular batch correction technique within
the single-cell community, first introduced by (90). It introduces condition-specific parameters
into the encoder and decoder that attempt to remove and replace information in the data
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specific to their conditions. They operate by concatenating one-hot encodings of condition
labels (here, perturbation status) to the inputs of the encoder and decoder. These encodings,
in effect, make the bias term in the first layer of the encoder and decoder a learnable parameter
specific to each condition. I can thus be considered equivalent to learning a linear shift in the
latent space. Given an encoder ϕ and decoder ψ, the network is trained to reconstruct cells
conditioning on its true label

zi = ϕ(xi|c(i)), x̂i = ψ(zi|c(i)).

Once trained, the perturbed state of x′ ∼ ρc is predicted as

zi = ϕ(x′|0), x̂′ = ψ(zi|1).

A.1.2 Modeling perturbation responses via matching of subpopulations

Within one sample distinct cell types might exhibit very different responses toward a
perturbation. This heterogeneity suggests modeling perturbation effects by first identifying
different subpopulations and then predicting the response for each of those subpopulations
individually. In the following, we introduce a method built upon that insight, which serves as
a baseline in this study.

Chen et al. (92) predict gene expression changes that occur in complex single-cell populations
by identifying distinct subpopulations within that heterogeneous mixture for both the control
ρc and treated population ρk, and comparing as well as aligning those subpopulations in control
and treated state through a probabilistic model. To robustly identify those subpopulations,
the data X = {gi}ki=1 consisting of n-dimensional gene vectors gi = (g1i , g

2
i , . . . , g

n
i ) for each of

the k cells is embedded in a lower m-dimensional space using orthogonal nonnegative matrix
factorization (oNMF) (93), i.e., Z = {ci}ki=1 with ci = (c1i , c

2
i , . . . , c

m
i ). oNMF is known to

produce a meaningful set of features as the resulting representation is a superposition of largely
disjoint features, here genes, shown to work well for clustering tasks. This cluster structure
then serves as the foundation to identify and represent subpopulations in both the control
and subpopulation as l independent Gaussian mixtures, i.e., P (Z) =

∑l
iwiN (Z;µi,Σi) with

weights wi, centroids µi, and covariance matrices Σi. These parameters associated with each
Gaussian density (wi, µi,Σi) have a natural correspondence to the biological structure and
semantics of those cell populations. Lastly, to understand the perturbation response of each
subpopulation, Chen et al. (92) align subpopulations identified in the control population to
those identified in the target population based on a measure of closeness, such as Jeffrey’s
divergence utilized in their work. The resulting statistical alignment allows us to determine
the subpopulation-specific perturbation effect through the change in all parameters, i.e.,

∆µi =
∥∥µcontrol

i − µtreated
j

∥∥
2
,

∆Σi = DC

(
Σcontrol
i ,Σtreated

j

)
,

∆wi =
∣∣wcontrol

i − wtreated
j

∣∣ ,
with DC denoting the Forstner metric. Predictions on unseen control cells can be thus obtained
by projecting each cell into the low-dimensional oNMF space, assigning each cell to the
corresponding subpopulation, obtaining the corresponding treated state through modeling the
perturbation effect via (∆µ,∆Σ,∆w), and lastly, projecting these predicted treated cell states
back into the original n-dimensional gene space.

In order to utilize PopAlign as a baseline, we follow the implementation and hyperparam-
eter choices suggested by Chen et al. (92).
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A.2 Single-cell perturbation response analysis

Beyond these tools, a series of methods have been developed to study the nature of perturba-
tion effects on single-cell data. Several works hereby have concentrated on deciphering and
disentangling various cellular and genetic patterns within perturbation responses. Chen et al.
(94), for example, provide a tool for uncovering different axes of cell variation. A pairwise
comparison of identified cell subtypes thereby allows an analysis of patient-to-patient variability.
Similarly, Bhalla et al. (95) derive a patient similarity network that identifies patient subgroups
by analyzing genetic and molecular landscapes from multi-omics data. Instead of clustering
patients with similar perturbation responses, other tools have tried to dissect variability on
the cell level. For this, Chari et al. (96) cluster PCA-based representation of control and
perturbed cell populations. Given cell type annotations, they quantify perturbation effects
by computing the ℓ1 distances between centroids of each cell type cluster. Skinnider et al.
(97) construct a classifier-based framework where cell types most responsive to perturbations
show a high separability between control and treated cell states within a high-dimensional
space. Burkhardt et al. (98) achieve a similar analysis by introducing a continuous measure
based on the relative likelihood estimate of observing a cell in each experimental condition.
Lastly, Petukhov et al. (99) provide a computational suite to carry out statistical tests that,
among others, allows to test variability between different samples and conditions. Lastly, due
to the absence of ground truth when predicting single-cell perturbation responses, various
methods have concentrated on simulating single-cell RNA-seq data that capture important
properties of experimental data. Cao et al. (100) provide a comprehensive benchmark study
for simulation methods, while at the same time introducing evaluation metrics to measure
quantitative and qualitative properties of the RNA-seq data generated by various methods.
Most importantly, while all those methods contribute to a better understanding of single-cell
perturbation responses, they do not allow to predict perturbed states of unseen unperturbed
cells, such as those from an incoming patient.

A.3 Optimal transport in single-cell biology

Following pioneering work by Schiebinger et al. (101), numerous problems in single-cell biology
have recently been approached using optimal transport. These problems include mapping
cells across perturbations, time points, experimental batches, as well as reconstructing spatial
structure from gene expression. In contrast to previous approaches (101, 102), we seek to learn
and thus parameterize the optimal transport map Tk to allow forecasting and predictions on
unseen cell populations, i.e., in the out-of-sample setting. Existing methods addressed proposed
neural network-based OT models that directly parameterize Tk (103, 104, 105). This, however,
has been shown to yield an unstable and difficult-to-solve optimization problem (106, Table 1).
In this work, we take a different path: Instead of parameterizing the optimal transport map
Tk, we follow Makkuva et al. (106) and parameterize the convex potentials of the dual optimal
transport problem f and g by convex neural networks (107). Brenier’s theorem (59) allows us
to recover the optimal map Tk using the gradient of a convex function gk, i.e., ∇gk. Enforcing
the spatial regularity of the pushforward map Tk using optimal transport as modeling prior
and parameterizing a pair of dual potentials yield a tractable learning problem and are central
to the success of CellOT.
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B Additional results

Supplementary Figure 1: Predicted and observed marginals of cells profiled by 4i, treated with Imatinib.
All extracted intensity and morphology features are shown.

Supplementary Figure 2: Predicted and observed marginals of cells profiled by 4i treated with Trametinib.
All extracted intensity and morphology features are shown.
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Supplementary Figure 3: Predicted and observed marginals for all features of cells profiled by scRNA-seq
of the SciPlex 3 dataset treated with Givinostat. The top 50 marker genes for the perturbation are shown.

Supplementary Figure 4: Predicted and observed marginals of cells profiled by scRNA-seq of the SciPlex 3
dataset treated with Trametinib. The top 50 marker genes for the perturbation are shown.
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Supplementary Figure 5: Results on other drugs for the 4i dataset for different metrics, including MMD,
ℓ2 feature means, and r2 correlation feature means for CellOT as well as different baselines. Data is presented
as the mean +/- standard deviation across n=10 bootstraps of the test set.
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Supplementary Figure 6: Results on other drugs for the SciPlex 3 dataset for different metrics, including
MMD, ℓ2 feature means, and r2 correlation feature means for CellOT as well as different baselines. Data is
presented as the mean +/- standard deviation across n=10 bootstraps of the test set.

9



10−26 × 10−3 2 × 10−2

MMD

CellOT

scGen

cAE

Identity

Observed

0.0 0.5 1.0 1.5 2.0
l2 means

Top 50 marker genes

0.0 0.2 0.4 0.6 0.8 1.0
r2 means

10−26 × 10−3

MMD

CellOT

scGen

cAE

Identity

Observed

0.0 0.5 1.0 1.5 2.0
l2 means

Top 100 marker genes

0.0 0.2 0.4 0.6 0.8 1.0
r2 means

10−27 × 10−3

MMD

CellOT

scGen

cAE

Identity

Observed

0.0 0.5 1.0 1.5 2.0 2.5
l2 means

Top 250 marker genes

0.0 0.2 0.4 0.6 0.8 1.0
r2 means

10−2

MMD

CellOT

scGen

cAE

Identity

Observed

0.0 0.5 1.0 1.5 2.0 2.5
l2 means

Top 500 marker genes

0.0 0.2 0.4 0.6 0.8 1.0
r2 means

0.0 0.5 1.0 1.5 2.0 2.5
l2 means

All genes

0.0 0.2 0.4 0.6 0.8 1.0
r2 means

Supplementary Figure 7: Results for single-cell responses for Trametinib the SciPlex 3 dataset for different
metrics computed on 50, 100, 250, and 500 marker genes, including MMD, ℓ2 feature means, and r2 correlation
feature means for CellOT as well as different baselines. With increasing dimensionality, the MMD computation
is biased. Data is presented as the mean +/- standard deviation across n=10 bootstraps of the test set.
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Supplementary Figure 8: ℓ2 feature means between the predicted distribution and the observed treated
distribution for the lupus patients dataset across all holdout samples in the i.i.d. and o.o.s. settings. Boxplots
show the median and quartiles of the distribution for 10x bootstraps for each of the n=8 samples.

Supplementary Figure 9: Complete set of predicted marginals for scRNA-seq profiled cells of holdout cells
pooled across all lupus patients.

Supplementary Figure 10: Complete set of predicted marginals of scRNA-seq profiled cells from a single
holdout lupus patient (id=1015), treated with an IFN-β perturbation.
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Supplementary Figure 11: UMAP projections of CellOT, different baselines, and naïve OT maps for
predicting patient responses to IFN-β treatment for different lupus patients taken as holdout (in the o.o.d.
setting). For each method and setting, we display the measured perturbed and predicted perturbed cells.
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Supplementary Figure 12: Performance w.r.t. the MMD metric between measured perturbed and predicted
perturbed cells by CellOT, different baselines, and naiv̈e OT maps on predicting cell differentiation of the
statefate data over 4 and 6 days, respectively.
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Supplementary Figure 13: Results of predicting perturbation effects of a selection of cancer drugs on 4i
data using CellOT and a baseline that predict the average perturbation effect of each cell line (Average).
Contrary to CellOT, the baseline requires cell typing, and annotation might not always be trivial. For
example, in this setting, cell type markers are affected by the perturbation itself. The benchmark is conducted
w.r.t. different metrics, including MMD, r2 correlation feature means, ℓ2 feature means, and standard deviation.
Data are presented as the mean +/- standard deviation across n=15 bootstraps of the test set.

Supplementary Table 1: Hyperparameter search for scRNA autoencoders.

Parameter Values Selected

latent dimension 50, 100 100
num layers 2, 3 2
layer width 256, 512 512
dropout rate 0, 0.05, 0.1, 0.2 0
weight decay 0, 1e-5, 1e-3 1e-5
scheduler.step_size 10k, 50k, 100k 100k
scheduler.gamma 0.1, 0.25, 0.5, 0.9 0.5

C Materials

Cell lines and cell culture media Cell lines M130219 and M130429 are derived from the
same human patient suffering from Melanoma cancer. M130219 originates from a subcutaneous
biopsy, whereas M130429 originates from a bone biopsy. Cells were tested for the absence of
mycoplasm before use and were gifted from the Levesque lab (University of Zürich/ University
Hospital Zürich). Culture medium (CM) consists of 10% heat-inactivated Fetal Calf Serum
(FCS), 1% Sodium Pyruvate, and 5% Glutamine in RPMI with 0.1mg/ml Anti/Anti. RPMI
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without L-Glutamine (Sigma Aldrich), Fetal Calf Serum (Gibco), Sodium Pyruvate (Gibco),
Glutamine (Biochrome), Anti/Anti (Gibco).

Pharmacological perturbations For a complete list of compounds, manufacturers and
concentrations see Supplementary Table S2. In general, compounds were stored at 5mM in
dimethyl sulfoxide (DMSO) and diluted in three steps in CM to 5µM (0.5% DMSO) immediately
before use on the cells. In the case of compound combinations, the final concentration of
individual compounds was 5µM in CM (and 0.5% DMSO). (Aldrich Material ID: S990051-EA).

4i blocking solution (sBS) sBS consists of 1% Bovine Serum Albumine (BSA), and 150mM
Maleimide in phosphate-buffered saline (PBS). Maleimide is added to the aqueous solution
just before Blocking step in 4i protocol. BSA (Sigma Aldrich), Maleimide (Sigma Aldrich).

Conventional blocking solution (cBS) cBS consists of 1% Bovine Serum Albumine (BSA)
(Sigma Aldrich) in phosphate-buffered saline (PBS).

Imaging buffer (IB) IB consists of 700mM N-Acetyl-Cysteine (NAC) in deionized water
(dH20) and 0.1M 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). Adjust to pH
7.4. NAC (Sigma Aldrich), HEPES (Sigma Aldrich).

Elution buffer (EB) EB consists of 0.5M L-Glycine, 1.2M Urea, 3M Guanidinum chloride
(GC), and 70mM TCEP-HCl (TCEP) in dH20. Adjust to pH 2.5. L-Glycine (Sigma-Aldrich),
Urea (Sigma-Aldrich), GC (Sigma-Aldrich), TCEP (Sigma-Aldrich).

DNA stain 4’, 6-Diamidino-2-phenylindole (DAPI) at 0.4µg/mL in cBS. DAPI (Lifetech-
nologies)

Primary antibodies The primary antibodies are listed below.

# Name Manufacturer Catalogue # (Clone) Species Dilution (1/X) 4i Cycle

1 MelA Cocktail Abcam ab733 Mouse 400 1
2 Sox9 Abcam ab185966 Rabbit 1000 1
3 pS6K1 Millipore MABS82 (10G7.1) Mouse 800 2
4 pAKT Cell Signaling Technology 4060 Rabbit 600 2
5 PCNA Abcam ab139696 Chicken 4000 2
6 pEGFR Cell Signaling Technology 2236 Mouse 500 3
7 pERK Cell Signaling Technology 9101 Rabbit 500 3
8 Alpha-Tubulin Millipore MAB1864 (YL1/2) Rat 8000 3
9 Ki67 Santa Cruz Biotechnology sc-23900 Mouse 200 4
10 pMet Cell Signaling Technology 3077 Rabbit 800 4
11 CD45 Abcam ab187271 Mouse 400 5
12 Cleaved Caspase-3 Cell Signaling Technology 9664 Rabbit 500 5

Secondary antibodies All secondary antibodies were diluted as listed below with cBS.

# Name Manufacturer Catalogue # Species Dilution (1/X)

1 Anti-mouse AlexaFluor-488 Life Technologies (Invitrogen) A-11029 Goat 400
2 anti-rabbit AlexaFluor-568 Life Technologies (Invitrogen) A-11036 Goat 400
3 Anti-chicken AlexaFluor- 555 Life Technologies (Invitrogen) A-32932 Goat 400
4 Anti-rat AlexaFluor- 555 Life Technologies (Invitrogen) A-21434 Goat 400
5 Anti-rabbit AlexaFluor-647 Life Technologies (Invitrogen) A-21245 Goat 400
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D Experimental details

D.1 In-vitro experiments

Cell culture Cells from both cell lines were cultured in Complete Medium at 37◦C, 95%
humidity, and 5% CO2. Per well 750 cells of each cell line were seeded in a 384-well plate
(Greiner, n◦781092, and lid n◦656191) and grown for 3 days in the above-mentioned conditions.

Pharmacological perturbations Compounds were added to the cells using the Bravo
liquid handling platform (Agilent Technologies) at the concentration specified in the Materials
section. Drug perturbations were performed in triplicates (as technical replicates). The cells
were then incubated for 8h at 37◦C, 95% humidity, and 5% CO2 prior to fixation.

Sample preparation Sample preparation was performed as follows: Cells were fixed in 4%
Paraformaldehyde (Electron Microscopy Sciences) for 30min. Cells were then permeabilized
with 0.5% Triton X-100 (Manufacturer) for 15 min. Fixation and permeabilization were
performed at room temperature.

Iterative indirect immunofluorescence imaging (4i) Each subsequent step was per-
formed in a sequence of mentioning and in every cycle of 4i. If not stated differently, all
steps were performed at room temperature. (1) Antibody Elution. The sample was washed 4
times with dH20. Residual dH20 was aspirated to a minimal volume. Subsequent actions are
repeated 3 times: EB was added to the sample and shaken at 100 rpm for 10 min. Then EB
was aspirated to a minimal volume. (2) Blocking. sBS was added to the sample and shaken
at 100 revolutions per minute (rpm) for 1 hour. After 1h sample was washed 3 times with
PBS. (3) Indirect immunofluorescence, primary antibody stain. The primary antibody solution
was added to the sample and shaken at 100 rpm for 2 hours. After 2 hours, the sample was
washed 3 times with PBS. (4) Indirect immunofluorescence, secondary antibody stain. The
secondary antibody solution was added to the sample and shaken at 100 rpm for 2 hours.
After 2 hours, the sample was washed 3 times with PBS. (5) Imaging. IB was added to the
sample and the sample was imaged. Perform steps 1 to 5 until the required plexity is achieved.
All liquid dispensing and washing steps of the 4i protocol were performed using a Washer
Dispenser EL406 (BioTek). Primary and secondary antibodies were dispensed using a Bravo
liquid handling platform (Agilent Technologies).

Nucleus and total cell staining Nuclei were stained using DSS during each 4i cycle
by adding DAPI at the above-specified concentration (Materials) to the secondary antibody
solution. Between steps 4 and 5 of the last 4i cycles, a cell staining was performed using
AlexaFluor-647 NHS Ester (succinimidyl ester) (Invitrogen) for 5 minutes at a final concentra-
tion of 0.2µg/mL in 50mM carbonate-bicarbonate buffer pH 9.2. AlexaFluor-647 NHS Ester
(Invitrogen, cat#A20006)

Microscopy An automated high-content microscope from GE Healthcare (IN Cell 6000)
with an enhanced CSU-W1 spinning disk (Microlens-enhanced dual Nipkow disk confocal
scanner, wide view type) was used in combination with a Nikon 40X (0.95 NA), Plan Apo,
Correction Collar 0.11-0.23, CFI/Lambda, and Neo sCMOS cameras (Andor, 2,560 × 2,160
pixels) to acquire microscopy images. 7 by 7 images were acquired per well. 7 z-planes with a
1 µm z-spacing were acquired per site and a maximum intensity projection was computed and
used for subsequent image analysis. UV (406 nm), green (488 nm), red (568 nm), and far red
(625 nm) signals were acquired sequentially.

D.2 In-silico experiments

Image processing Image processing was done using TissueMAPS (TM): a cloud-based,
interactive image processing and viewing tool developed by the Pelkmans Lab (https://
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github.com/TissueMAPS). As the first step during image processing, images were corrected
for an illumination bias (108). Next, corrected images from different acquisition cycles from
the same microscopy site were aligned as previously described (109). Finally, corrected and
aligned images were used to generate pyramid views of the entire dataset, which were later
used to train classifiers (see below).

Image analysis and feature extraction Image analysis and feature extraction were
performed using TM. Nuclei were segmented using DAPI signal of the first 4i cycle by applying
Otsu thresholding and morphologically filling the identified objects (TM jterator modules:
threshold_otsu & separate_clumps). Cell segmentation was performed using the AlexaFluor-
647 NHS Ester (Sucs) signal acquired during the last 4i cycle by smoothing the Sucs signal, and
adaptive thresholding (TM jterator modules: smooth & segment_secondary). Nucleus and cell
morphology features were measured using TM jterator module measure_morphology. Prior to
intensity feature extraction, all images were corrected for background signal by subtracting 120
pixel values from each pixel (TM jterator module: rescale). Intensity features were extracted
for nucleus and cell objects using TM jterator module measure_intensity. The cell data
extracted from drug treatment replicates was consolidated under the share drug label, replicate
information was not further used.

Semi-supervised classifiers and data clean-up Cells tainted by artifacts related to sample
preparation and image analysis (e.g., miss-segmentation, detachment during 4i procedure,
fluorescent debris) were manually selected using TM’s graphical interface and used to train
random forest classifiers to systematically exclude cells with similar artifacts from the dataset.
Further, cells whose segmentation masks touched image boundaries were also excluded from
the dataset.

Identification of cell states Single-cell intensity and morphology features of DMSO-treated
(control) cells, for which perturbation effects were predicted using CellOT, were clustered using
the Leiden algorithm (110) provided by the Python package scanpy (78, scanpy.tl.leiden)
without customization of input parameters. Prior to Leiden clustering, a neighborhood graph
was constructed for the Control cells using scanpy.pp.neighbors with the input parameter
_neighbors = 10 (no further customization of the input parameters).

UMAP generation Uniform Manifold Approximation and Projection visualizations in
Fig. 2, 3, and Supplementary Figure 11, and Extended Data Figure 5 were generated using
scanpy’s scanpy.pl.umap function preceded by scanpy.pp.neighbors (111).

3NN cell measurement The three nearest neighbor cells measurement (3NN) was calculated
by identifying the three nearest cells of either measured or predicted cells in the population
of measured cells using all features except pERK and then averaging their pERK value. The
nearest neighbor search was performed for each drug condition separately.

Prediction tasks in the i.i.d. setting All marginals, UMAPs, and metrics in Fig. 2 and
Supplementary Figure 5 and Supplementary Figure 6 are computed using the unseen test set
cells. UMAP projections are computed on the joint set of predicted and measured cells. The
larger set is down samples such that their sizes are equal.

Prediction tasks in the o.o.s. and o.o.d. setting We test the ability of CellOT to
generalize to out-of-sample (o.o.s.) and out-of-distribution (o.o.d.) settings by predicting
perturbation response on holdout samples and development trajectory on holdout cellular
subpopulations. Results are reported in Fig. 4, Supplementary Figure 8, Extended Data
Figure 4, and Extended Data Figure 6. To measure the drop in performance when switching
to the o.o.d. or o.o.s. setting, for each holdout group, two models are trained, an i.i.d. and
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o.o.s./o.o.d. model. Both models are trained on all cells from the other groups, however, the
i.i.d. model is additionally trained on half of the cells of the holdout group. Evaluations for
both settings are done using the cells unseen by the i.i.d. model.
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