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S1. Details of the disordered metasurface array 

The pixelated disordered metasurface consists of a single layer array of subwavelength 

dielectric nanopillars. An unpolarized optical wave which can be considered as a 

combination of any pair of orthogonal SoPs is incident on the metasurface. In addition to 

polarization and phase, the amplitudes of a pair of orthogonal SoPs through each meta-

pixel can be controlled independently via judicious pixel design [1]. In this work, a meta-

pixel array is composed of two distinct anisotropic nanopillars. The interleaved 

arrangement of these two nanopillars forms a miniature interference system, which plays a 

critical role in achieving polarization-dependent amplitude modulation. Specifically, each 

nanopillar can be considered as an individual dielectric waveguide that supports different 

optical modes along the rectangular nanopillars’ two symmetry axes. As a result, the two 

nanopillars impose polarization dependent complex amplitudes 𝑈!±(𝑥, 𝑦) and 𝑈#
±(𝑥, 𝑦) to 

the transmitted optical waves. The total complex amplitude of the miniature interference 

system is given by 𝑈±(𝑥, 𝑦) = 𝑈!±(𝑥, 𝑦) + 𝑈#
±(𝑥, 𝑦), where + and − denote a pair of 

orthogonal states of polarization. By altering the phase difference 𝜑±(𝑥, 𝑦) of the complex 

amplitudes between the two nanopillars, any polarization-dependent transmitted-light 

amplitude |𝑈±(𝑥, 𝑦)| can be achieved.           

There are two kinds of wavefront modulation mechanisms for polarization-dependent 

dielectric metasurfaces including propagation phase and geometric (or Pancharatnam-

Berry, PB) phase [2]. Propagation phase designs are dependent on the shape of the 

nanopillars, which allow for the metasurface imparting two independent spatial phase 

profiles on a pair of orthogonal, linear polarizations. Geometric phase designs are only 

determined by angular orientation (𝜃) of the nanopillar, which allow for the imposition of 
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two equal but opposite phase profiles (𝜑± = ±2𝜃 ) on a pair of orthogonal, circular 

polarizations.  

The designed metasurface device consists of rectangular titanium dioxide (TiO2) 

nanopillars with different dimensions and orientations, resting on a fused-silica substrate. 

The nanopillars are designed to have identical heights of h=600 nm and are arranged in a 

square lattice. Here, we provide a simple example to illustrate the design process and 

optical properties of the constructed meta-pixel. As shown in Supplementary Fig. 1a, the 

meta-pixel design starts from an anisotropic nanopillar. The simulation results exhibit a 

linear polarization-dependent optical response. Using the geometric phase alone 

(Supplementary Fig. 1b), the transmitted-light intensities of a pair of orthogonal circular 

SoPs decrease simultaneously since the almost identical interference effect occurs on both 

circular polarizations. Moreover, the circular polarization-dependent optical response is 

quite weak and difficult to control. Here, a unification of the propagation phase design and 

geometric phase design is employed to achieve the polarization-dependent interference 

behavior for any pair of orthogonal SoPs (Supplementary Fig. 1c and Supplementary Fig. 

2), including linear and circular polarizations. Supplementary Fig. 3 shows optical 

properties of the chosen nanopillars and the constructed meta-pixel over the entire visible 

spectral range from 400 nm to 700 nm. The simulation results demonstrate that the 

proposed dielectric meta-pixel has capability of providing a desired effect of polarization-

dependent transmission for any pair of orthogonal SoPs. The output signals from the 

different meta-pixels are collected by a detector and then processed to reconstruct the 

incident SoP.     
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In our design, the first task is to perform a series of parameter sweeps and establish a 

library that determines the relation between birefringent phase shifts (δx, δy) and lateral 

dimensions (Dx, Dy) of a rectangular nanopillar. The height of the nanopillars is fixed at 

600 nm, while the lateral dimensions, period, and central wavelength are considered as 

adjustable design parameters. The period varies between 300 nm to 450 nm, and the central 

wavelength ranges from 400 nm to 700 nm, forming a large parameter space. 

Supplementary Fig. 4 gives an example which shows simulated transmitted-light intensity 

and phase shifts of transmission coefficients for an infinite periodic array of rectangular 

nanopillars at a wavelength of 550 nm. The nanopillar size is varied from 80 nm to 330 nm 

in a square lattice of 400 nm period. The simulations are implemented by employing a 

finite-difference-time-domain (FDTD) method with linearly polarized light illumination 

from the SiO2 substrate side. To increase the reconstruction performance across the whole 

visible spectrum, 512 nanopillars are chosen as the basic building blocks for the 

metasurface array. Each meta-pixel contains a periodic array of two kinds of anisotropic 

nanopillars with varying orientations and sizes. In total, there are 256 distinct meta-pixels 

forming the entire metasurface device.   

In the main text, we employed diattenuation as a metric to evaluate the designed 

metapixels. In general, diattenuation refers to the polarization-dependent transmittance of 

a material, where the amount of transmitted light varies depending on the incident 

polarization state. For the designed metapixel, the Stokes-like vector 𝑴$,&  contains 

parameters (𝑚$,&
' , 𝑚$,&

( , 𝑚$,&
) , 𝑚$,&

* ). The first element of 𝑴$,& gives average power of a pair 

of orthogonal SoPs and the last three elements describe the polarization-dependence 

features. The diattenuation of a metapixel is determined by comparing the magnitudes of 
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the last three elements with respect to the first. Specifically, the diattenuation of the 

designed metapixel can be obtained using the following formula:  

                                                 𝐷 = !
"!,#
$ #𝑚#,%

! +𝑚#,%
& +𝑚#,%

'                                             (S1) 

In our method, the imaging device we used exhibits low diattenuation, a distinctive 

characteristic that sets it apart from conventional imaging techniques. On the other hand, 

the disordered metasurfaces provide ‘randomness’ in spatial and polarization dimensions 

(Supplementary Fig. 5), enabling them to serve as effective sensing matrices for high-

precision signal reconstruction.      

S2. Sampling efficiency 

In this section, we provide a detailed calculation process regarding the sampling efficiency 

for the comparison of different arrangements [3-5]. According to the principles described 

in the main text, the smaller 𝜇(𝜦,𝜳), the fewer sampling points are required, thereby 

indicating a higher sampling efficiency of the sensing system. The sparse representation 𝜳 

is signal dependent, and can be learned from the dataset. In the calculation of sampling 

efficiency, 𝜳 is derived from a full-Stokes polarization image dataset [6] by employing the 

PCA method. The pipeline is shown in Supplementary Fig. 6. Specifically, we divide the 

polarization dataset into 21175 patches of 12×12×4 pixels (horizontal ×  vertical × 

polarization). As for 𝜦, we selected 10000 sampling patches of the measurement matrix M 

with a size of 12×12 pixel to evaluate the sampling efficiency of three DoFP arrangements. 

The sensing matrix 𝜦 is uniformly defined as  𝜦 = diag(𝑴𝟏,𝟏
𝑻 ,𝑴𝟏,𝟐

𝑻 , … ,𝑴𝟏𝟐,𝟏𝟐
𝑻 ). The size 

of the sparse representation matrix 𝜳  and the sampling matrix 𝜦  are 576×576 and 

144×576, respectively. We tested the sampling efficiency of different arrangements and 
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depicted the results of the sampling efficiency metric 𝜇(𝜦,𝜳)  in Fig. 3d. The sampling 

efficiency of our disordered metasurface array is comparable to that of conventional 

ordered sampling schemes, implying the potential of the proposed disordered sampling 

scheme for high performance polarization imaging.    

S3. Full-Stokes polarimetric measurements 

A. Mathematical exposition  

As described in the main text, the transmitted light intensities 𝑰 captured by the image 

sensor can be modeled by:  

   𝑰. = 𝚲/01𝑺 + 𝑵,                                                               (S2) 

where 𝑰.  denotes the vectorized measurement, 𝚲/01 = [𝑴𝟏,𝑴𝟐, … ,𝑴𝒎]3  denotes the 

polarization sensing matrix of a single micro-polarimeter, 𝑺  denotes the full-Stokes 

parameters of the uniform incident light, N represents the noise and 𝑚 is the meta-pixel 

number of measurements utilized for the single polarimeter. When 𝑚 is larger than four, 

Eq. S2 becomes overdetermined and can be easily solved by the damped least square 

method [7]:        

                                          𝑺 = (𝚲/013 𝚲/01 + 𝜂𝑬)4(𝚲/013 𝑰. ,                                        (S3)   

where E and 𝜂 denote the identity matrix and the damped factor, respectively. 

 

B. Polarimetry measurements at other wavelengths 

We also perform polarization measurements using the same metasurface at other 

visible wavelengths, such as 450 nm and 650 nm. Supplementary Fig. 7 shows the optical 

setup of the polarization measurements. Supplementary Figs. (8-9) show the experimental 

results. By summarizing the reconstructed Stokes parameters of 25 arbitrarily selected 
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SoPs at a wavelength of 650 nm, the average measurement errors of S1, S2, and S3 are 

±0.46%, ±0.44%, and ±0.43%, respectively. At a wavelength of 450 nm, the average 

measurement errors of S1, S2, and S3 are ±1.10%, ±0.71%, and ±0.80%, respectively. 

Obviously, the experimental results still demonstrate a high level of measurement accuracy. 

Compared with other metasurface-based polarimetric detection techniques reported in the 

literature, our method exhibits the higher performance in measurement accuracy 

(summarized in Table S1).   

Table S1 |  Full-Stokes polarimetric measurement techniques    

        Items 
 

Refs 
Structure design 

Normalized Operation 
Bandwidth 

((𝜆%&' − 𝜆%()) 𝜆*⁄ ) ① 
Error of Stokes parameters ② 

Ref. 8 SPP excitation by X-
shaped aperture Array 33.3% (750-1050 nm) ≈10% (S1), ≈17% (S2), ≈12% (S3) 

Ref. 9 Metasurface in-line 
polarimeter  ≈4.2% (1500–1565 nm) ≈6% (S1), ≈6% (S2), ≈5% (S3)  

Ref. 10 Spin–orbit interaction of 
light with scatterers ≈6.5% (1.5–1.6 μm) ≈7% (S1), ≈16% (S2), ≈11% (S3)  

Ref. 3 Dielectric metasurface Narrow bandwidth 
(≈ 850 nm) 7.5–13% (S1-S3)   

Ref. 11 
Vertically stacked metal-

dielectric 
hybrid metasurfaces  

≈10%(1.4–1.55 μm) 1.9% (S1), 2.7% (S2), 7.2% (S3) 

Ref. 12 Liquid crystal NA 780 nm: 12.4% (S1), 14.1% (S2), 1.7% (S3) 

Ref. 13 Vertically stacked 
plasmonic metasurfaces   ≈7.6%(3.8–4.1 μm) 4 μm: 3.5% (S1), 2.5% (S2), 10.4% (S3) 

Ref. 14 Plasmonic metagrating  35.3%(700–1000 nm) ≈10% (S1-S3)   

This paper Disorder metasurface with 
weak dichroism 54.5% (400-700 nm) 

650 nm: 0.46% (S1), 0.44% (S2), 0.43% (S3) 
550 nm: 0.50% (S1), 0.58% (S2), 0.48% (S3) 
450 nm: 1.10% (S1), 0.71% (S2), 0.80% (S3) 

①𝜆* denotes center wavelength. ② Errors for the Stokes parameters are the arithmetic mean extracted from the data 
presented in each article. 
 
 
 

The polar plot representation in Fig.4 and Supplementary Figs. (8-9) provides a more 

intuitive way to describe the properties of a polarization state, such as the azimuth of the 

polarization ellipse and radiant intensity in specific polarization directions. To create a 

polar plot representation of a polarization ellipse, we can convert the equation of the ellipse 

expressed in Cartesian coordinates (x, y) to polar coordinates (𝜌	 , θ) by using the 
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relationship: 𝑥 = 𝜌	𝑐𝑜𝑠𝜃	 and 𝑦 = 𝜌	𝑠𝑖𝑛𝜃	. In our work, the polar coordinate system is set 

up as (𝜌), θ), where 𝜌) intuitively represents the intensity of polarized light waves when 

passing through a linear polarizer with an azimuth angle of 𝜃.  

To further examine the performance of the metasurface polarimeter with respect to a 

benchmark polarization element, we measured the Stokes vector of a beam passing through 

a Glan-Thompson polarizer at the wavelength of 550 nm. By analyzing the reconstructed 

Stokes parameters of 15 arbitrarily selected SoPs, the average measurement errors of S1, 

S2, and S3 are ±0.53 %, ±0.68 %, and ±0.47 %, respectively. The reconstruction error for 

DoP is ±0.41 %. The experimental results also demonstrate that our method can achieve a 

high measurement accuracy, which is comparable to the results obtained using a wire-grid 

polarizer in our previous experiments. This conclusion is fully justified based on the 

following reasons: In the presence of photon noise, the polarimetric error is inversely 

proportional to the diattenuation of the polarization optics being used. A high-quality Glan-

Thompson polarizer and a wire grid polarizer can provide comparable performance in a 

Stokes vector measurement since these two both have a diattenuation exceeding 99.9%. 

Therefore, the results obtained using these two polarizers are nearly identical.     
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S4. Full-Stokes polarization imaging  

In this section, the image formation model and the corresponding deep mask-aware 

compressed sensing algorithm of the full-Stokes polarization imaging will be introduced.   

A. Mathematical exposition 

As described in the main text, the captured image can be written as:    

                                                 𝑰. = 𝜦𝑺. +𝑵,                                                          (S4) 

where 𝑰.  represents the vectorized form of 𝑰 , 𝜦 = diag(𝑴𝟏,𝟏
𝑻 ,𝑴𝟏,𝟐

𝑻 , … ,𝑴𝒎,𝒏
𝑻 ) is the 

polarization transmission matrix in diagonal form, 𝑺. = H𝑺𝟏,𝟏𝑻 , 𝑺𝟏,𝟐𝑻 , … , 𝑺𝒎,𝒏𝑻 	I3 denotes the 

target full-Stokes polarization images in vectorized form, 𝑵 denotes the noise. We form 

the polarization image as a three-dimensional (space x-y and polarization p) full-Stokes 

polarization sensing problem with compressed two-dimensional (space x-y) measurements. 

The reconstruction process could be formulated as:  

                                   𝑺. = argmin‖𝜦𝑺. − 𝑰.‖)) + 𝜂Γ(𝑺.) ,                                         (S5) 

where term Γ is a regularizer determined by the prior knowledge of the input scene 𝑺. (e.g., 

sparsity), and term 𝜂 is the weight for the prior knowledge. In this paper, to fully exploit 

the statistical prior of natural images and incorporate the information from the calibrated 

compressive polarization sensing matrix, we propose a deep mask-aware compressed 

sensing  network for high fidelity full-Stokes reconstruction.     

 

B. Deep mask-aware compressed sensing  network  

As described in section A, the image reconstruction is an inverse problem of Eq. S4. A 

straightforward approach involves generating the training data pairs (the polarization-

encoded image I and full-Stokes images S) from the full-Stokes polarization dataset and 
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the 3D transmission matrix 𝑴 obtained by calibration, and then training the deep neural 

network as a mapping from I to S. However, without inputting the information of the 

transmission matrix M, the trained model will suffer from overfitting risk and can only 

infer on imaging systems with the same transmission matrix. To overcome these problems, 

we generate random 3D transmission matrix for each full-Stokes polarization image to 

synthesize the polarization-encoded image I based on Eq. S4 and introduce the 

corresponding random transmission matrix as another input into the network as shown in 

Supplementary Fig. 10. Each pair of training data is coded with a unique random 

transmission matrix and the network is trained in a mask-aware way. Thus, the proposed 

deep mask-aware compressive network will tend to learn the solution of Eq. S4 instead of 

a fixed mapping between two fixed training datasets generated with a fixed transmission 

matrix, enabling higher applicability and scalability for practical applications.     

Network architecture: The proposed neural network adopts the fully convolutional neural 

network structure (CNN), which consists of 10 residual blocks. The captured image I and 

random transmission matrix 𝑴 are concatenated into a size of 128×128×5 cube as the 

input of the neural network. The output is the full-Stokes polarization images [𝑆', 𝑆(, 𝑆), 𝑆*]. 

The specific structure of the network is shown in Table S2. 

A compound loss function, consisting of the mean square error (MSE) and 𝐿( norm, 

is used to improve the quality of the results: 

𝐿67689 = ‖𝑮 − F(𝑰,𝑴)‖)) + 𝜆‖𝑮 − F(𝑰,𝑴)‖( ,                             (S6) 

where 𝑮 denotes the ground truth image and F denotes the corresponding operator of the 

neural network. The weight of 𝐿( norm 𝜆 is empirically set to 1. 
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Table S2. Architecture of the deep compressed sensing -based neural networks 

Name Structure Kernel size Stride Parameters 

Input layer Conv 5×64×5×5 1 8K 

Body Res-block × 10 64×64×5×5 1 2.048M 

Output layer Conv 64×4×5×5 1 6.4K 

 

Res-block 

Conv 64×64×5×5 1 102.4K 

ReLU - - 0 

Conv 64×64×5×5 1 102.4K 

 

Dataset: Since there is currently a lack of full-Stokes polarization image datasets with 

enough scales for training deep neural networks, we propose to construct the training 

dataset by combining channels of similar multi-channel image datasets, i.e., the 

hyperspectral dataset. In the experiment, we randomly sample 26,016 hyperspectral 

patches with 31 channels from five common hyperspectral datasets [15-20]. The spatial 

size of these patches is set as 128×128. Then seven channels of these patches are selected 

randomly, denoted by 𝐼(~;. The four-channel full-Stokes image 𝑺 = [𝑆', 𝑆(, 𝑆), 𝑆*]3 can be 

computed by 𝑆' = 𝐼(, 𝑆( = 𝐼) − 𝐼*, 𝑆) = 𝐼< − 𝐼=, 𝑆* = 𝐼> − 𝐼;. According to the generating 

method, although few non-existing polarization vectors (e.g., some points may not be 

located within the Poincaré sphere) may be involved, all the naturally existing polarization 

states could be fully covered and the neural network with training data generated from this 

dataset could be readily effective for real-world proposed polarization imaging. To further 

increase the robustness of the algorithm, we added 5% Gaussian white noise to both the 

transmission matrix M and polarization-encoded image I during the training process as 

shown in Supplementary Fig. S10. With these data enhancement strategies, the network 



11 
 

learns to reconstruct high-fidelity full-Stokes polarization information despite the noise 

deteriorations during the imaging process. 

Training: The network is implemented upon the Pytorch platform. We train the network 

by the Adam optimizer with β( = 0.9 and β) =	0.999. The total number of training epoch 

is set to be 100. The learning rate is initially set to 104< within the first 50 epochs and 

decayed to 104=  in the last 50 epochs. The batch size is set to 32. The whole training 

procedure takes approx. 12 h on a commercial graphics processing unit (Nvidia Geforce 

RTX 3090). 

Testing After training, the full-Stokes polarization images can be reconstructed from the 

captured images with their corresponding 3D transmission matrix. The trained neural 

network contains 2.06 M parameters and requires 330.3 G Flops for inferencing a 400×400 

image. In terms of reconstruction speed, the network is capable of inferring full-Stokes 

images from raw data at a frame rate of 26 frames per second (FPS) on a commercial 

graphics processing unit (Nvidia GeForce RTX 3090).      

 

C. Experimental Setup 

Supplementary Fig. 11 shows the optical setup of the proposed polarization imaging system. 

The prototype system is composed of a commercial primary lens (focal length: 25mm), a 

filter with a bandwidth of 10nm at target spectrum, the designed metasurface array and a 

relay imaging system consisting of a 10× objective lens (Olympus RMX) and an imaging 

sensor (Grasshopper3 GS3-U3-123S6C). It’s worth noting that the system operates with a 

single shot, eliminating the need for mechanical movement. Although the system used for 

calibration (Supplementary Fig. 7) differs from the one used for polarization imaging 

(Supplementary Fig. 11), it has no impact on our imaging performance. This is because the 
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matrix elements recovered from calibration are only related to the optical properties of the 

device itself, and are independent of the light sources and optical elements in the system.  

   

D. Polarization imaging at other wavelengths 

In our approach, the proposed polarization camera can retrieve the SoP of incident light at 

other wavelengths within the visible light range, spanning from 400 nm to 700 nm. For 

different operating wavelengths, only the color filter needs to be replaced. We select 

several representative wavelengths, namely 450 nm, 500 nm, 550 nm, 600 nm, and 650 nm, 

for experimental verification. As depicted in Supplementary Fig. 12, the proposed camera 

consistently maintains high image quality at different wavelengths. 

  

E. Description for supplemental movie S1 

The scene in movie describes a filter wheel fitted with six sheets of film polarizer whose 

axes are arranged radially outward. The filter wheel is driven by an electric motor. The raw 

unprocessed exposure (top left), S0 (top right), DoP (bottom left), and the azimuth of the 

polarization ellipse (bottom right) are shown. Illumination is provided by a LED with a 10 

nm bandpass filter centered at 550 nm.     
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Supplementary Fig. 1 | Design of polarization-dependent meta-pixel. (a) Polarization 

response of anisotropic nanopillars in an infinitely periodic array. Nanopillars have: 

(𝐷?=85 nm, 𝐷@ =230 nm, Δ𝜃=0°). Here,	Δ𝜃 represents relative rotation angle between two 

nanopillars.  (b) Using identical nanopillars with a fixed Δ𝜃−that is geometric phase design. 

Nanopillars have: (𝐷?=85 nm, 𝐷@ =230 nm, Δ𝜃=30°). (c) By varying both dimensions and 

rotation angle−that is by combining the propagation and geometric phase design. 

Nanopillars have: #1(𝐷?=85 nm, 𝐷@ =230 nm), #2(𝐷?=105 nm, 𝐷@ =245 nm), and Δ𝜃=30°.    
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Supplementary Fig. 2 | Simulated energy density of polarization-dependent meta-

pixel. Top views and side views of the normalized energy density in an infinitely periodic 

array for the designed meta-pixel in Supplementary Fig. 1c. The boundaries of the 

nanopillars are depicted by dashed white lines. Scale bars represent 100 nm in all figures.  
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Supplementary Fig. 3 | Optical properties of the designed nanostructures. (a and b) 

Calculated transmission coefficients (red |tx|; green |ty|) for horizontally and vertically 

polarized light and their phase difference (blue, ∆𝜑). In a, nanopillars have: (𝐷?=85 nm, 

𝐷@  =230 nm). In b, nanopillars have: (𝐷? =105 nm, 𝐷@  =245 nm). (c) Polarization-

dependent transmission of the designed meta-pixel in Supplementary Fig. 1c.  
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Supplementary Fig. 4 | Simulation results for parameter space (axis length 𝑫𝒙 and 

𝑫𝒚) of rectangular TiO2 nanopillars. Simulated transmitted-light intensity (a. |𝑡?|), c. 

^𝑡@^
)) and phase shifts (b. 𝛿?, d. 𝛿@) of transmission coefficients for an infinitely periodic 

array of the rectangular nanopillars. The nanopillars are varied from 80 nm to 330 nm in a 

square lattice with a 400 nm period. In these simulations, the nanopillars are 600 nm tall 

and the wavelength is 550 nm. 
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Supplementary Fig. 5 | The distribution of transmission vector 𝑴𝒊,𝒋 of 256 different 

meta-pixels.  The bule points denote the normalized distribution of different meta-pixel. 

The red, green and orange points are the projection of the bule points at different planes.  
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Supplementary Fig. 6 | The pipeline for calculating sampling efficiency	𝝁(𝜦,𝜳). (a) 

Calculation process for matrix 𝜦 . (b) Generation of sparse basis 𝜳 . The size of the 

corresponding image patch is marked below. There are totally 21,175 image vectors cut 

from the full-Stokes polarization dataset. Then 576 uncorrelated basis vectors are extracted 

from these image vectors utilizing the PCA method and combined into a sparse 

representation matrix 𝜳 in descending order of weight.  
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Supplementary Fig. 7 | (a) The optical setup for the polarimetric measurements. The red 

box is the LED light source and the integrating sphere. The uniform LED light is emitted 

from the integrating sphere and then enters the system through the linear polarizer, color 

filter and retarder successively. By rotating the angle of the polarizer and retarder, arbitrary 

SoP can be generated. The inset shows the disordered metasurface array (shown in orange 

box). (b-c) In our experiment, we selected a 16×16 subarray located in the upper-left 

region of the device to conduct the polarization measurement.   
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Supplementary Fig. 8 | Full-Stokes polarimetric measurements at the wavelength of 

650 nm. (a) Three representative SoPs are chosen for polarization measurement. (b) 

Comparison of the SoPs obtained using a commercial polarimeter (green solid lines) and 

our method (red dots), using polar plots and polarization ellipses. The radius on the polar 

plot indicates the normalized light intensity. Blue arrows denote the handedness of light. 

(c) The reconstruction errors of Stokes parameters (S1, S2, S3) of 25 arbitrarily selected 

SoPs on Poincaré sphere.        
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Supplementary Fig. 9 | Full-Stokes polarimetric measurements at the wavelength of 

450 nm. (a) Three representative SoPs are chosen for polarization measurement. (b) 

Comparison of the SoPs obtained using a commercial polarimeter (green solid lines) and 

our method (red dots), using polar plots and polarization ellipses. The radius on the polar 

plot indicates the normalized light intensity. Blue arrows denote the handedness of light. 

(c) The reconstruction errors of Stokes parameters (S1, S2, S3) of 25 arbitrarily selected 

SoPs on Poincaré sphere.    
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Supplementary Fig. 10 | The framework of the reconstruction algorithm. The 

reconstruction process is divided into two steps, the polarization data generator and the full 

convolutional neural network. 	∑∗ represents the forward imaging process, i.e., the label 

(or the target full-Stokes polarization image) first point-wise multiplies the polarization 

transmission matrix M, then integrates over the polarization dimension. The interference 

𝐼𝑛( corresponds to the noise in image system and the interference 𝐼𝑛) is used to simulate 

the calibration errors in transmission matrix M. Through adding these interferences during 

the training process, the trained neural network could be robust to noise interferences 

existed in the imaging process.  
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Supplementary Fig. 11 | The optical setup of the proposed polarization imaging 

system. The inset shows the fabricated disordered metasurface array.  
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Supplementary Fig. 12 |  Polarization imaging at different wavelengths in the visible 

spectrum. Linear (a) and circular (b) polarization imaging with the proposed camera. The 

raw unprocessed exposure, S0 (corresponding to the traditional monochrome intensity 

image), the azimuth of the polarization ellipse, and S3 are shown. Illumination was 

provided by LED which passes through a 10 nm bandpass filter.   
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Supplementary Fig. 13 | The reconstructed intensity image S0 of the pixel-level scene 

in Fig. 5. The car plate is scaled into the red box. The numbers on car plate are only one or 

two meta-pixels in width and can still be reconstructed clearly.  
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