
Supplementary Table 1 | Examples of machine-learning tasks with fairness issues in medicine and 
healthcare. We outline machine-learning tasks in several areas of medicine, current or potential issues in 
fairness, and their associated dataset shift. We further differentiate between non-biological and biological 
factors that cause population shifts, which we respectively further attribute as being driven by social 
determinants of health (SD) or by genetic ancestry (ancestry). 
 

Area of medicine Machine-learning 
task Issue in fairness 

Type of 
dataset 
shift 

Clinical lab 
measurements 
and electronic 
medical records 

Predicting kidney 
failure using the 
eGFR equation 

Predicting kidney failure using eGFR equation 
& race-specific covariate bias kidney function 
appears better in Black patients, which could 
delay medication and referrals for precluding 
kidney failures1–6. 

Population 
shift (SD) 

Checking for 
uterine track 
infection 

Race-specific covariate bias assigns lower 
odds of checking checked for UTI in Black 
patients, reduces likelihood of scheduling 
follow-up and referrals7. 

Population 
shift (SD) 

Predicting 
osteoporosis using 
a bone fracture 
risk calculator 

Race-specific covariate place black women at 
lower risk of osteoporosis, while high-risk 
patients receive preventative drugs to minimize 
fractures8. 

Population 
shift (SD) 

Opioid early-
warning system 

Changing from ICD-9 to ICD-10 resulted in a 
large wave of false negatives and a much 
higher prevalence of opioid-related codes9. 

Concept 
shift 

Risk prediction 
An algorithm that used health costs as a proxy 
for health needs would predict Black patients 
as being lower risk than equally-sick White 
patients10. 

Population 
shift (SD), 
Label shift 

Genomics 

Polygenic risk 
scores 

Variations in linkage disequilibrium structures 
and minor allele frequencies across ancestral 
populations contributes to worse performance 
of genetic polygenic risk models in 
underrepresented populations11. 

Population 
shift 
(ancestry) 

Cancer prognosis 

Genomic tests for prostate cancer prognosis, 
which may have been developed with 
individuals of primarily European ancestry, may 
predict perform worse on underrepresented 
populations12. 

Population 
shift (SD) 

Response-to-
treatment 
prediction 
 

Cell lines such as the E006AA-hT prostate 
cancer cell line, misclassified as African 
American, have been found to carry 92% 
European ancestry13. Such misclassification 
would mislead models developed on data 
based on this cell line, as well as healthcare 
disparities and fairness research. 

Label shift 

Ancestry-specific innate immune variants 
contribute toward higher incidence and 
mortality of Triple Negative Breast Cancer 
among individuals of African ancestry14–18. AI 
algorithms developed without the inclusion of 
ancestry may worse performance on this group 
of patients. 

Population 
shift 
(ancestry) 

Response-to-
treatment 
prediction 
 

Black patients are overwhelmingly 
underrepresented in clinical trials (less than 2% 
of NCI-funded clinical trials include non-White 
patients)19,20. Application of AI-based methods 
for biomarker discovery to retrospective clinical 
trial cohorts may have poor generalization 
performance on non-White patients. 

Sample 
selection 
bias 



Radiology 

Disease 
segmentation and 
detection in MRI / 
CT / chest X-rays / 
mammography 
scans 

AI algorithms trained on publicly-available 
radiology images misdiagnose under-served 
patients at a disproportionate rate compared to 
the baseline population21. 

Population 
shift (SD) 

Model leakage of self-reported ethnicity 
information after controlling for site-specific 
technical artifacts and potential anatomic 
differences22. 

Unknown 

Pathology 

Cancer diagnosis, 
prognosis, 
response-to-
treatment 
prediction, 
mutation prediction 
from H&E  

Genetic variation amongst patients of different 
ethnicity, ancestry, geographic locations and 
other environmental factors23–31 may result in 
population-specific phenotypes32 and lead to 
disparities in diagnostic and prognostic 
algorithms that use histology33,34. 

Population 
shift 
(ancestry) 

Only patients developing symptoms will be 
biopsied, which produces disparities in patients 
who will get pathology services due to access 
to care, leading to dataset imbalance. 

Sample 
selection 
bias 

H&E stain intensity can predict ethnicity on the 
cancer genome atlas (TCGA), owing to 
hospital-specific image-acquisition protocols35. 

Acquisition 
shift 

Evolution of novel diseases and their 
comorbidities may bias deployment of current 
models36–38. 

Open set 
label shift 

Renal allograft 
assessment 

Taxonomies such as the Banff classification 
system for renal allograft assessment are 
updated with new diagnostic criteria every two 
years39. 

Concept 
shift 

Predicting tumour 
origin in cancers of 
unknown primary 

AI algorithms that do not include patient sex 
may diagnose patients with unlikely and 
incorrect tumour origins40. 

Population 
shift 
(ancestry) 

Ophthalmology 

Retinopathy 
grading, risk 
assessment, and 
vessel 
segmentation 
 

Fundus photography images have been 
demonstrated to not only cardiovascular risk 
factors, but also traits such as age and 
gender41,42. Phenotypic variations such as 
melanin concentration and retinal-vessel 
appearance have also been shown to differ 
across demographics43.  

Population 
shift 
(ancestry) 

AI screening tools for diabetic retinopathy 
developed in the U.S., may fail to generalize to 
countries in Southeast Asia due to varied 
lighting conditions and socio-economic factors 
of how the screening is performed by nurses44. 

Acquisition 
shift 

Differing clinical education in training 
ophthalmologists, as well as intraobserver 
variability, may cause label bias in training AI 
algorithms44,45. 

Label shift 

Rheumatology 
Predicting pain 
and surgery 
eligibility 

Disparities in how different populations respond 
to pain, may bias algorithms trained on 
reported pain score46. 

Population 
shift (SD) 

Dermatology 

 
 
 
Skin-lesion 
classification 

ML-based mobile health apps may not have 
been developed with darker skin types in the 
train dataset, which may over- or under-
diagnosis non-White patients with under-
represented Fitzpatrick skin types47,48. 

Sample 
selection 
bias 

Biometrics 
monitoring via 
wearables 

Patients with higher melanin may block green 
light used by wearable devices for accurately 
measuring heart rate49,50. 

Population 
shift 
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