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Supplementary Methods
In case of identifiability issues, a classic approach applied to improve model identifiability consists in fixing the
value of poorly identifiable parameters to plausible biological values. As performed in the main analysis with the
parameter of the decay rate of long-lived ASCs (δL ), a profile likelihood can be done to identify those maximiz-
ing the log-likelihood of the model. When used to fix the value of the poorly identifiable parameter, the profile
likelihood approach is equivalent to performing model selection among a set of model candidates that are differ-
entiated by the values of this parameter and using log-likelihood as selection criteria. However, by focusing on a
single value, this approach totally ignores the model selection uncertainty (1, 2). Model averaging is a simple al-
ternative approach that can be used to deal with model uncertainty by averaging model predictions or parameter
estimates of all candidate models according to their consistency with data (3).
In this work, we are interested in quantifying the impact of the uncertainty of the parameter δL (i.e, the decay rateof long-lived ASCs) on the model estimation. Consequently, we aim at deriving estimators of model parameters
integrating this uncertainty.
Description of the model averaging approach
Definition of candidate models
Let assume a set ofM models that can be used to describe our data. We noteYi j m the log10 antibody concentrationfor participant i at time t j provided by the mt h candidate model, as follows:

Yi j m =Ym (t i j ) = log10 [αm × Abm
(
Ψi
m , t i j

) ]
+ εi j m εi j m ∼ N(0,σ2

Ab,m ) [1]
with Abm being the function describing the antibody concentration in the model m, Ψi

m and αm being the vector
of individual parameters and the proportional laboratory scaling factor under model m (αm ∈ Ψi

m ), respectively,and εi j m the residual error assumed to be normally distributed with a variance σ2
Ab,m . As described in the main

article (see equation (3)), each individual parameter of each candidate model m, Ψi
k ,m , is assumed log-normally

distributed with a fixed effect Ψk ,m,0, a vector of covariates βk ,m , and individual random effect, u ik ,m , assumed to be
independent and normally distributed with a variance ω2

k ,m .
log(Ψi

k ,m ) = log(Ψk ,m,0) + βk ,mZ
i
k ,m + u ik ,m [2]

For each candidate model m, we can then define the vector of population parameters Θm = {Ψm,0, βm ,Ωm ,σAb,m },whereΨm,0 = (Ψ1,m,0, · · · ,ΨK ,m,0)T is the vector of fixed effects, βm = (β1,m , · · · , βK ,m ) is the matrix of covariates, and
Ωm = diag((ω2

1,m , · · · ,ω
2
K ,m )) is the diagonal variance-covariance matrix of random effects.

Model averaging estimation and weight choice
Once each of theM candidate models estimated, we can note Θ̂m the maximum likelihood estimator of the popu-
lation parameters Θm provided by the mt h model. Let note λ = (λ1, · · · λM )T be the weight vector belonging to the
set Λ = {λ ∈ [0, 1]M ,∑M

m=1 λm = 1}. The model averaging estimator is then defined as
Θ̂MA =

M∑
m=1

λmΘ̂m [3]
For each parameter population parameter θ ∈ Θ, we can then derive a simple estimator of the unconditional
variance for its model averaging estimator, θ̂MA (4):

ˆVar(θ̂MA) =
M∑
m=1

λm ×
[
ˆVar(θ̂m ) + (

θ̂m − θ̂MA
)2] [4]
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where ˆVar(θ̂m ) denotes the conditional sampling variance (also referred as intra-model variance), and (θ̂m − θ̂MA)2denotes the variance component for model selection uncertainty (also referred as inter-model variance). In this
approach, we chose the classic smoothed AIC criterion (1) to attribute a weight to each candidate model. Hence,
the model averaging weight of the mt h model, λm , is defined as follows

λm =
e

−∆AICm
2∑M

p=1 e
−∆AICp

2

[5]

where ∆AICm = AICm − AICmin with AICm = −2LL (Θ̂m ) + 2|Θ̂m | and AICmin being the lowest AIC value among the M

candidate models.
Identification of long-lived ASCs half-life by model selection
The profile likelihood performed in the main analysis to identify optimal values for the parameter δL allowed to
easily see a significant increase of the value of the lower bound of the half-life of long-lived ASCs. However, its
flat profile made the choice of this lower bound difficult. To choose a value that is statistically meaningful, among
all these biologically relevant values, we combined the profile likelihood with the rule defined by Burnham and
Anderson (1) for ranking and comparing candidate models using Akaike Information Criterion (AIC). In particular,
this rule stipulate that, in comparison with the optimal model showing the smallest AIC value, a model m such as
(1)∆AICm ⩽ 2 has substantial support, (2) 4 ⩽ ∆AICm ⩽ 7 has less support but still non-negligible, and (3)∆AICm ⩾ 10

has no support to describe data. In that respect and our interest being to identify the lower bound of the long-
lived ASCs half-life, we selected among all models involved in the profile likelihood the one with the lowest value
of long-lived ASCs half-life and such that ∆AICm ⩽ 7. This allowed us to found the lower bound of 15 years.
Application of the model averaging approach
Definition of candidate models
For sake of clarity and simplicity, we applied the model averaging approach only on the final model identified
in the re-estimation step presented in the main article. As described previously, we proposed this approach
as an alternative to model selection based on profile likelihood for the parameter δL . Consequently, the set ofcandidate models includes only models similar to the optimal model, (i.e., with Continent, Age and Sex covariates
onparametersφL ,φS and δAb , respectively, andwith the observationmodel adjusted for laboratory effects), whose
the parameter δL was fixed at different values.First, similarly to the profile likelihood performed in the main analysis, we estimated models with long-lived ASCs
half-life (log(2)/δL ) ranging from 1 to 40 years. Then, in order to reduce the number of models to average, we
used the AIC-based rule defined by Burnham et al. aforementioned. Only models with a difference of AIC lower
than 7 points, compared to the lowest one, were considered as candidate models (see Supplementary Figure 9),
corresponding to a total of 25 models over 39.
Model averaging estimates of population parameters
Once all candidate models estimated, the equation [5] was used to calculate model averaging weights. As shown
in Supplementary Figure 10, weights are quite well distributed over the 25 models. However, it is important to
note that, even if we included in the set of candidate models those having a ∆ AIC lower than 7 points, the formula
describing model averaging weights has been defined to allocate the majority of weights among models having a
∆ AIC lower than 2 points. This specificity explains why higher weights were allocated to models with the value of
long-lived ASCs half-life ranging from 29 to 40 years (see Supplementary Figure 9 for ∆ AIC values).
Considering population parameters estimates obtained for each model, whose distributions for parameters δAb ,
δS , φS and ΦL are given in Supplementary Table 2, we were able to calculate the model averaging estimators and
their unconditional distributions for all population parameters. In the Supplementary Table 3, we compared the
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population parameter estimates obtained in the main article ,where model selection has been performed on the
value of the parameter δL , to those obtained by model averaging. The closeness of the estimates obtained by the
two approaches highlights the lack of information contained in data to evaluate the half-life of long-lived ASCs.
Nevertheless, as expected, the inclusion of uncertainty related to the value of the parameter δL leads to a slightincrease of the confidence intervals of population parameters obtained by model averaging. These results allow,
in particular, to identify ΦS as the parameter the most sensitive to the value of the poorly identifiable parameter
δL even though this sensitivity remains weak.
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Supplementary Figures

Supplementary Figure 1 – Individual antibody concentrations predicted by the model estimated on phase I data
and EBEs evaluated using data restricted to the peak, for Phase I participants. Each subplot represents the individual
antibody dynamics (in log10 ELISA units/mL) from 7 days after the 2nd vaccination. For each participant, the vertical dashed
line represents the time limit (individual peak of dynamics) between the predictions (on the left) and the forecasts (short-
term in blue and long-term in orange). Plain dots correspond to observations used to evaluate individual parameters while
circles are observations not used in parameter estimation. Shaded areas correspond to 95% individual prediction intervals
(accounting for the uncertainty on the individual parameter estimation and the measurement error) and the solid lines
correspond to the prediction of the model.
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Supplementary Figure 2 – Individual antibody concentrations predicted by themodel estimated on phase I data and
EBEs evaluated using data restricted to the peak, for random sample of participants from EBL2001 and EBL2002. Each
subplot represents the individual antibody dynamics (in log10 ELISA units/mL) from7 days after the 2nd vaccination. For each
participant, the vertical dashed line represents the time limit (individual peak of dynamics) between the predictions (on the
left) and the forecasts (short-term in blue and long-term in orange). Plain dots correspond to observations used to evaluate
individual parameters while circles are observations not used in parameter estimation. Shaded areas correspond to 95%
individual prediction intervals (accounting for the uncertainty on the individual parameter estimation and the measurement
error) and the solid lines correspond to the prediction of the model.
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Supplementary Figure 3 – Individual antibody concentrations predicted by the model estimated on phase I data
and EBEs evaluated using data restricted to the peak, for random sample of participants from EBL3001. Each sub-
plot represents the individual antibody dynamics (in log10 ELISA units/mL) from 7 days after the 2nd vaccination. For each
participant, the vertical dashed line represents the time limit (individual peak of dynamics) between the predictions (on the
left) and the forecasts (short-term in blue and long-term in orange). Plain dots correspond to observations used to evaluate
individual parameters while circles are observations not used in parameter estimation. Shaded areas correspond to 95%
individual prediction intervals (accounting for the uncertainty on the individual parameter estimation and the measurement
error) and the solid lines correspond to the prediction of the model.
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Supplementary Figure 4 – Individual antibody concentrations predicted by the model estimated on phase I data
and EBEs evaluated using data restricted to 1 year, for Phase I participants. Each subplot represents the individual
antibody dynamics (in log10 ELISA units/mL) from 7 days after the 2nd vaccination. For each participant, the vertical dashed
line represents the time limit (1 year) between the predictions (on the left in blue) and the forecasts (on the right in orange).
Plain dots correspond to observations used to evaluate individual parameters while circles are observations not used in
parameter estimation. Shaded areas correspond to 95% individual prediction intervals (accounting for the uncertainty on
the individual parameter estimation and the measurement error) and the solid lines correspond to the prediction of the
model.
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Supplementary Figure 5 – Individual antibody concentrations predicted by the model estimated on phase I data
and EBEs evaluated using data restricted to 1 year, for random sample of participants from EBL2001 and EBL2002.
Each subplot represents the individual antibody dynamics (in log10 ELISA units/mL) from 7 days after the 2nd vaccination.
For each participant, the vertical dashed line represents the time limit (1 year) between the predictions (on the left in blue)
and the forecasts (on the right in orange). Plain dots correspond to observations used to evaluate individual parameters
while circles are observations not used in parameter estimation. Shaded areas correspond to 95% individual prediction
intervals (accounting for the uncertainty on the individual parameter estimation and the measurement error) and the solid
lines correspond to the prediction of the model.
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Supplementary Figure 6 – Individual antibody concentrations predicted by themodel estimated on phase I data and
EBEs evaluated using data restricted to 1 year, for random sample of participants from EBL3001. Each subplot repre-
sents the individual antibody dynamics (in log10 ELISA units/mL) from 7 days after the 2nd vaccination. For each participant,
the vertical dashed line represents the time limit (1 year) between the predictions (on the left in blue) and the forecasts (on
the right in orange). Plain dots correspond to observations used to evaluate individual parameters while circles are obser-
vations not used in parameter estimation. Shaded areas correspond to 95% individual prediction intervals (accounting for
the uncertainty on the individual parameter estimation and the measurement error) and the solid lines correspond to the
prediction of the model.
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Supplementary Figure 7 – Random effects versus Covariates. Each subplot represents random effects (u i ) of a given
parameter (1st row: φS , 2nd row: φL and 3rd row: δAb ) as a function of one of the three covariates selected in the model
(Sex on the left, Continent in the middle, Centered Age on the right). Boxplots and dotplots were considered for categorical
and continuous covariates, respectively. The horizontal blue dashed lines represent the threshold of zero and the red solid
lines (3rd columns) represent the regression line.

Supplementary Figure 8 – Plots of Goodness-of-fit of the mechanistic model estimated on Phase I and II data. (A)
Observations versus individual predictions. A total of 95%of observations falls within the 90%confidence interval represented
by the blue dashed slanted lines. (B) Observations versus population predictions. (C) Individual weighted residuals (IWRES)
versus individual predictions. (D) Population weighted residuals (PWRES) versus population predictions. (E) IWRES versus
time from 7 days after the second vaccination. (F) PWRES versus time from 7 days after the second vaccination. One each
subplot, red and black dots represent censored and uncensored observations, respectively. Horizontal blue dashed lines
represent the threshold of zero residuals.
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Supplementary Figure 9 – Evaluation of ∆AICm for all models with δL fixed at values corresponding to long-lived
ASCs half-life ranging from 5 to 40 years. Green, gray and light-gray areas highlight, respectively, intervals of ∆AICm ⩽ 2,
2 ⩽ ∆AICm ⩽ 4 and 4 ⩽ ∆AICm ⩽ 7. The vertical dashed line shows the first value of LL ASCs half-life for which ∆AICm ⩽ 7 (value
used to fix the parameter δL in the article).

Supplementary Figure 10 – Distribution of weights over the 25 candidates models involved in the model averaging
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Supplementary Tables
Supplementary Table 1 – Evaluation of the robustness and the quality of prediction of themodel developed by Pasin
et al. (5). The model was estimated on Phase I data and individual parameters were assessed, for each participant of Phase
I and Phase II trials, using observation from 7 days post-second vaccination (day 64) to 1 year after the first vaccination.

Phase I trials Phase II trialsAll trials EBL1001 EBL1003 EBL1004 EBL2001 EBL2002 EBL3001
Predictions from 7 days post-2nd vaccination to 1 year
RMSE1 0.045 0.077 0.062 0.058 0.020 0.027 0.046
Coverage (%) 100 100 100 100 100 100 100
Bias1 0.011 0.009 0.005 0.006 0.008 0.001 0.014
95% PI width 0.649 0.695 0.671 0.640 0.601 0.646 0.874
Long-term forecast beyond 1 year
RMSE1 0.298 0.298
Coverage (%) 90.1 90.1
Bias1 -0.017 -0.017
95% PI width 0.874 0.874

CI: Confidence interval, PI: Prediction interval, RMSE: Root mean squared error. 1Criteria calculated on the median of individ-
ual predictions.
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Supplementary Table 3 – Comparison of model parameters estimated on Phase I and II data for the model with a
half-life of long-lived ASCs fixed by profile likelihood at 15 years (Model selection) or obtained by model averaging

Model selection Model Averaging
Parameter Meaning Mean 95% CI Mean 95% CI
Fixed Effects
δAb antibody decay rate (day−1)
Women 0.0251 [0.0223 ; 0.0283] 0.0250 [0.0220 ; 0.0284]
Men 0.0353 [0.0296 ; 0.0421] 0.0351 [0.0290 ; 0.0423]
log (2)/δAb antibody half-life (days)
Women 27.6 [24.5 ; 31.1] 27.8 [24.4 ; 31.6]
Men 19.6 [16.4 ; 23.4] 19.8 [16.4 ; 23.9]

δS SL ASCs decay rate (day−1) 0.333 [0.326 ; 0.340] 0.339 [0.272 ; 0.422]log (2)/δS SL ASCs half-life (days) 2.08 [2.04 ; 2.13] 2.05 [1.64 ; 2.55]
φS SL ASCs influx (EU/mL/day)
Mean Age (31.3 years) 3057 [2418 ; 3865] 3274 [2369 ; 4525]
FC ∆Age = + 1year1 0.934 [0.915 ; 0.954] 0.942 [0.919 ; 0.966]

φL LL ASCs influx (EU/mL/day)
African Part. 10.2 [9.01 ; 11.4] 9.82 [8.71 ; 11.1]
Eur. Part. 36.6 [27.3 ; 49.2] 36.2 [26.9 ; 48.7]

α scaling factor - Lab effects
αf ocus 1.04 [0.93 ; 1.16] 1.06 [0.94 ; 1.19]
αQ2sol 1.00 [0.98 ; 1.02] 1.00 [0.98 ; 1.02]
Random Effects
ωφS

Sd of RE on φS 0.84 [0.56 ; 1.13] 0.80 [0.55 ; 1.05]
ωφL

Sd of RE on φL 0.88 [0.81 ; 0.96] 0.88 [0.81 ; 0.96]
ωδAb Sd of RE on δAb 0.35 [0.29 ; 0.41] 0.36 [0.29 ; 0.42]
Error Model
σAb Sd of error model 0.107 [0.101 ; 0.112] 0.106 [0.101 ; 0.112]

CI: Confidence interval, EU: ELISA units, Eur.: European, FC: Fold change, LL ASCs: long-lived antibody secreting cells, Part.: Participants,
RE: Random effects, SL ASCs: short-lived antibody secreting cells, Sd: Standard deviation. 1 Represents the multiplicative factor to
apply to the value of φS , obtained for the mean age, for an increase in participant age of 1 year: φS (Mean Age + 1 year) = φS (Mean
Age)× FC(∆Age=+1). Therefore, the percentage of decrease of φS for a participant X years older than the mean age is given by 100×(1-
FC(∆Age=+1)X ).

15



Alexandre et al.

Supplementary References
1. Burnham, K. P. & Anderson, D. R. Multimodel inference: un-

derstanding aic and bic inmodel selection. Sociological meth-
ods & research 33, 261–304 (2004).

2. Gonçalves, A., Mentré, F., Lemenuel-Diot, A. & Guedj, J.
Model averaging in viral dynamic models. The AAPS Journal
22, 1–11 (2020).

3. Claeskens, G., Hjort, N. L. et al. Model selection and model
averaging. Cambridge Books (2008).

4. Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. Aic model
selection and multimodel inference in behavioral ecology:
some background, observations, and comparisons. Behav-
ioral ecology and sociobiology 65, 23–35 (2011).

5. Pasin, C. et al. Dynamics of the humoral immune response
to a prime-boost ebola vaccine: quantification and sources
of variation. Journal of virology 93, e00579–19 (2019).

16


	Supplementary Methods
	Description of the model averaging approach
	Definition of candidate models
	Model averaging estimation and weight choice

	Identification of long-lived ASCs half-life by model selection
	Application of the model averaging approach
	Definition of candidate models
	Model averaging estimates of population parameters


	Supplementary Figures
	Supplementary Tables
	Supplementary References

