natureresearch

Peer Review Information

Journal: Nature Methods

Manuscript Title: Learning single-cell perturbation responses using neural optimal
transport

Corresponding author name(s): Gunnar Ritsch

Editorial Notes: n/a

Reviewer Comments & Decisions:
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Dear Gunnar,

Your Article entitled "Learning Single-Cell Perturbation Responses using Neural Optimal Transport" has
now been seen by three reviewers, whose comments are attached. While they find your work of some
potential interest, they have raised concerns which in our view are sufficiently important that they
preclude publication of the work in Nature Methods.

We will consider looking at a revised manuscript only if further experimental data allow you to address
all the major criticisms of the reviewers (unless, of course, something similar has by then been accepted
at Nature Methods or appeared elsewhere). This includes submission or publication of a portion of this
work somewhere else.

In order to consider the manuscript again, we will require the technical concerns to be addressed,
including additional benchmarking. Beyond this, we need you to make a stronger case that this
approach is broadly needed for new biological discovery. We hope you understand that until we have
read the revised paper in its entirety we cannot promise that it will be sent back for peer-review.

If you are interested in revising this manuscript for submission to Nature Methods in the future,
**please contact me to discuss your appeal** before making any revisions. Otherwise, we hope that
you find the reviewers’ comments helpful when preparing your paper for submission elsewhere.
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Sincerely,
Rita

Rita Strack, Ph.D.
Senior Editor
Nature Methods

Reviewers' Comments:

Reviewer #1:

Remarks to the Author:

In this manuscript, Bunne et al. present CellOT, a method to predict the transcriptomes of cells exposed
to an arbitrary perturbation. They justify their method by asserting the need to predict perturbation
responses at the level of individual cells. They furthermore assert that published methods designed to
achieve this aim via linear operations in a learned latent space are poorly suited to the problem at hand.
Instead, they argue that optimal transport (OT), which has been employed to model cellular
differentiation trajectories using time-course scRNA-seq data (Schiebinger et al., Cell 2019), provides a
more conceptually apt framework. Issues with model stability and optimization compel them to devise a
framework for neural OT based on convex neural networks. They show that the resulting method can
predict the effect of a perturbation on cells that were not present in the original training dataset.

The modelling and implementation appear to be well done. However, the conceptual justification for
the method is unclear, and it is not immediately apparent what kind of experiment would require a tool
like CellOT to interpret the results. These issues are underscored by the nature of the biological insights
the authors are able to extract using CellOT in the case studies presented in the manuscript, which
appear to be limited. Moreover, comparisons to baseline methods have a number of conceptual and
technical issues, and do not convincingly demonstrate the superiority of this new tool over existing
methods. Finally, many of the authors’ claims about the unique advantages of their method are not
supported by the data presented in the manuscript.

Major

1. The authors’ central argument is that the destruction of cells in the course of obtaining single-cell
measurements prevents us from understanding how individual cells respond to a given perturbation. Yet
what is almost always of interest is the aggregate response of cells of a particular cell type or state to a
perturbation. It is not clear why a method operating at the resolution of individual cells is needed. The
authors assert that “It is crucial [...] to not simply model average perturbation responses of a patient
cohort” but what biological question would the paired distribution be needed to answer? The need for a
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method operating at single-cell resolution is undermined by the authors’ argument that it is necessary
to account for subpopulation structure in single-cell data; this can readily be achieved by clustering the
data to identify subpopulations at arbitrary granularity and then analyzing the average response within
each cluster (for instance, via differential expression).

2. The above issues are reinforced by the observation that most of the biological results presented in the
manuscript are not actually obtained from CellOT. For instance, in the extensive case study of the newly
acquired 4i dataset (p. 6), most of the biological findings are based on either the abundance of each cell
state, or the mean expression of a given marker within each cell state. The authors claim to have
“sharpen(ed] the response profiles of the measured drugs,” but the meaning of this is unclear: as far as |
can tell, the results were not obtained with inferred (predicted) 4i profiles, nor is it clear that it would be
desirable to do so. Similarly, it is not clear what has been learned from the analysis of the lupus dataset
in Fig. 4. Overall, it is not clear what biological findings CellOT might enable that could not have been
made from the raw sequencing or proteomics data itself.

3. The authors evaluate CellOT by comparing it to two baselines, scGen and cAE, on a total of three
datasets. There are both technical and conceptual issues in this evaluation.

o The number of datasets is small, and performance appears to be very variable from one dataset to
another. For instance, in Fig. 2, the performance of scGen appears close to random, yet in Fig. 4 it is
nearly as good as CellOT. Comparing these methods on a much larger number of datasets would more
convincingly establish that there is in fact a bona fide difference in performance.

o The two primary metrics used to quantify performance, the MMD and L2DS, both seem logical, but it
is of note that (to my knowledge) neither has been used in previous work. How would CellOT perform if
evaluated on the same datasets as in the scGen paper, using the same metrics?

o The MMD is calculated on only the top 50 marker genes in the scRNA-seq datasets. This is a tiny
fraction of the transcriptome. How sensitive is performance to this threshold (e.g. top-20, top-500, top-
2000)? What would performance look like if the MMD were calculated over the entire transcriptome?
o It would be useful to include the identity and observed baselines in all comparisons (i.e., Fig. 4c).

o On a conceptual level, | am not sure what kind of biological problem the cross-validation setup
employed in the manuscript is a good surrogate for. The model is trained on cells from each state,
exposed to each perturbation. This requirement implies that users already have in hand a dataset that
would allow them to identify perturbation responses within each cell state. Moreover, it implies that the
method would not be able to predict perturbation responses for new cells from a novel state (i.e. leave-
cell-state-out), nor would it be able to predict responses for a perturbation that creates a new cell state
(cf. Fig. 3c). The cross-validation setup therefore further undermines the justification for CellOT, since it
seems the model can only be used to predict perturbation responses that have already been
experimentally measured.
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4. The authors imply repeatedly that their method can account for variability across samples. In fact,
there is no real investigation of how batch effects might compromise the performance of their model
anywhere in the manuscript. A unique feature of the Kang et al. dataset is that the control and
perturbed samples were all run together in a single sequencing batch, then demultiplexed using
demuxlet. This is therefore an artificially weak test of what the authors term the ‘out-of-sample’ setting,
since the cells are in fact from the same sample. This can be seen in the fact that the performance in iid
and oos settings is essentially identical (Fig. 4c). Moreover, the dataset is also unrepresentative as a case
study, since no prospective application would profile all newly-collected patient samples together with
the reference dataset in a single batch. Given that dealing with batch effects is arguably both more
difficult and more important than dealing with biological variability across individuals, there is a clear
need to evaluate CellOT in a true leave-batch-out setting.

Minor

5. CellOT is applied not to raw scRNA-seq data but to a low-dimensional representation learned by an
autoencoder. This raises a number of questions: is dimensionality reduction necessary for the method to
work? What would performance look like if CellOT were applied directly to the full transcriptome? Does
the choice of dimensionality reduction method matter? The parameters of this autoencoder are tuned
by minimizing the reconstruction loss over the full dataset; is this not a form of data leakage between
the training and test datasets?

6. The authors tune hyperparameters for CellOT on the evaluation datasets, but not the other two
methods. This may introduce a ‘continental breakfast included’ effect as pointed out by Hu et al., Pac.
Symp. Biocomput. 2019. Would performance of the baseline methods improve with hyperparameter
tuning?

7. There is no assessment of statistical significance in the evaluation. Can metrics such as the MMD and
L2DS be compared statistically, e.g., using the bootstrap?

8. The L2DS is missing for the analysis of the Kang et al. dataset (Fig. 4b).

9. One useful feature that CellOT implements is the ability to score the severity of drug perturbations
within each cell state (p. 5) via the mean OT cost. Indeed, this is one of the few biological insights in the
manuscript that could not have been obtained without CellOT. However, there are a variety of methods
beyond scGen and cAE designed to achieve a similar aim (e.g., Burkhardt et al., Nat. Biotechnol. 2021;
Petukhov et al., bioRxiv 2022; Skinnider et al., Nat. Biotechnol. 2021; Chari et al., Sci. Adv. 2021; or
simply the distance in latent spaces learned by scGen or cAE). Comparisons to these baselines would be
needed to establish that CellOT is uniquely well-suited to this task.

10. Previous methods to predict perturbation responses at the single-cell level implemented a number
of other functionalities; for instance, scGen was shown to be among the more accurate methods for
batch effect correction (Luecken et al., Nat. Methods 2021). Can CellOT do the same?
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Reviewer #2:

Remarks to the Author:

Bunne et al present CellOT, a computational method based on neural optimal transport to model
responses due to perturbance with single-cell data.

With the advancement of single-cell technology, this type of study containing multiple perturbed
samples is becoming increasing available and it enables to study response-perturbation relationship
with a high resolution. Compared to other methods that often operates on distribution level, CellOT
uses cell-level transport map which theoretically would brings in more detailed response modeling that
better captures cell-cell variability. CellOT is available as a publically available Python package. While
CellOT is theoretically sound and some validation is included in the current manuscript, more validation
is needed especially the ones focusing on cell-cell variability and out-of-distribution generalizations.
Comparison to more existing methods should also be added to demonstrate the improvements made in
CellOT.

1.For the training/testing split of SciPlex and 4i data, it was explained in the Methods section that “The
split is performed on each drug and control condition independently”. So the testing sets in different
datasets could have totally different cell type or subtype proportion. Why is the comparison between
T(testing control) and testing perturbed when they don’t necessarily represent the same population? In
this case, why good overlap between testing sets in the UMAP space (Fig. 2c) is superior?

2.CellOT was only compared to two existing methods cAE and scGEN. There are many more recent
methods and more comparison should be added. For example, MELD, PhEMD, and PopAlign.

3.In the learning step, the control and perturbed data are from two different replicates. The feasible set
{T: T#(\rho_c)=\rho_k} in the formulation given in Fig. 1c assumes that the mass is conserved. This could
be a problem when the cell type ratio in different replicates is different. Though a small discrepancy may
be handled by the neural OT, it should be clarified and evaluated in what cases this will become a
problem.

4.The main advantage of CellOT is the examination of cell-level variability due to the detailed mapping
between cells using optimal transport. The authors have made much effort on demonstrating this on
real data. However, the ground truth of responses of individual cells is often not available in real data. It
is therefore important to also use simulated data to benchmark the methods.

5.Related to the point above, there are two components of the method: finding the correspondence and
learning the perturbation. The validation on the second component is quite extensive. The quality of the
OT derived mapping should also be benchmarked.

6.The generalizability (out-of-distribution) performance of CellOT should be further evaluated and
clarified. Currently, there is one example and CellOT outperforms the other methods in one case while
having slightly inferior performance in another case (Fig. 4e bottom) in the o0.0.d. setting. More
evaluation of this matter should be added, for example, using the benchmark in Fig. 2 of the scGEN
paper. Generalizability is especially of concern here for the OT approach because while OT is expected to
find detailed coupling between distributions, it is unclear how well it handles unseen distribution.
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7. The software package available at https://github.com/bunnech/cellot was tested to work. To improve
the usability of the package, | recommend the authors to 1) make it available on PyPI, 2) provide
detailed and complete documentation, and 3) setup automatic testing using, for example, pytest.
Minor points

1.In Fig. 2b, why does CellOT achieve lower MMD than the theoretical lower bound? Also, the x-ticks
seems to be wrong.

2.In the section “CellOT outperforms state-of-the-art methods in predicting cancer treatment effects”,
do the top 50 marker genes mean the markers for each cell type? Why not also evaluate on the DE
genes between control and perturbed?

3.For “cAE”, is it more accurate to use CVAE for conditional variational autoencoder?

4.1 tried to run the example numerical experiment on the GitHub page and it took several hours to run.
A clarification of scalability and computational cost in terms of time and memory should be added.

Reviewer #3:

Remarks to the Author:

This paper presents an optimal transport-based framework (called CellOT) for learning individual single-
cell responses to perturbations. Optimal transport formulation matches probability distributions by
learning a coupling/transport map.

The main idea is to learn such a transport map that soft-matches the gene expression profile of control
cells with the perturbed cells. This transport map can then produce the distribution of gene expression
profiles for that perturbation on a new set of control cells. Directly parameterizing the transport matrix
of the primal optimal transport formulation can be a complex optimization problem. However, the
paper overcomes this issue by proposing parametrizing the convex potentials (functions f and g) of the
dual form of the optimal transport problem. This is achieved by using input convex neural networks
(ICNNs), and the transport map is calculated by taking the gradients of function g.

The paper's results demonstrate that CellOT, when applied to predict the responses of cell populations
to cancer treatments (using a proteomic dataset consisting of two melanoma cell lines (M130219 and
M130429)), outperforms the chosen auto-encoder-based baselines - scGEN and cAE. To quantify the
matching distributions of the perturbed cells and ground truth, the paper uses maximum mean
discrepancy (MMD) as the evaluation metric (along with 12 distance between drug signatures). CellOT
can also learn a transport map from multiple patients that generalizes to new patient samples. Finally, it
can model the changes in transcriptome when the perturbations are internal during hematopoiesis.
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Overall, the method and application are well motivated, and the presented results are convincing and
potentially useful for the community. The neural optimal transport formulation is particularly
interesting.

However, the paper's choices and some experimental details could be clarified further.
Major comments:

Choice of evaluation metric?

| briefly checked the scGEN paper, and it seems to be using R2 metric to quantify its results. Another
single-cell benchmarking paper [1] comparing simulation methods has proposed metrics like - KS test,
mean, variance - for comparing single-cell distributions. Given this prior work, what is the rationale
behind choosing the MMD and DS evaluation metrics for the results in this paper?

Choice of the number of features for evaluation?

The paper claims, "Due to the high dimensionality of scRNA data, we report metrics using the top 50
marker genes.” Why the top 50 marker genes? scGEN considers up to ~6000 genes for calculating the
similarities.

The choice of AE-based baselines - scGEN and cAE seems reasonable. Maybe adding some discussion on
non-AE methods like IQCELL [2] could be informative for the reader. Also, some recent single-cell
alignment methods using OT (with entropic regularization) have shown reasonable performance. Given
that the sample size (number of cells) is reasonable, could they be used for learning a transport map for
the proposed task?

Single-cell datasets usually require some normalization before one can perform modeling. Was the
normalization/feature selection done separately for training and test splits to prevent information
leakage? Or is that not a concern given results on 0.0.d and 0.0.s datasets?

Finally, | am assuming that CellOT requires hyperparameter tuning to achieve good performance. Were
the baseline methods tuned extensively as well? Were hyperparameter grid sizes for tuning baseline
models and CellOT the same? Adding some discussion on the robustness of the model to the choice of
hyperparameters would be helpful from an application point of view.

Minor comments:

Is the training of the ICNN models reasonably simple? How much time does it take to train a network?

Some typos:
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1) x-axis in panel b and caption labels of Figure 3 do not match the panel
2) ptin Model subsection 2.1 (should be pk?)

References:

[1] Cao, Yue, Pengyi Yang, and Jean Yee Hwa Yang. "A benchmark study of simulation methods for
single-cell RNA sequencing data." Nature Communications 12.1 (2021): 1-12.

[2] Heydari, Tiam, et al. "IQCELL: A platform for predicting the effect of gene perturbations on
developmental trajectories using single-cell RNA-seq data." PLoS Computational Biology 18.2 (2022):
€1009907.

‘ Author Rebuttal to Initial comments
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Proposed manuscript revisions for NMETH-A49668, Bunne ef al.

Overview reviewers’ feedback and intended response/action

The value proposition of CellOT to the field of single-cell biology (Reviewer 1)

In our understanding, Reviewer 1 questions, in general, the value of a computational method capable
of correcting/predicting perturbation effects on the level of single cells. Instead, they propose to use
methods on aggregated subpopulations or cell types (“this can readily be achieved by clustering the
data to identify subpopulations at arbitrary granularity”) as this, in their opinion, is sufficient for
downstream hiological analyses. In particular, they propose to cluster both the control and perturbed
populations and then find a pairing scheme to match the clusters detected in the control and
perfurbed state. Hypothetically, the proposed scheme works in a scenario for which i) the biological
heterogeneity in control and treatment is composed of discrete subpopulations ii) the number of
biclogically meaningful subpopulations in control and treatment, iii) a prion knowledge on how to pair
control and treatment clusters is available. For the vast majority of experiments, however, these
requirements are not fulfiled; periurbation responses, when measured at the single-cell level, often
appear as continua and pairing schemes are normally unavailable.

limit: In the following thought experiment,
we |r1tend fo show ihat CEIIOT is the g«eﬂerali],.r appicable method of Reviewer 1's highly-specialized
scheme. Given that single-cell measurements in conirol and treatment are continuous, we would need
ever more clusters to represent cellular phenotypes faithfully. Further, we would need to devise a
paring scheme. Infuitively, we would start pairing clusters based on their feature similarty, i.e., identify
pairs of clusters with minimal feature difference, ensuring that overall the difference between the
identified pairs is minimal.

As we increase the number of clusters to improve the accuracy of our model, we ultimately arrive at
one-cell clusters, i.e., single cells, and are faced with the challenge of identifying the right pairing
schemes given all possible single-cell matches. We thus introduce a cost function to match the most
similar cells in control and treatment under the constraint of minimizing the total difference between
identified pairs. By doing so, we have extended Reviewer 1's method to general applicability and, in
fact, have described the workings of CellOT.

1 1 . In the following figure, we visualize the
Ieamed drug eﬁect for a) CEIIOT b) mean mnected as well as the two baselines ¢) scGen and d)
cAE on di cell line data in latent space. The perturbation effect is represented as a vector field
(armows), “pushing” cells of the control distribution (in blue) to the treatment distribution (in orange).
We report that the perturbation leamed by CellOT accurately shifts control on top of treatment by
modulating the drug effect continuously as a function of the position in feature space {metrics are
reported in Table 52, row 9 of the submitted manuscript). The other three prediction methods are
unable to learn the perturbation effects accurately across the whole latent space resulting in
mispredicted single-cell data (as seen in Figure below and in Table 52 that measures the accuracy of
the predicted distribution).

NE: Reviewer 1's strategy, which is a more sophisticated implementation of “mean correcfed”, would
have identified subpopulations and returned a discrete matching between their before and after state.
These clusters could either represent the two cell lines or the responder and non-responders or
combinations thereof. Their strategy, however, would have been unable to predict the behavior of
those cells in between subpopulations, which display an intermediate drug effect similar to multiple
subpopulations.



Proposed manuscript revisions for NMETH-A49668, Bunne et al.

celiot mean comected
a sate ok state
s — conitrod il — aontreil
| meatment meatment
41 4 4
17 \. \ 'l‘
2{ ‘\ 2 _ i 4
2 o @RV s . Gl
(] oy &1
. mﬁ_\,‘ e i
-2 1 -3 4
1
—4 1 -4
-y %4
=25 00 25 50 75 W0 125 10 -25 @0 2% S50 15 000 L5 150
PCAD PCAD
wgen @e
[} - 1 aite
" — cantrol 8 — gontial
wratment EFvatmeant
41 ! 44
7 Jf' 4 p—— i
21 I 24 Avae 4
| 1 S
g .l ﬁ‘i«‘igii ” 3 . @t
Y -7
-21 \nt —a1 ‘: k
-4 { -4
&1 &
25 00 25 50 75 WO 125 180 2% 60 2% SO 1% 100 LS 180
PCAD PCAD

Everolimus response predictions. First two PCs of the protein intensity features.

Improving clarity in the manuscript. It appears that our description of CellOT, the problem it aims fo
solve and the data it is capable of generating, was lacking given Reviewer 1's feedback. We plan to
improve said descriptions in the main and supplementary text. We further plan to include a quiver plot
(see Figure above) as a panel in Figure 2, to better highlight subpopulation-specific effects and the
value of a single-cell predictions correction over a clustering-based approach.

CellOT-derived resulis in the manuscript (Reviewer 1)

Further, Reviewer 1 noted that "most of the biological results presented in the manuscript are not
actually obtained from CellOT" and that “in the extensive case study of the newly acquired 4i dataset
(p. 6), most of the biological findings are based on either the abundance of each cell state or the
mean expression of a given marker within each cell state.” We find the opposite to be the case. All
reported biological findings are based on CellOT-generated data, which in the specific case of Figure
3, were then aggregated to cellular states observed in a population of control cells, for which the drug
effects were predicted. The ability to map drug effects of multiple drug treatments back to the same
control cells would not have been possible without CellQT. Further, the majority of data presented in
Figure 3 is single-cell corrected (i.e., “feature vector of a predicted perturbed cell” minus “feature
vector of the conirol cell which was used to predict the perturbed cell™); this requires predictions of the
single-cell effects.

Reviewer 1 also states “The authors claim to have “sharpen[ed] the response profiles of the measured
drugs,” but the meaning of this is unclear: as far as | can tell, the results were not obtained with
inferred (predicted) 4i profiles, nor is it clear that it would be desirable to do s0." We respectfully
disagree with this statement. For instance, the UMAF in Figure 3c is wholly based on
CellOT-generated data (as are most other panels in Figures 3 and 4). Comparing said UMAP with the

natureresearch
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Proposed manuscript revisions for NMETH-A49668, Bunne ef al.

UMAP generated with mean-corrected single-cell data (Supplementary Figure 6e), we can clearly see
that the drug perturbations in 3c are distinct from each other and grouped based on the prevalent
mode of action. On the other hand, the perturbations in Ge are heavily overlapping. Thus, we indeed
argue that CellOT generates sharpened drug profiles.

Finally, Reviewer 1 asks “[...] what biological question would the paired distribution be needed fo
answer?" We imagine many cutting-edge biological and franslational scenarios which would benefit
from paired single-cell disfributions, such as the investigation of the molecular mechanism governing
the perturbation responses or out-of-ample predictions for patient samples.

We will improve our description and discussion of the results presented in Figure 3 in the main text,
as well as mention potential future applications of CellOT in the Discussion.

Qut-of-sample predictions and additional datasets (Reviewer 1-3)

We have provided results based on CellOT in an independent-identically-distributed (lID) setting in
Figure 2 and 3 as well as in an oui-of-distribution {O0D) setting in Figure 4. All three reviewers
suggested improvements to our 00D tasks presented in Figure 4, specifically the use of CellOT on
alternative datasets to show its robustness as well as its generalizability. We, therefore, plan to add at
least one more OOD task based on an additional dataset and use it to further benchmark CellOT
against the current state-of-the-art predictive algorithms. We are currently working on preparations.

Gene expression comparison with scGen (Reviewer 1-3)

All reviewers raised concerns about our approach when comparing gene expression predictions
between CellOT and the baselines. For high-dimensional datasets, CellOT requires, as do the
baselines, some form of low-dimensional embedding. While one can use classical embeddings such
as PCA, in this work we follow previous literature and use autoencoders, whose sole purpose is to
encode and —with small reconstruction error— decode a cell's feature vector. The evaluation itself is,
as menfioned in the manuscript, conducted in the original featurespace (i.e., gene expression space).
As the majority of the genes are not affected by each perturbation, and most evaluation metrics rely,
fo some capacity, on the euclidean mefric, we cumrently evaluate using the top-50 expressed marker
genes. Reviewers 2 and 3 both raised concems about this choice. We plan on including metrics
reported on larger feature sets, though the well-known curse of dimensionality demonsfirates that such
distances lose meaning in higher dimensional spaces. We plan to extend this fo reporting mefrics on
more than 50 genes and add the results to the Supplemental Material.

Inclusion of additional metrics used by the field (Reviewer 1,3)

Reviewers 1 and 3 expressed concemn about our choice of mefric, maximum mean discrepancy
(MMD), used for the prediction accuracy henchmarking of CellOT and the baselines, and proposed a
correlation-based metric (R2) as well as population statistics such as mean and standard deviation. In
fact, the reporied distance between drug signatures (L2DS) is mathematically equivalent to the
differences in population means. We will edit the manuscript to make this clear. In preparation for this
manuscript, we took special care in identifying the most appropriate (accurate and honest) setup and
metric to compare prediction results with actual measured data. As we aim for capturing
heterogeneous cell responses, we choose distributional distances which are independent to our
model hypothesis, opting fo use MMD over the Wasserstein mefric, a distributional distance widely
used in the field of machine learmning. MMD is a strong metric in which low values imply that a pair of
distributions share similar values across all moments, i.e., the distributions have the same means,
standard deviations, etc. We describe this in the manuscript but will improve the wording fo make its
implications more obvious.

The selection of setup and the comparative mefric in previous work has —in our eyes— severe
limitations and does not actually probe the baselines’ ability to predict single cells accurately.
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Proposed manuscript revisions for NMETH-A49668, Bunne ef al.

Correlation-based metric solely capiures if a method is capable of predicting cell perturbation
responses on the level of a population average. Further, the mean and the standard dewviation of a
population are a poor approximation of an actual distribution, unless the measured distribution is a
neat Gaussian. Single-cell data, paricularly if derived from a perturbed system, typically have much
more complicated distributions.

Notwithstanding our concemns with the proposed mefrics, we will include the standard deviation as
well as R2 when benchmarking CellOT with the baselines in Figure 2. We will also improve our
explanation on metric choice in the main manuscript. Finally, we will also implement a bootstrapped
version of the MMD metnic which will enable us to introduce statistical significance testing when
benchmarking CellOT to the baselines.

Batch correction (Reviewer 1)

Reviewer 1 would like us to assess CellOT's ability to perform batch comections (given scGen's ability
fo do so). CellOT was not designed nor is it intended fo be used for batch comrection. Instead, we aim
fo predict the effect of a perturbation. We, therefore, think that the request is outside the scope of this
manuscript. We kindly ask you, Rita, to decide whether we should attempt a batch correction task
using the suggested dataset from Luecken et al. and whether the results of such an analysis should
be included in this manuscript.

Additional baselines (Reviewer 1-3)

Reviewers 1, 2, and 3 requested the implementation of additional baselines (algorithms) to compare
CellOT to. They include PopAlign, MELD, phMED, and IQCELL. After careful consideration, we find
that they either rely on identifying cell types/clusters (PopAlign), predict which cells will respond to
treatment but not how they respond (MELD), are not related to the prediction of perturbation effects
(phEMD), or are imited to the use of < 6 features (IQCELL). We therefore think that it will be
challenging to include additional baseline methods.

We intend to implement PopAlign as an additional baseline and include it in the benchmarking as it is
methodologically closest to the task performed by CellOT. At this point, however, it is not clear to us
how to modify PopAlign for an OOD task. In any case, we will cite and discuss these algorithms in the
main manuscript as related work.

Limitations of OT and CellOT [(Reviewer 2)

Reviewers 2 and 3 propose an improved description of the limitations of optimal transport theory in
the context of biology and OOD predictions. Further, they would welcome an improved robustness
quantification of CellOT (i.e., when does it stop to produce trustworthy results) and “the quality of the
OT derived mapping should also be benchmarked.”

We therefore will cover the limitations of CellOT and OT better in the Discussion section of the main
manuscript. Also, we will generate a dummy dataset and/or introduce noise in one of our own data,
with which we will explore and describe the limitations of CellOT prediction ability. A good matching
should, in general, yield a small distributional distance to the set of cbserved cells as well as a small
fransport cost. For example, a random assignment of untreated cells to freated cells would have a
small distributional cost but large transport cost. We will thus add an analysis on the tradeoffs
between transport costs and distributional distance for all methods.

Community (Reviewer 2 and 3)

Reviewers 2 and 3 encouraged us to publish CellOT as a software package to the computational
single-cell community. We are indeed committed to maximizing accessibility and adoption of CellOT
for the whole community. We are acfively improving and generating supporting material for CellOT.
We will, upon acceptance (if not earlier), populate the current open-source Github repository with
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Proposed manuscript revisions for NMETH-A49668, Bunne ef al.

documentation, tutorials, and notebooks to not only reproduce our resulis but also allow users to
quickly test their method on a new application.

Hyperparameters (Reviewers 1 and 3)

Reviewers 1 and 3 express concern regarding disadvantageous hyperparameter tuning in favor of
CellOT. In fact, quite the opposite is the case. We selected — through an extensive search — the
hyperparameters resulting in the most accurate scGen and cAE predictions (details described in
Methods). Hyperparameter searches for CellOT, on the other hand, were not required. We have found
the method to be quite stable and, in fact, use the same configuration for all experiments. We will
extend our explanation regarding hyperparameter selection in the Supplementary to prevent future
misunderstandings on the matter, including the important distinction, that unlike the other methods
CellOT did not require hyperparameter tuning.

Concerns about train and test splits (Reviewer 2)

Reviewer 2 raises the concern that fraining and testing splits may not account for individual cell types
or that they may be present in different proportions. As common practice, we split the dataset into an
80% train/ 20% test. Statistically, we do not expect major differences as these splits are random.
We will provide a quantification report on the similarity of the train and test set for both the SciPlex3
and 4i dataset. The results will be included in the Supplementary of the manuscript.

Varia (Reviewer 1-3)

All reviewers identified amongst others, typos, unconventional abbreviations, and inconsistencies in
benchmarking reporting. We thank them for their accurate examination of the manuscript and will
rectify the identified mistakes.
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Decision Letter, first revision:

Dear Gunnar,

Thank you for letting us know how you would respond to the remaining referee comments for your
manuscript "Learning Single-Cell Perturbation Responses using Neural Optimal Transport" (NMETH-
A49668B). It has now been seen by the original referees and their comments are below.

Based on the responses you've provided, we'll be happy in principle to publish it in Nature Methods,
pending minor revisions to satisfy the referees' final requests and to comply with our editorial and
formatting guidelines.

We ask that you include any analyses that were only shown in the previous rebuttal as Supplementary

Information and that you clarify and discuss the challenges associated with analyzing the glioblastoma

data in particular. Please add clarifications to the text wherever possible to try to reduce the possibility
of the concerns raised by the referee being raised by new readers.

We are now performing detailed checks on your paper and will send you a checklist detailing our
editorial and formatting requirements in about a week. Please do not upload the final materials and
make any revisions until you receive this additional information from us.

TRANSPARENT PEER REVIEW

Nature Methods offers a transparent peer review option for new original research manuscripts
submitted from 17th February 2021. We encourage increased transparency in peer review by publishing
the reviewer comments, author rebuttal letters and editorial decision letters if the authors agree. Such
peer review material is made available as a supplementary peer review file. Please state in the cover
letter ‘I wish to participate in transparent peer review’ if you want to opt in, or ‘l do not wish to
participate in transparent peer review’ if you don’t. Failure to state your preference will result in delays
in accepting your manuscript for publication.

Please note: we allow redactions to authors’ rebuttal and reviewer comments in the interest of
confidentiality. If you are concerned about the release of confidential data, please let us know
specifically what information you would like to have removed. Please note that we cannot incorporate
redactions for any other reasons. Reviewer names will be published in the peer review files if the
reviewer signed the comments to authors, or if reviewers explicitly agree to release their name. For
more information, please refer to our <a href="https://www.nature.com/documents/nr-transparent-
peer-review.pdf" target="new">FAQ page</a>.
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ORCID

IMPORTANT: Non-corresponding authors do not have to link their ORCIDs but are encouraged to do so.
Please note that it will not be possible to add/modify ORCIDs at proof. Thus, please let your co-authors
know that if they wish to have their ORCID added to the paper they must follow the procedure
described in the following link prior to acceptance:
https://www.springernature.com/gp/researchers/orcid/orcid-for-nature-research

Thank you again for your interest in Nature Methods. Please do not hesitate to contact me if you have
any questions. We will be in touch again soon.

Sincerely,
Rita

Rita Strack, Ph.D.
Senior Editor
Nature Methods

Reviewer #1 (Remarks to the Author):

In their resubmitted manuscript, Bunne et al. have added a number of new analyses that help to clarify
the strength and limitations of their method. Some of these analyses are quite convincing. A number of
them, however, involve comparisons to artificially weak baselines, while others expose weaknesses in
the presented method. In general, the revisions do little to clarify what kinds of biological questions an
investigator might use CellOT to answer.

Detailed comments on the points raised in my original review are presented below. A more general
observation is that the results rely heavily on examples and visualizations. These include UMAPs, whose
deficiencies (Chari et al., doi: 10.1101/2021.08.25.457696) call into question their use in model
evaluation, and case studies of individual genes that are well-predicted by CellOT. Quantitative results
calculated over entire datasets, when presented, are decidedly more mixed than these examples would
seem to suggest. For instance, the r*2 is regrettably not provided for the Kang or hematopoiesis
datasets, and shows a mixed picture for the immune and glioblastoma datasets. The r”2 results for the
sci-Plex dataset are encouraging, but sci-Plex paper tested 188 small molecule treatments; how were
just 9 of these selected, and why are only 5 of those 9 shown in the paper and supplement? What are
the results for the other 4?
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1. In my original review, | expressed uncertainty about the biological questions that would require a tool
like CellOT to answer. The authors’ response rests on the premise that single-cell responses to
perturbations are heterogeneous, and understanding this heterogeneity is useful to better understand
diseases. | think we agree that cell state- or subtype-specific perturbation responses are interesting. | am
not convinced that the data presented in this paper supports the contention that predicting paired
responses for individual cells is a necessary or desirable approach to understand these responses. This
skepticism is augmented by the authors’ admission that CellOT (i) only predicts perturbation responses
for a few dozen genes among the thousands measured by scRNA-seq, (ii) will only predict perturbation
responses similar to those that have already been measured, and (iii) struggles to predict perturbation
responses in a realistic example of the exact application the authors suggest (i.e. the glioblastoma
dataset).

At a more technical level, the authors’ new analyses expose the strengths and weaknesses of CellOT. To
my mind, perhaps the most compelling piece of data presented in the resubmission is the inline figure
from the rebuttal document (unfortunately not included in the manuscript itself) showing that CellOT
dramatically outperforms a very simple baseline at predicting full distributions of gene expression after
perturbation, but that this simple baseline does just as well at predicting mean changes in gene
expression. | think this experiment, along with the MMD results presented throughout, shows
convincingly that CellOT predictions more accurately reflect variability in perturbation responses across
individual cells, but it remains very much unclear whether CellOT is better at predicting average
responses for a given cell state. After reading the revised manuscript, | am left without a clear sense of
the kinds of questions one might be able to answer by predicting variability in gene expression
responses to measured perturbations. The authors would certainly need to address this point in order to
make this tool meaningful to the community.

2. The authors clarify that the results in Fig. 3 do, in fact, show CellOT-predicted profiles, and argue that
these responses could not have been recovered using an average-perturbation baseline.

This baseline seems so trivial as to be a straw man: the figure legend (unfortunately no description of
the experiment is provided in the Methods) suggests that mean expression in unperturbed cells is
averaged over all cells from one of the two cell lines, but the authors acknowledge that the
unstimulated population displays subpopulation structure, and it is unlikely any single-cell study would
average responses over the entire control dataset regardless of cell states or subtypes. Moreover, the
evaluation consists of visual inspection of a UMAP, which as noted above is not quantitative. Broadly,
the response does not address the idea that new biological insights can be obtained only through
predicted profiles.

3. The authors evaluate CellOT on two new datasets. This is welcome, but does little to assuage
concerns about variability in performance from one dataset to another. In the glioblastoma dataset, for
example, CellOT is outperformed or equalled by cAE or scGen, depending on the metric. Separately, the
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authors’ remark that they are running out of single-cell data on which to test their method is difficult to
comprehend, given the vast quantities of single-cell data that are publicly available. It is not clear why
CellOT would be so specialized as to be applicable only to a tiny fraction of this data.

4. | very much appreciate the authors’ efforts to evaluate CellOT on bona fide ood settings, but | am not
sure the results establish that handling batch effects is as “out of scope” for CellOT as the authors would
wish it to be. For example, in the glioblastoma dataset, the authors find that CellOT is unable to make
reliable predictions for a subset of patients, and argue this reflects biological differences between
patients, but it strikes me that an equally plausible explanation would be the presence of technical
differences between libraries. | will also reiterate that presenting the Kang et al. dataset as an ood
evaluation is misleading given that these samples were all in fact sequenced in the same library, and |
feel this should at least be noted in the text of the paper, and ideally replaced with a better example.

5. The fact that dimensionality reduction of scRNA-seq data is necessary for CellOT to work, and that the
results are reasonably sensitive to the specific choice of embedding, would seem important to at least
clarify in the manuscript for potential users.

Reviewer #2 (Remarks to the Author):

The authors have properly addressed my scientific concerns. As for software improvement, the authors
mentioned in the rebuttal letter that they are writing documentation and detailed tutorials, plan to
make CellOT available on PyPI, and add Python tests to the package. These three tasks should be done
before the publication of the paper. | recommend publication of the paper given the above
software/documentation improvements are done.

Reviewer #3 (Remarks to the Author):

The revised manuscript and the responses to the reviewers address most of the questions raised during
the previous round.

| appreciate that the authors added more datasets and acknowledge the limited availability of datasets
for the task.

The authors have addressed all my concerns about the information leakage by re-processing the
datasets and fair comparison by incorporating additional metrics and clarifying the choice of
hyperparameters.
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The choice of parameterized methods and top-k genes has also been clarified.

‘ Author Rebuttal, first revision:
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Detailed Response to All Reviewers

Reviewer 1

Bunne et al. have added a number of new analyses that help to clarify the strength
and limitations of their method. Some of these analyses are quite convincing. A
number of them, however, involve comparisons to artificially weak baselines [...].

In the paper, we benchmark against three published and well-cited methods that represent
the current state-of-the-art (scGen, cAE, and PopAlign). In addition, we include two
additional baselines allowing us to assess the technical “lower” (Observed) and “upper”
bound (ldentity). The conducted comparison comprises all standard metrics of previous
work as well as introduces additional evaluation metrics sensitive to heterogeneity, i.e.,
MMD. Unfortunately, the reviewer does not provide any evidence to substantiate this claim,
and they do not specify why they think that the comparison is based on “artificially weak
baselines”.

A more general observation is that the results rely heavily on examples and
visualizations. These include UMAPs, whose deficiencies Chari and Pachter (2021)
call into question [...], and case studies of individual genes that are well-predicted by
CellOT.

We politely but strongly disagree with the reviewer and feel this is a misrepresentation of our
work: All of our experiments are backed up with extensive quantitative evaluations using the
standard (and non-standard, more sensitive) evaluation metrics. We use examples and
visualizations solely to help give the reader insight and intuition into what types of behavior
these metrics can capture. Our results thus do not “rely heavily” on examples and
visualizations.

Each comparison is further supported by a set of quantitative metrics computed on all genes
or highly variable genes (computed via ScanPy's “highly_vanable_genes” function) (i.e., Iz,
r2, and MMD). In addition, we indeed include “"case studies of individual genes” that are
intended to help give intuition behind the metrics and in no way act as a substitute for
guantitative reasoning. We, therefore, assert that the statement by R1 is misleading.

A detailed list of all instances of UMAP and their contexts within our main analysis can be

found below:

- Fig. 2c, f to visualize the mixing of predicted and observed cells. Claims made here are
backed up quantitatively by Fig. b, e, and the full set of metrics reported in Fig. S6 and
58. The UMAPs could be ignored, and alf claims would still be valid.

- Fig. 3b to visualize that we correctly learn pERK response and do so while respecting the
distribution of other features. Here we do not interpret the structure in the UMAP, rather
that the colorings are conserved between whatever structure was leamed. These claims
could be made under even a random projection (albeit in this setting, it would be harder to
interpret). Again, claims about the quality of the predicted cell states are quantitatively
evaluated in Fig. S&; if the reader understands the reported metrics, this UMAP can be
ignored.



natureresearch

- Fig. 3c to visualize different perturbation effects (computed from the pairing between
unperturbed and perturbed cells recovered by CellOT) of various drugs. The manuscript
indeed contains a statement on the distinct cluster structure of the perturbation effects
recovered by CellOT (Fig. 3c) vs. the average baseline (Fig. 310d). If necessary, we can
support this claim through additional metrics (e.g., quantifications of the neighbor
enrichment of perturbation effects recovered through both appreaches). In addition, we
would like to emphasize that the rest of the analysis in this figure does not depend on any
claims made using the UMARP. In particular, the clusters we analyze in the rest of the
figure are clustered on control cell states in the original dataspace.

Generally, we share concemns with the reviewer that non-linear projection methods, such as
UMAP, can potentially lead to misleading representations of the data. We were careful and
deliberate in our use of UMAP as a visualization tool and took care to back up all claims with
quantitative reasoning. However, the claims critical of UMAP projections from the manuscript
cited in the reviewer's comments by Chan and Pachter (2021) do not appear to have been
peer-reviewed and we would like to at least caution the reviewer to exercise special care
when using non-peer reviewed work during peer review of other scientific work.

Quantitative results calculated over entire datasets, when presented, are decidedly
more mixed than these examples would seem to suggest. For instance, the r? is
regrettably not provided for the Kang et al. or hematopoiesis datasets and shows a
mixed picture for the immune and glioblastoma datasets. The r? results for the SciPlex
dataset are encouraging.

CellOT outperforms all baselines w.rt. “quantitative results calculated over entire datasets”,
i.e., ¥ and |, feature means, for four different tasks. This includes two o.0.d. tasks (in
particular, the mentioned glioblastoma task). It is unclear to us how these outcomes are
interpreted as “mixed” and we believe such claims misrepresent our results.

We are happy to provide any missing r* metrics as supplemental matenal. We would like to
note that, during the first round of review, this metric was requested to be included due to
legacy reasons. We felt that it is generally an artificially weak metric, evidenced by the fact
that it is often maxed out, even by methods that struggle with other metrics (i.e., | and
MMD).

SciPlex3] tested 188 small molecule treatments; how were just 9 of these selected, and
why are only 5 of those 9 shown in the paper [...]? What are the results for the other
47

We selected a subset of cancer treatments from the full set of SciPlex3 treatments as
showing individual results of 188 treatments seemed excessive. These were selected based
on the drug name (preferring cancer drugs) and not on experimental results. If requested, we
are ready to provide summary statistics of our considered metrics across all 188 treatments.
Additionally, we can provide the results of the missing 4/9 treatments; their omission was
due to a mistake in the compilation of the revised document. Both additions could be entered
into the supplement. We would like to thank R1 for pointing this out.
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1. [...] | think we agree that cell state- or subtype-specific perturbation responses are
interesting. | am not convinced that the data presented in this paper supports the
contention that predicting paired responses for individual cells is a necessary or
desirable approach to understanding these responses.

First, CellOT allows us to model molecular responses in single cells upon perturbation. More
specifically, when provided with an unperturbed population of cells (i.e., of an unseen
sample), it enables us to infer their perturbed states. Using six different datasets, we
demonstrate CellOT's ability to capture heterogeneous perturbed states faithfully while
outcompeting current state-of-the-art algorithms.

Second, by doing so, CellOT indeed recovers a pairing between unperturbed and perturbed
states, which is crucial for understanding “cell state- or subtype-specific” molecular
mechanisms of perturbations. More specifically, it allows detecting cell state-specific effects
of drugs on samples by disentangling subpopulation-specific drug responses (see Fig. 3).

Without such a pairing, one either requires annotation of distinct cell states or subtypes oris
restricted to modeling average behavior (whose limitations R1 acknowledges).
Already in the original review as well as this response, R1 hints that perturbations can be
modeled simply as average responses within identified cell types, a stance that undermines
an active body of research. It is an oversimplification and relies on several strong
assumptions, namely that:

# cell states can be appropriately discretized and are not continuous in nature,

s cell types can be accurately mapped across control and treated populations,

» cell types/states do not change under perturbation,

» cell types/states can be identified to a granulanty such that responses within them

are homogeneous, and
s cell fypes and their responses generalize across samples.

We believe these assumptions are generally not met but acknowledge that this is subject to
current research. In this manuscript, we avoid such simplifying assumptions such as the
ones above. CellOT dispenses the need for approximations on population or subpopulation
level and does not require additional knowledge on cell types.

The statement further contains false statements and misconceptions, which we address
separately below:

This skepticism is augmented by the author’s admission that CellOT
i) only predicts perturbation responses for a few dozen genes among the thousands
measured by scRNA-seq.

This statement is false. CellOT predicts the perturbation response of single cells across all
measured features, e.g., for scRMNA-seq all ~1000 highly-variable genes. We can add a
specific statement when introducing the method in the first paragraph of the results.

i) will only predict perturbation responses similar to those that have already been
measured.
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In general, machine learning approaches are designed to leam patterns and make
predictions based on the data they have been trained on. So, if a model has not seen certain
types of perturbations before, e.g., a drug with different modes of action, it may struggle to
predict their responses accurately. This holds true for CellOT as well as any of the
considered baselines.

However, we test CellOT in several o.0.d. settings and demonstrate its ability to capture
perturbation responses across different species, cells of varying potency, as well as patients.
While out of scope for this paper, it is indeed an interesting direction for future work to
combine CellOT with methods that, in theory, could generalize to, for example, unseen
drugs. We can include a note on that in the discussion to encourage future directions for the
community.

iii) struggles to predict perturbation responses in a realistic example of the exact
application the authors suggest (i.e., the glioblastoma dataset).

The reviewer is cherry-picking a single negative example and is ignoring the successful
performances reported on three other prediction tasks, comprising two 0.0.d. tasks (the
cross-species and hematopoiesis dataset) as well as one o.0.5. task (the lupus patient
dataset).

The glioblastoma task contains data from seven highly diverse patients and subsequently,
both CellOT, as well as the baseline methods, are not able to capture perturbation responses
in the 0.0.d. setting. Predicting treatment responses to unseen patients (in particular based
on a very small cohort) is simply not possible for any current approach that we are aware of.
We nevertheless believe including such a “negative” result is important and a good reminder
of the challenges ahead of us as a community. Such tasks require additional datasets, larger
cohorts, and other technical extensions. While this is an ongoing effort of our team, this is
out of the scope of the current submission. We discussed this in the final paragraph of the
Discussion section.

1. (continued) [...] Perhaps the most compelling piece of data presented in the
resubmission is the inline figure from the rebuttal document [...] showing that CellOT
dramatically outperforms a very simple baseline at predicting full distributions of
gene expression after perturbation, but that this simple baseline does just as well at
predicting mean changes in gene expression.

| think this experiment, along with the MMD results presented throughout, shows
convincingly that CellOT predictions more accurately reflect variability in perturbation
responses across individual cells, but it remains very much unclear whether CellOT is
better at predicting average responses for a given cell state.

We feel this is a misconception by the reviewer. A method with access to the “true” cell type
annotation (as the case for baseline modeling the cell type-specific average response)
performs of course on par with CellOT when considering metrics that can only capture mean
effects (r-means and l.-means). However, despite its reliance on this additional and
manually curated biological information, this “simple baseline” struggles when evaluated with
metrics that capture higher moments of the distribution of treated cells (l,-std and MMD), i.e_,
heterogeneity even within both cell lines.
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2. [...] Results in Fig. 3 [...] could not have been recovered using an
average-perturbation baseline. This baseline seems so trivial as to be a straw man.
[---] It is unlikely any single-cell study would average responses over the entire control
dataset regardless of cell states or subtypes.

Regrettably, the reviewer appears to ignore the additional analysis provided in the rebuttal
that extends the current analysis with a cell type-specific average response computed based
on additional cell type annotations (and not “average responses over the entire control
dataset regardless of cell states or subtypes”). If helpful and requested, we can add the
results and a description of this additional analysis to the supplement.

Again, an accurate identification of cell types is often not possible. During the rebuttal, we
thus added the baseline PopAlign, an approach detecting the underlying subpopulation
structure in an unsupervised manner (see Fig. 2).

Moreover, the evaluation consists of a visual inspection of a UMAP, which as noted
above is not quantitative.

We disagree with this statement as the evaluation is based on other metrics but not the
UMAP itself. In addition, please note the discussion above on our general use of UMAPs
throughout the manuscript.

3. The authors evaluate CellOT on two new datasets. This is welcome but does little to
assuage concerns about variability in performance from one dataset to another. In the
glioblastoma dataset, for example, CellOT is outperformed or equaled by cAE or
scGen, depending on the metric.

Respectfully, we believe this to be a misleading representation of our results presented in
the manuscript.

Across all previous datasets (4i, SciPlex3, hematopoiesis, and lupus patients), CellOT
consistently outperforms cAE and scGen in all metrics. This is also the case in the newly
added cross-species dataset. CellOT defeats scGen and cAE in all metrics (except it is on
par with scGen w.rt. r* feature means, see Fig. 4f). Our analysis further demonstrates that
CellOT is capable of predicting bimodal gene activation in an o.o.d. setting, whereas scGen
predicts a (biologically meaningless) unimodal expression (Fig. 4g).

As outlined above, the glioblastoma dataset represents a particularly difficult problem for
CellOT as well as the baselines. By containing only seven heterogeneous patients,
predictions in the 0.0.d. settings are challenging or almost impossible.

Separately, the authors remark that they are running out of single-cell data on which
to test their method is difficult to comprehend, given the vast quantities of single-cell
data that are publicly available. It is not clear why CellOT would be so specialized as
to be applicable only to a tiny fraction of this data.

This statement by R1 is misleading. In the rebuttal, we write:

“The preprint of Pleidl et al., (2022) (8) provides a recent overview of standardized datasets,
and we have exhausted all 0.0.d. listed fasks.”,
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i.e., we are referring to potential 0.0.d. but not i.i.d. tasks. The manuscript currently contains
six different i.i.d. tasks of vanous different natures, which should be sufficient to support the
claim that CellOT is state-of-the-art in predicting single-cell perturbation responses.

4, [...] In the glicblastoma dataset, the authors find that CellOT is unable to make
reliable predictions for a subset of patients and argue this reflects biological
differences between patients, but it strikes me that an equally plausible explanation
would be the presence of technical differences between libraries.

We thank the reviewer for this comment and agree with it. We will amend the manuscript to
include “the presence of technical differences between libraries” as a potential explanation
for CellOT's limited ability to predict a subset of patients.

| will also reiterate that presenting the Kang et al. dataset as an o.0.d. evaluation is
misleading given that these samples were all in fact sequenced in the same library,
and | feel this should at least be noted in the text of the paper, and ideally replaced
with a better example.

We would like to emphasize that throughout the manuscript, we use the term “out-of-sample”
when refermring to, presenting, or discussing results related to the Kang et al. dataset (e.g.,
Fig. 4a-c). Further, we specify in the *Result” section how “out-of-sample® and
“out-of-distribution” differ (see section "CellOT reconstructs innate immune responses across
different species”). Rather than removing our findings derived from the Kang et al. dataset,
we believe them to be a valuable addition to the readers of the manuscript as it provides an
example of an 0.0.s. task.

5. The fact that dimensionality reduction of scRNAseq data is necessary for CellOT to
work, and that the results are reasonably sensitive to the specific choice of
embedding, would seem important to at least clarify in the manuscript for potential
users.

We agree with the reviewer's comment. CellOT as well as the other baselines require some
form of dimensionality reduction for scRNAseq data. We would like to emphasize, however,
that the evaluation is conducted on the gene expression profiles, and thus potential
sensitivities of embedding choices are captured by the evaluation metrics. We will, however,
add a remark on the use of dimensionality reduction to the Discussion of the manuscript.

Reviewer 2

Thank you very much for your positive feedback on our revised manuscript. As you noted,
we mentioned in our rebuttal letter that we are writing documentation and detailed tutorials
and plan to make CellOT available on PyPl. We are happy to report that we have made
significant progress on these tasks and are now in the final stages of completing them.

Reviewer 3
Thank you very much for your positive feedback!
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‘ Final Decision Letter:

Dear Gunnar,

| am pleased to inform you that your Article, "Learning single-cell perturbation responses using neural
optimal transport", has now been accepted for publication in Nature Methods. Your paper is tentatively
scheduled for publication in our August print issue, and will be published online prior to that. The
received and accepted dates will be June 28, 2022 and June 23, 2023. This note is intended to let you
know what to expect from us over the next month or so, and to let you know where to address any
further questions.

Acceptance is conditional on the data in the manuscript not being published elsewhere, or announced in
the print or electronic media, until the embargo/publication date. These restrictions are not intended to
deter you from presenting your data at academic meetings and conferences, but any enquiries from the
media about papers not yet scheduled for publication should be referred to us.

Once your paper is typeset, you will receive an email with a link to choose the appropriate publishing
options for your paper and our Author Services team will be in touch regarding any additional
information that may be required.

Please note that <i>Nature Methods</i> is a Transformative Journal (TJ). Authors may publish their
research with us through the traditional subscription access route or make their paper immediately
open access through payment of an article-processing charge (APC). Authors will not be required to
make a final decision about access to their article until it has been accepted. <a
href="https://www.springernature.com/gp/open-research/transformative-journals"> Find out more
about Transformative Journals</a>

Authors may need to take specific actions to achieve <a
href="https://www.springernature.com/gp/open-research/funding/policy-compliance-fags">
compliance</a> with funder and institutional open access mandates. If your research is supported by a
funder that requires immediate open access (e.g. according to <a
href="https://www.springernature.com/gp/open-research/plan-s-compliance">Plan S principles</a>)
then you should select the gold OA route, and we will direct you to the compliant route where possible.
For authors selecting the subscription publication route, the journal’s standard licensing terms will need
to be accepted, including <a href="https://www.springernature.com/gp/open-research/policies/journal-
policies">self-archiving policies</a>. Those licensing terms will supersede any other terms that the
author or any third party may assert apply to any version of the manuscript.
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You will not receive your proofs until the publishing agreement has been received through our system.

If you have any questions about our publishing options, costs, Open Access requirements, or our legal
forms, please contact ASJournals@springernature.com

Your paper will now be copyedited to ensure that it conforms to Nature Methods style. Once proofs are
generated, they will be sent to you electronically and you will be asked to send a corrected version
within 24 hours. It is extremely important that you let us know now whether you will be difficult to
contact over the next month. If this is the case, we ask that you send us the contact information (email,
phone and fax) of someone who will be able to check the proofs and deal with any last-minute
problems.

If, when you receive your proof, you cannot meet the deadline, please inform us at
risproduction@springernature.com immediately.

Once your manuscript is typeset and you have completed the appropriate grant of rights, you will
receive a link to your electronic proof via email with a request to make any corrections within 48 hours.
If, when you receive your proof, you cannot meet this deadline, please inform us at
risproduction@springernature.com immediately.

Once your paper has been scheduled for online publication, the Nature press office will be in touch to
confirm the details.

If you have posted a preprint on any preprint server, please ensure that the preprint details are updated
with a publication reference, including the DOI and a URL to the published version of the article on the
journal website.

Once your paper has been scheduled for online publication, the Nature press office will be in touch to
confirm the details.

Content is published online weekly on Mondays and Thursdays, and the embargo is set at 16:00 London
time (GMT)/11:00 am US Eastern time (EST) on the day of publication. If you need to know the exact
publication date or when the news embargo will be lifted, please contact our press office after you have
submitted your proof corrections. Now is the time to inform your Public Relations or Press Office about
your paper, as they might be interested in promoting its publication. This will allow them time to
prepare an accurate and satisfactory press release. Include your manuscript tracking number NMETH-
A49668C and the name of the journal, which they will need when they contact our office.
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About one week before your paper is published online, we shall be distributing a press release to news
organizations worldwide, which may include details of your work. We are happy for your institution or
funding agency to prepare its own press release, but it must mention the embargo date and Nature
Methods. Our Press Office will contact you closer to the time of publication, but if you or your Press
Office have any inquiries in the meantime, please contact press@nature.com.

To assist our authors in disseminating their research to the broader community, our Sharedlt initiative
provides you with a unique shareable link that will allow anyone (with or without a subscription) to read
the published article. Recipients of the link with a subscription will also be able to download and print
the PDF.

As soon as your article is published, you will receive an automated email with your shareable link.

You can now use a single sign-on for all your accounts, view the status of all your manuscript
submissions and reviews, access usage statistics for your published articles and download a record of
your refereeing activity for the Nature journals.

Nature Portfolio journals <a href="https://www.nature.com/nature-research/editorial-
policies/reporting-standards#protocols" target="new">encourage authors to share their step-by-step
experimental protocols</a> on a protocol sharing platform of their choice. Nature Portfolio 's Protocol
Exchange is a free-to-use and open resource for protocols; protocols deposited in Protocol Exchange are
citable and can be linked from the published article. More details can found at <a
href="https://www.nature.com/protocolexchange/about"
target="new">www.nature.com/protocolexchange/about</a>.

Please note that you and any of your coauthors will be able to order reprints and single copies of the
issue containing your article through Nature Portfolio 's reprint website, which is located at
http://www.nature.com/reprints/author-reprints.html. If there are any questions about reprints please
send an email to author-reprints@nature.com and someone will assist you.

Please feel free to contact me if you have questions about any of these points.
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