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or mk + 1, is an even entire function of order 1 and type p <ir, which
can be shown to be O(z-') as z - through real values; it is real on the
real axis, and changes sign at all integers not of the form mk or mk + 1.
By a theorem of Paley and Wiener,6

F(z) = fo cos zu h(u) du,

where h(u) belongs to L2. Write g(u) = h(u) cos '/2u; then

F(n + 1/2) = ,P g(u) cos (n + '/2)U sec 1/2u du
- (_-1)n Jtp g(7r - u) sin (n + 1/2)ucsc '/2u du.

Thus (- 1)'F(n + 1/2) is the nth partial sum of the Fourier series of the
even function which is -irg(7r- u) for7r - p < u <7r and zero for 0 _
u <r - p. Furthermore, (- 1)IF(n + 1/2) > 0 when n is not a multiple
of k, and so for a sequence of integers of density arbitrarily close to 1,
if k is large enough.

I "On sait fort peu de choses sur I'approximation oriente6 dans les espaces fonctionnels
r'ticules": Favard, J., "Remarques sur I'approximation des fonctions continues,"
Acta Sci. Math., Szeged, 12, part A, 101-104 (1950).

2 Fejer, L., "Gestaltliches uber die Partialsummen und ihrer Mittelwerte bei der
Fourierreihe und der Potenzreihe," Z. angew. Math. u. Mech., 13, 80-88 (1933).

3 Levinson, N., Gap and Density Theorems, New York, 1940, chap. II.
Levinson, N., op. cit., chap. VII.

5 Duffin, R. J., and Schaeffer, A. C., "Power Series with Bounded Coefficients,"
Am. J. Math., 67, 141-154 (1945).

6 Paley, R. E. A. C., and Wiener, N., Fourier Transforms in the Complex Domain,
New York, 1934, p. 13.
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In order to make a beginning on the problem of constructing a mathe-
matically rigorous foundation for quantum field theory, we define the
annihilation and creation operators and the particle- and field-observables
as transformations on Hilbert space, and investigate their domains,
adjoints, commutation relations, normality and other properties. The
resulting formalism is given a physical interpretation which is illustrated
by applications.
The state of an elementary particle is represented by a point in the

Hilbert space T and an observable by the operator A on 9S. Then the
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state of a system of n such particles is represented by a point in the tensor

product '9 = 9 ... ® and the observable by (ZA8(' ' ...

®A6(i n)) -, where T- is the closure' of T. In field theory, j = Ej e(n)
n =0

co n

is the state space2 and Q(A) = ED (A'( ',) .(.A.®A1i n)) the cor-
n = 0 i = 1

responding observable. Q(A) exists when A is densely defined, closed and
linear. It is defined to be 0 on T('), the one-dimensional space of no-
particle states. Q preserves commutation, order and adjoint relations,
and normality. If His self-adjoint, then exp (iQl(H))Q2(A) exp (-iQ(H)) =
Q(exp (iH)A exp (-iH)). Under certain conditions (e.g., when A and
B are bounded), Q(aA + bB) = (aQ(A) + bQ(B))- and Q([A, B]) =
[Q(A), Q(B)]f (where [A, B] = AB - BA). If P is a projection, the
eigenvalues of Q(P) are the occupation numbers m of P9. In the cor-
responding eigenstates, exactly m of the particles have the property P.
With the spectral theorem, this gives us the standard energy expressions
hk2kckNk except that there is no infinite null-point energy I2kwk/2 to be
subtracted.3 A similar result holds for the null-point momentum, no
artificial summation to zero being necessary.
To every permutation 7r in the symmetric group HIn corresponds the

unitary operator UTon 9?(n) defined by UTl ...--- n = (1) )... 0 T(n)-
These operators U,T generate a ring 9,, isomorphic to the group algebra of
H.. For Gn e 9. and e9E, we construct the densely defined, closed,

linear transformations co(+) = (E EIGn)(4)®), w*( ) = ((O )*(E DGn*)n
n=O n==0

on a, where (+X®) maps (n) into 9?(n + 1) by (4)0)4)o1 ... 04)n = 4)41
04* ).. The mapping w obeys the rules wc(+) = w*(*)*, ((4)) =

o(aO + b#) = (aw(4)) + b ())"), co*(a) + bo) = (a*w *(4) + b*o*(#)),
exp (-iQ(H))w(O) exp (iQ(H)) = w(exp (-iH)O), exp (-iQ(H))w*(4) exp
(iQ(H)) = w*(exp (-iH) )), [Q[A], co(4)]- = co(A4), and [Q2(A), Co*(4))] =
- W*(A*4)). The center of ,, is spanned by a set of orthogonal projections
P = E nT(7r) U/fn! indexed by the characters r of H,n. The alternating

and symmetric characters an and Sn give us the subspaces W = ( D Pan) a
n

co

and 5 = (E P,) of antisymmetric and symmetric wave-functions.
n = 0

Setting G,, equal to ViPan or -IP,,, we get the creation operators
'0a(4)) or wc(4)) and annihilation operators Wa*(4)) or w o*(),on or e
(to which they must be restricted), for the Fermi-Dirac or Bose-Einstein
cases, respectively. Both Wa(4) and Oa*(4)) are bounded: jJW,a(9b)|| =
|Wa*(4b))H = ||qb||. The domains of co(4) and ws*(4) are the same as that
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of VQ(P[,1) (on i), where P[,] is the projection of 51 on the subspace
[4)] spanned by 4.

If 01, 2 e)9?, we define 412* to be the transformation on 9) such that
(#102*)O = (4), 2)#1. Then Wa(4))a*(#) = Q(4)*), a*(#)w(4) =

(4), / - Q(4)*), and (w(4))w*(#)) = 2(4#*), (ws*(#)wS(4)) =

(4), )I + Q(00*)i from which it follows, if [A, B]+ = AB + BA, that
[Wia()) Wa*(4')]+ = [ws()), ws*(O)]"- = (4,O #)I, and [Wa(4)), Wa(#)]+ =

[wh(), Ws(4')]P = [Wa*(4)), Wa*(#)]+ = [cs*(4)), Ws*(#)] = 0. If {4)} is
an orthonormal basis of 9?, then I wCa(0i) } is irreducible on 2l and { W°(s is
irreducible on ei. By purely formal manipulations it can be seen that
Q(A) corresponds to the expression2 "2m, nC(4m)(An), Om)W*()n) if o
is Wa or ws.
The operators i(ws(4)) - ws*(4)))/V2 and (co5(4) + cos*(4)))/X/0 are

essentially self-adjoint,' so their closures p(q5) and q(4) exist and are self-
adjoint. The commutation relations [q(4)), q(4,)]- = [p(o), p(#)] =

((4,, 4) - (4), 4))I/2 and [q(o), p(4#)] -

= i((#, 4) + (4), #))I/2 reduce to
the standard ones when 4 and 6 are elements of an orthonormal basis.
Time-dependent commutation relations enable us to avoid the singular
Dirac 5-function and the Jordan-Pauli invariant D-function. Field
quantities have physical meaning only as averages over a region. Point-
dependence introduces divergencies into the mathematics, so p and q
here depend on elements of Hilbert space (as distributions with respect to
which the averages are taken) rather than points of Euclidean 3-space
E3. The formalism is illustrated by a derivation of the Yukawa-potential,
and by the following completely rigorizable, relativistically invariant,
divergence-free (as far as it goes) derivation of Maxwell's equations: A
photon is represented by 6 in 5) = 5?2(E3) ®l4, where S4 is a 4-dimensional
Hilbert space. If k, = -ih(bl/x), etc., and k = V/k 2 + ky2 + k *2
then the Hamiltonian is H = ck@e. The Lorentz group acts on time-
dependent elements of 5) by having exp (- (itc/h)k)4), for 4 e62(E3),
transform like a scalar, and the orthonormal basis P1, P2, P3, P4 of S4 trans-
form contragrediently to x, y, , ct. The four-vector wave-functions come
in pairs, k and &, as co- and contravariant components for the same par-
ticle. Expectation values are written (A#,,). We restrict photons to
be such that their covariant wave-functions must be in the subspace P
of all; = 41ip1 + 420P2 + 4)3Op3 + 4)40P4(4i E V2(E3)) for which (b/1x)4i
+ (6/by)42 + (6/6z)43 - c-1(6/bt)q64 = 0. This eliminates the physical
influence of longitudinal and scalar components from expectation values,
and leaves only two effective polarization states. They are perpendicular
to the direction of motion of the photon and have the desired spin proper-
ties. Now let P(4,) = i(w5(#)-Xw*(#))7V and Q(#) = (wo(#) + w*(^))
"/V2. Then if 4 e 22(E3) is a real-valued function on E3 for taking
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field-value averages, the covariant four-potential operators are Ai(o) =
tQ(V/H-1'Spi), i = 1, 2, 3, and t(o) = kQ(VHiY®p4). Averages over
mutually space-like regions commute. The total energy of the field is
Q2(H) - c(Al(si) + A2(s2) + Aa(s3) + 4(s4)), where s1, S2, S3, s4 is any real,
square-integrable, contravariant four-current density. Expectation values
of (V ..A -. ci(b/8t)c)(4) are always zero (on photons), and (02A ) (4)
- -c-'(si, 4))I, i = 1, 2, 3, (Q24)(4) = c-1(S4, 0)I, so Maxwell's equations
are satisfied. A photon is polarized parallel to its electric vector and per-
pendicular to its magnetic vector-both perpendicular to its momentum.
Its energy satisfies Planck's relation E = hp, where v is the frequency of
the induced field.

*This note summarizes a longer paper submitted for publication elsewhere. It was
written, with the continuing advice of Prof. I. E. Segal, for presentation to the Depart-
ment of Mathematics of the University of Chicago in partial fulfillment of requirements
for the Ph.D. Most of the work was done while under contract with the Office of Naval
Research.

1 Stone, M. H., Linear Transformations in Hilbert Space, Am. Math. Soc. Coll. Publ.,
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1. Introduction.-In this note the authors present a proof of a conjec-
ture of F. J. Murray and J. v. Neumann' concerning normalcy of factors.
A ring of operators2 CR is said to be normal if each subring 3 of CR coincides

with the set of operators in CR each of which commutes with every operator
in W'M, where W'& is the ring of operators in CR each of which commutes with
every operator in S. In symbols, normalcy requires that ('aY)a'R = 8
for each subring 3 of CR. The center of a normal ring (R consists of the
operators a I, a complex (put 3 = {a I}); i.e., MR is a factor. J. v. Neu-
mann- proved8 that the factor (B of all bounded operators is normal. The
question of which factors are normal was raised by F. J. Murray and J. v.
Neumann (R.O. I, p. 185). They showed that all factors in case I (the
discrete case) are normal and exhibited examples of non-normal factors
in case II (the continuous case). Their later results establish the non-
normalcy of each member of a restricted class of factors in case II, viz.,
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