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ALLELISM OF SECOND CHROMOSOME LETHALS IN D.
MELANOGASTER*

BY BRUCE WALLACE
THE B1oLOGICAL LABORATORY, CoLD SPRING HARBOR, N. Y.

Communicated by Th. Dobzhansky, September 29, 1950

Our knowledge of the genetic composition of populations, other than that
of human blood group genes, is based primarily on lethal chromosomes from
populations of Drosophila. Paradoxically, because of the advanced genetic
techniques in Drosophila, our information for species of this genus consists
of chromosomal frequencies although the dynamics of population genetics
depends upon gene frequencies. It would be possible to analyze Drosophila
populations for specific gene loci but it has proved more profitable to evalu-
ate the easily collected lethal chromosome data by estimating the number
of loci on a given chromosome at which lethal alleles may exist. This esti-
mation, which can be made by determining the frequency of allelism be-
tween lethals of independent origin, has been made by Wright! 2 for the
third chromosome of D. pseudoobscura (285-289 loci) and by Ives? for the
second chromosome of D. melanogaster (495 loci). In connection with ex-
perimental populations which are exposed to continuous gamma irradia-
tion, it has been necessary to determine the number of loci which are ca-
pable of mutating to lethality under the influence of these radiations.

Flies of the Oregon-R strain of D. melanogaster carrying lethal-free second
chromosomes were placed in a population cage and were allowed to oviposit
on food in small plastic cups throughout the day (8 hrs.) or overnight (16
hrs.). (See Wallace* for a detailed description of the cages and the cups.)
At the end of each egg-collecting period, a fresh cup was exposed to the
parental flies, and the old cup, with its eggs, was placed in a cage which en-
circled a 500-mg. radium bomb. To keep the developing flies of each cup
separate from the rest, a thin-walled plastic tube was inserted into the food
of each cup and was plugged at its free end with cotton.
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The flies developing under these conditions were exposed throughout
their developmental stages and for part of their adult life to a constant dose
of gamma rays of approximately 5 r per hour. After 18 days (426 hrs. or
2175 r, average), males were removed and mated individually in vials with
CyL/Pm females. (The CyL chromosome carries the dominant genes
Curley and Lobe and two inversions which suppress most of the crossing-
over.) Several CyL/+ F1 males of each culture were mated singly in
vials with CyL/Pm females, and the CyL/4 F2 males and females of each
culture were inbred in vials to determine the lethal mutation rate. If a
lethal had been induced on a treated chromosome, this was noticed by the
absence of wild-type flies in the F3. Each suspected lethal was confirmed
by mating for an additional generation in a regular culture bottle. After
confirmation, 125 lethals which had arisen in different original males and,
therefore, were independent in origin, were subcultured in four bottles in
order to obtain flies for the allelism tests. With the exception of the latter
tests which were kept at room temperature (22° ¥ ) all phases of the experi-
ment were carried out at 25°C.

To determine the frequency of induced mutations, 3772 second chromo-
somes derived from 336 treated males were analyzed; 456 were lethal.
The frequency of lethal chromosomes, then was 12.09 = 0.53%. The
frequency of lethal genes, calculated by means of the Poisson distribution,
was 12.89 = 0.60%.

The tests for the frequency of allelism were made by intercrossing CyL/+
flies from 100 lethal cultures of independent origin. (The remainder of the
125 cultures originally chosen either produced too few flies for the required
matings or gave rise to small numbers of wild-type flies which could have
obscured the test.) Fourteen of the 4950 (E.L;-(——?-?) matings failed to
produce wild-type flies. The probability, then, that one tested chromo-
some was allelic to another is 0.28%,. (The limits of the 959, confidence
interval of this frequency are 0.16%, and 0.48%).

The minimum number of loci, #, capable of mutating to lethality is the
inverse of the probability that one lethal gene is allelic to another. This
number can be calculated from the frequency of lethal chromosomes (a =
12.09 = 0.53%), the frequency of lethal genes (b = 12.89 = 0.60%) and
the frequency of allelism between lethal chromosomes (¢ = 0.28% with
limits 0.16% and 0.48%,): n = b%/ca?. The most probable minimum num-
ber calculated from our data is 400. By substituting the most divergent
values of a, b and cinto the equation, the limits of the minimum number may
be estimated as 234 and 718.

The distribution of allelic lethals among the 100 chromosomes which were
tested gives a quasi-independent confirmation of the above estimate of the
minimum number of loci. In one case chromosome A was allelic to both
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chromosomes B and C, but B and C were non-allelic, therefore, it is known
that the tests for allelism involved lethal genes at 101 loci. Among these
101 lethals there were 73 which occurred only once and 14 which occurred
twice. For any given number of potentially lethal loci it is possible to pre-
dict the distribution of singles, pairs and triplets among 101 independently
chosen lethals by means of the Poisson series. If » = 234, there should be
65.6 singles, 14.2 pairs and 2.0 triplets; if n = 400, these values should be
78.4, 9.9 and 0.8; if » = 718, 87.7, 6.2 and 0.3. The expected distribu-
tion when n = 718 is significantly different from the observed distribution;
it is probably that the minimum number of lethal loci lies nearer the cal-
culated 400.

It is of interest to note the similarity between the number of loci capable
of mutating to lethality under the influence of gamma rays (400 with limits
of 234 and 718) and the number capable of mutating spontaneously (495
with limits of 285 and 705). This agreement indicates that these loci are
so situated that an ionizing particle is likely to affect only one at a time.
Since nearly 2000 bands have been recorded in the second chromosome of
D.:melanogaster in salivary preparations and since induced lethals have fre-
quently proved to be small deficiencies (Slizynski®), it seems likely that
loci mutating frequently to lethality may be separated from one another by
material relatively inert in this respect.

In conclusion, several points should be emphasized. The 400 loci calcu-
lated above represent a minimum number of loci which can mutate to
lethality. The maximum number could be substantially larger but, never-
theless, remain undetected because of great differences in the mutation rates
of different loci. It should be noted, too, that observed allelism does not
prove identity; overlapping deficiencies may act as allelic lethals. These
considerations have been pointed out by Wright! in his analysis of Dob-
zhansky’s data.

Summary—Through an analysis of the frequency of allelism of 100
second chromosome lethals induced in D. melanogaster by chronic gamma-
ray treatment, it has been estimated that the minimum number of loci
capable of mutating to lethality under these conditions is 400 (234-718).
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1. Generic Homology Groups.—The cohomology groups of a group II are
the groups of the cell complex K(II, 1) which has as its cells in each dimen-
sion ¢ = 1 the g-tuples [xy, ..., %,] of elements x, e II, with d[x] = 0 and

s el = B 5]+ 5 (<Dl ., wmen ] +
(=1, ..., 2t) (1)

This boundary formula does not use inverses of the letters x;, and no
letter x; is repeated in any one cell of the boundary. These two properties
may be conveniently expressed in the complex K (F, 1) constructed from the
free group F with a denumerable set of free generators gy, g3, .... Call an
elementof F gemericif it isa product x = 1g,g;, . ..gy of & = 0 distinct genera-
tors, and call two generic elements x and y disjoint if they involve no genera-
tor in common. A cell [x,, ..., x,] is generic if the entries x,, ..., x, are
generic and pairwise disjoint. Then formula (1) shows that the boundary
of any generic cell is a linear combination (with integral coefficients) of
generic cells. Consequently the generic cells span a subcomplex K(F*, 1)
of K(F, 1).

The usual proof! that the cohomology groups of a free group F are zero
in all dimensions greater than 1 gives the integral homology groups of this
“generic”’ complex K(F*, 1) as

H(K(F* 1)) =0, g¢>1 )
Hy(K(F*, 1)) = F,, ‘ ®3)

where F, is the free abelian group on a denumerable set of generators 2



