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FACTORS DETERMINING SOLUBILITY AMONG
NON-ELECTROL YTES*

BY JOEL H. HILDEBRAND

UNIVERSITY OF CALIFORNIA AT BERKELEY

Read before the Academy, October 25, 1949

This address has been prepared with the purpose of giving to non-
specialists, so far as possible within the allotted time of fifteen minutes,
a large-scale survey of the present status of the theory of solubility of non-
electrolytes, with emphasis upon the methods used in attacking the various
phases of the problem. That the problem is indeed a complex one is well
illustrated by a system of seven liquid phases, a photograph of which I
recently published.' Its components are heptane, aniline, water, "per-
fluorokerosene" (approximately C12F26), phosphorus, gallium and mercury.
These molecular species differ so strongly among themselves as to resist
more or less completely the mixing effect of thermal agitation. The
differences are in part qualitative, and include metallic character, dipole
moment and hydrogen bridging, but in part, also, quantitative, differences
in the strength of the "van der Waals" or, more appropriately designated,
"London" forces. Professor F. London explained these forces as the con-
sequence of quantum mechanical interaction between the molecular
electron clouds. The strength of the attraction depends upon the number
and what we may crudely call the "looseness" of the electrons. It is
expressed in terms of polarizability, a, and "zero point energy," hvo, the
energy of electrons in their ground states, an energy which persists even at
absolute zero. The expression for the potential energy between molecules
of two species, 1 and 2, at distance, r, is

3ala2 hvo,i . hvo,2
2r' hvo,i + hvo,2

Higher terms for second order effects have been added as a result of more
refined analysis but these are hardly significant for our purpose, particularly
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because there is evidence2 that the molecular fields of polyatomic molecules
are not best described as radial from their geometrical centers but as ex-
tending, rather, from peripheral atoms or "orbitals." We find, for-
tunately, that such uncertainties are at least partly cancelled by the process,
presently to be described, upon which our general theory is based. There
are, however, three corollaries of the theory which are to be noted as most
significant to our purposes: (1) the attraction is very short in range, (2)
the attractive potential between pairs of unlike molecules is simply related
to that between pairs of the like molecules and (3) these interactions, unlike
those we call "chemical," do not saturate each other, and therefore the
potential energy of a mass of liquid may be expressed as an integral of all
the pair potentials.
The process we have adopted to serve as the basis for our theory of

solubility is the mixing of two pure liquid components by isothermal dis-
tillation to form a solution in which their mole fractions are xi and x2,
respectively. The present exposition will, however, appear simpler if we
think of distilling one mole of either component (let us select no. 2) into
a very large amount of solution in which its mole fraction is x2. The
change in free energy accompanying such a transfer is

F2 - F20 = RTln (f2/f20) = RT ln a2, (2)
where f2 denotes its fugacity (a corrected vapor pressure) in the solution
and f20 its fugacity in its pure liquid. We shall henceforth use activity,
defined as a2 = f2/f20. When one forms a saturated solution, he applies
the "solute" at an activity which he can control, by pressure, in case of a
gas or vapor, or calculate, in case of a solid, from its melting point and
heat of fusion.
Now the change in free energy in this process may be regarded as the

resultant of the accompanying changes in heat constant, R2 -H20 and in
entropy, s - s2, as given by the pure thermodynamic equation,

F2- F20 = H2-H20- T(2 - S20) (3)

Ideal Solutions.-Let us begin with an ideal case, which, like all ideals,
can be only rarely approached and never quite realized, i.e., a solution
of two molecular species having equal intermolecular attractions and
equal molal volumes. The energy and heat of transferring any molecule
from its own pure liquid into the solution is then zero, hence

F2 - F20 = -T(k - s2°). (4k)
Now the change in entropy accompanying our process is a logarithmic
function of the ratio of the respective "probabilities" of finding a molecule
of species 2 in its pure liquid and in its solution. (I need not take time to
explain why it is logarithmic, because many in my audience already know
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and the others can easily find out if they wish.) In our ideal solution,
since the molecules are of equal size, and since thermal agitation keeps
them mixed with maximum randomness, the ratio of probabilities is
1/x2 and this, translated into entropy, gives

S2-S2° = -Rlnx2. (42)

Substituting this and equation 2 into 3, gives RT In a2 = RT in x2 or
a2 = x2, which is Raoult's law; a relation used in all modern texts on
physical chemistry to derive the various ideal solution laws.

Regular Solutions.-It has been
our good fortune to find that
tlermal agitation usually suffices
to give practically complete
randomness of mixing, with two
non-polar species, in spite of even
large differences in their molecular
forces, and, therefore, if their molal,
volumes are not significantly dif-
ferent, the entropy of transfer
can still be close to the ideal en-
tropy, -R inx2. This uniformity *
regarding entropy causes a regu-
larity in solution behavior evident
in the family of solubility curves
illustrated in figure 3, which sug-
gested the term, "regular solu-
tions." But now, in order to have FIGURE 1
a solubility equation, we must Cross-section of structure of an ideal liquid.
express H2 - H20 in terms of
the pure components. If we were dealing with pure and mixed crystal
lattices of equal, known lattice dimensions, we could add all the pair
potentials to give the lattice energy. We can apply equivalent reasoning
to liquids, but, instead of a summation over all the discrete distances in a

crystal lattice, we must integrate over a continuous "distribution function"
which expresses time-average frequency for all pair distances in the highly
blurred, short range order in the liquid. The meaning of this function,
p(r), is easily grasped by referring to figure 1, which represents a cross-
section of the instantaneous arrangement of molecules around a central
one. The volume of a spherical shell of thickness dr of large radius is
simply 4irr2 dr, and since the density of molecules in the liquid is the
Avogadro number divided by the molal volume, N/v, the number of
molecular centers in the large shell is (4,rNr2 dr)/v. But when r is small,
the presence of the central molecule makes the probability of molecular
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centers in such a shell much higher than unity at about 2r, moderately
higher at about 4r, etc. This varying probability is the distribution
function, p(r). Its form is nearly the same for all equally expanded liquids
if plotted as p(r/rm.) as illustrated for four liquid metals in figure 2. By
combining p(r) with the pair potential function, e(r), we can obtain an
expression for the potential, energy of a mole of liquid,

E = 27N2,fe(r)p(r)r2dr. (5)

We may extend this treatment to the potential energy of a solution,
where the (random) molecular distribution involves the relative molal
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FIGURE 2

Distribution functions, p(r), for liquid mercury, gallium, sodium and potassium
plotted against r + molecular diameter.

volumes, and the total potential energy involves the pair potentials,
eup, em2, e, and the last can be eliminated by assuming the geometric mean.
The model is simple but the mathematical steps in arriving at the final
equation are far beyond the scope of this presentation, so I give only the
result,

H2 - H20 = v24122(62 - 61)2, (6)
where 41 denotes volume fraction of that component and 6 = (AW'/V)1/2,
the square root of the energy of vaporization per cc., an easily obtainable
property of both pure liquids. With this expression for the heat effects,
our solubility equation becomes
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RT in a2 = v2412(82 - 61)2 + RT In x2. (7)

The 8-values play so predominant a rBle in determining solubility relations
that we have designated them as "solubility parameters" and find it useful
to have at hand tables of their numerical values at the standard tempera-
ture, 250. IUustrative values for common substances are given in Table 1.

Solubility Relations of Iodine.-The high attractive field of iodine
molecules, indicated by its solubility parameter, 14.1, is correlated with
the great spread in the solubility curves plotted in figure 3, and the enor-
mous deviations from ideal behavior in those solvents low in the plot. These
solutions present a particularly exacting test of the theory underlying
equation 7. Iodine solutions offer another important advantage in that
one can easily distinguish two classes of solutions-one, the violet solutions,
whose color, identical with iodine vapor, shows that chemical interaction
is absent, and that they should behave "regularly"; the other class, yellow

TABLE 1
SOLUBILITY PARAMETERS OF IODINE, 82, CALCULATED FROM SOLUBILITY IN VARIOUS

SOLVENTS AT 250
SOLVENT SOLUBILITY, 100 X2 61 52 (CALC.)

n-C6F16 0.0182 5.7 14.2
SiCl4 0.499 7.6 13.9
CCI4 1.147 8.6 14.2
TiC14 2.15 9.0 14.1
CS2 5.58 10.0 14.2
1,2-C2H4Br2 7.82 10.4 14.1
Ideal 25.8

to brown in color, indicating specific, "chemical" interactions. I invite
your attention to the following features of the solid curves, all of which
refer to violet solutions.

First, the parallelism in the slopes of these curves was what originally
suggested applying to such solution the term "regular," and the regularity
is obviously a matter of entropy, because it has to do with the temperature
coefficient of a free energy relation.

Second, the positions of the curves accord remarkably well with the
demands of equation 7, as seen by the small variations in the values of
82 for iodine calculated from the 81 values and the experimental solubilities,
illustrated in Table 1 for several representative solvents. Reversing the
procedure, calculating X2 using 82 = 14.1 for all, would obviously not lead
to serious error. Particularly striking is the agreement in the case of
fluoroheptane. When I first heard of the remarkable extremes in the
solvent powers of fluorocarbons, I wondered whether they would over-
strain the theory. The point for iodine in perfluoro normal heptane at
250 was the first to be determined, and when it was found to fit equation 7
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so well I felt confident that all other solubility relations of fluorocarbons
would fit the theory, and this expectation has since been abundantly
confirmed.

Third, a particularly striking confirmation was furnished by the pre-
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FIGURE 3

Solubility curves for iodine.

diction of the liquid-liquid loop for iodine and carbon tetrachloride, seen
in figure 3, and this was later found close to the position predicted.

Fourth, moderate dipole moments, other than the very exposed ones
leading to hydrogen bridging, may affect the 6-value slightly while not
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interfering with regularity, as seen by the curve for chloroform, and the
practical identity of the curves for cis- and trans-dichloroethylenes, whose
dipole moments are 1.89 and 0.00 Debye units, respectively.

Solvated Solutions.-In cases where the unlike molecules react chemically,
the 1-2 attraction is enhanced, and is no longer equal to the geometric mean
of the 1-1 and the 2-2 attractions; the heat absorbed on dilution will be
reduced over its regular solution value, and its sign may even be reversed;
and the disorder and hence the entropy of the process will be less than ideal.
But all these effects are more or less specific, not to be calculated by any
general theory. The solutions of iodine in benzene, toluene, xylenes and
mesitylene present illustrations of extraordinary interest.

Iodine dissolves in them to give solutions with brown colors increasing
in the above order. They show strong absorption bands in the ultra-
violet3 whose intensities, when iodine and an aromatic are dissolved together
in a "violet" solvent in varying concentrations, indicate a 1: 1 solvate.
We explain the interaction as that between an acid and a base; the aro-
matics are bases or "electron donors," whose strengths increase in the above
order, and the iodine, an acid, or "electron-acceptor." The equilibrium
constant for the reaction 12 + C6H6 = I * C6H6 in carbon tetrachloride was
found to be 1.72, and the constant for the corresponding reaction with
mesitylene is 7.2. (Anyone who thinks that none but "proton-acceptors"
can act as bases will not be able to understand this.)
The solubility curves for these aromatics would all lie close to the curve

for chloroform if there were no solvation; the curves are lifted to the
positions seen in the figure4 by the solvation, and the amount of displace-
ment agrees remarkably well with that calculated by aid of the equilibrium
constants for the acid-base interactions. It should be emphasized that
the solvation is related to this displacement and not to departure from
the ideal solubility curve. The common practice of interpreting inconstant
partition coefficients in terms of chemical equilibria may be quite unrealistic
and lead to conclusions very different from those which could be drawn from
light absorption.

The Entropy of Mixing Molecules of Different Size.-It will be recalled
that in deriving the term -R ln x2 for the entropy of transfer from pure
liquid to solution, equality of molal volumes was not taken too seriously,
however, the necessity for this limitation was not appreciated until recently
because solutions are known which approximate closely to Raoult's law
despite some inequality in molal volumes, but there have recently been
discovered solutions of high polymers which depart strongly from Raoult's
law while showing little or no heat of mixing, making it clear that it is
entropy which must be held responsible. This led to efforts on the part
of several investigators to formulate the entropy of mixing monomer

molecules with small integral multiple polymers, but Flory and Huggins,"
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simultaneously and independently, succeeded in deriving an expression
for the entropy of solution of flexible, chain molecules occupying multiple
sites in a quasi lattice with solvent molecules occupying single lattice
sites. The same formula can be derived without the li'mitations of either
linear polymers or lattice structure. The method used can be illustrated

by the problem of properly expres-
sing the disorder presented by blocks
scattered randomly over the floor
of a room, a picture with which, as

_ \ 22V / a father and grandfather, I have be-
come very familiar. It is obviousa Oi /that the degree of disorder is some

0 function of the number of blocks and
also of the area of the floor, but it
depends also upon the size of the

Ad VP-5v= \>.* blocks, since, in order to make the
process of creating order truly anal-

II ogous to parallel task with molecules
° , Iwhich we cannot see, we must locate

our blocks by wandering over the
FIGURE 4 floor blindfold and barefoot. We

Effect upon activity of disparity in molal will be able, of course, to locate
volumes for v2/vl = 2 and 5. blocks of larger area more easily

than smaller ones. The entropy
of transfer from pure liquid to solution formulated by aid of analogous
probabilities for molecules, led, much to my satisfaction, to the same
expression as the one obtained by Flory and Huggins. I here write it in
the form

S2-S20= -Rln42+ i1 -In2). (8)
* ~~~~~~~~~~~~~~VI

When v, = v2, the right-hand member reduces to -R ln x2, as it should
if correct;
The order of magnitude of this correction is shown in figure 4 for two

different ratios of v2/v1, 2 and 5. One sees that the departure from ideal
entropy is rather small for the ratio 2, but very considerable for the ratio 5.
Most pairs of ordinary organic solvents have molal volume ratios of 2 or
less, but if one wishes to deal with solutions in fluorocarbons of small mole-
cules such as nitrogen, or chlorine, the Flory-Huggins expression for
entropy becomes significant. Since both heat and entropy may be non-
ideal, it is useful to substitute the expression in equation 8 for -R ln x2 in
equation 7, giving
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RT ln a2 = V2101(62-1)2 + RT[ln 42 + (1 2)]. (9)

Recent measurements of the solubility of nitrogen6 and of chlorine in
fluorocarbons can be better correlated by means of equation 9 than by
equation 7, since the volume ratios, vI/v2, in these solutions run as high as
5, and the solubilities are markedly increased thereby.
The remarkably low solubility parameters for the fluorocarbons are

mainly the result of their large molecular volumes. Although a pair of
fluorocarbon molecules would attract each other more strongly than a pair
of their hydrocarbon equivalents equally separated, the latter pair approach
each other so much more closely at their equilibrium distance that, in
view of the inverse sixth power of attractive potential, a cubic centimeter
of liquid hydrocarbon not only contains many more molecules than the
same volume of a corresponding fluorocarbon but they attract each other
much more strongly.

* AUTHOR'S NOTE: The variation of this contribution from the coldly impersonal
style customary in these PROCEEDINGS is the result of a remark by Professor P. Debye
that it "should be published just as it was delivered." I trust that readers will feel
that its purpose has been served thereby.
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NOTE ONA RELATIONIN DIRA C'S THEORY OF THE ELECTRON

By G. E. BROWN

YALE UNIVERSITY*

Communicated by G. Breit, November 15, 1949

A relation in Dirac's theory of the electron will be described here which
allows one to show that the hyperfine structure energy of an electron in a

Coulomb field is proportional to <r-2>, where the < > denote the ex-

pectation value of the enclosed operator. This is an extension of the well-
known relation of proportionality in non-relativistic theory of the hyper-
fine energy to L(L + 1)<r-> and hence to an<r-2>, where L is the
azimuthal quantum number and aH is the Bohr radius h2/me2. Specifi-
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