Supplementary Materials

Prenatal lead exposure is associated with reduced abundance of beneficial gut microbial cliques in late childhood: an investigation using Microbial Co-occurrence Analysis (MiCA)

Vishal Midya¹, Jamil M. Lane¹, Chris Gennings¹, Libni A. Torres-Olascoaga², Jill K. Gregory³, Robert O. Wright¹, Manish Arora¹, Martha Maria Téllez-Rojo², Shoshannah Eggers^{1,4}

- 1. Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.
- 2. Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca 62100. Mexico.
- 3. Instructional Technology Group, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.
- 4. Department of Epidemiology, University of Iowa College of Public Health, Iowa City, Iowa 52242, USA.

Number of Pages: 18

Number of Figures: 3

Number of Tables: 7

This Supporting Information includes the following:

- 1. **Supplementary Table 1**: MiCA for Pb exposure at 2T
 - 1.1. Supplementary Table 1a: Train on Batch 2 and Test on Batch 1
 - 1.2. Supplementary Table 1b: Train on 60% and Test on remaining 40%
 - 1.3. Supplementary Table 1c: Repeated Hold-out SiRF (with 60% for training and 40% for testing) repeated over 300 times
- 2. Supplementary Table 2: MiCA for Pb exposure at 3T
 - 2.1. Supplementary Table 2a: Train on Batch 2 and Test on Batch 1
 - 2.2. Supplementary Table 2b: Train on 60% and Test on remaining 40%
 - 2.3. Supplementary Table 2c: Repeated Hold-out SiRF (with 60% for training and 40% for testing) repeated over 300 times
- 3. **Supplementary Table 3**: Gene Pathways
- 4. **Supplementary Table 4**: Odds Ratio and 95% CIs from association analysis without any covariate balancing or matching
- 5. **Supplementary Table 5**: Association estimates after repeating the analysis without imputing any missing covariate data
- 6. **Supplementary Table 6**: Association estimates after cutoff thresholds being set at the 25th or 40th percentile relative abundance
 - 6.1. Supplementary Table 6a: cutoff thresholds being set at the 40th percentile
 - 6.2. Supplementary Table 6b: cutoff thresholds being set at the 25th percentile
- 7. **Supplementary Table 7**: Association estimates after adjusting for child Pb exposure at 12 and 24 months
- 8. **Supplementary Figure 1**: Distribution of propensity scores after covariate balancing
- 9. **Supplementary Figure 2**: Love plot of covariate balancing after subclass matching
- 10. **Supplementary Figure 3**: Exploratory analysis of 2T Pb concentration

Supplementary Table 1: MiCA for Pb exposure at second trimester (2T)

Supplementary Table 1a

Train on Batch 2 and Test on Batch 1

Cliques	Prevalence	Precision	Stability	Exposure co- occurrence frequency
Taxa.2+_Taxa.20-	0.113	0.617	0.988	2/4
Taxa.131Taxa.2+	0.147	0.580	1.000	6/2
Taxa.20Taxa.216-	0.112	0.533	0.956	4/2
Taxa.131Taxa.216-	0.138	0.530	0.988	6/2
Taxa.131Taxa.20-	0.334	0.529	1.000	6/4
Taxa.20Taxa.43-	0.160	0.496	0.992	4/2
Taxa.131Taxa.43-	0.193	0.501	0.992	6/2

Presenting only those cliques with a stability of more than 0.75 and a prevalence of more than 0.1. See the scientific name of all the Taxa in the Supplementary file "Taxa.names"

Supplementary Table 1b

Train on 60% and Test on remaining 40%

Cliques	Prevalence	Precision	Stability	Exposure co- occurrence
				frequency
Taxa.131Taxa.22-	0.102	0.520	0.880	6/2
Taxa.20Taxa.22-	0.111	0.516	0.964	5/2
Taxa.216Taxa.43-	0.109	0.484	0.772	3/3
Taxa.131Taxa.216-	0.206	0.485	1.000	6/3
Taxa.20Taxa.22+	0.128	0.474	0.756	5/2
Taxa.20Taxa.216-	0.226	0.482	1.000	5/3
Taxa.131Taxa.22+	0.142	0.471	0.792	6/2
Taxa.131Taxa.43-	0.202	0.469	0.988	6/3
Taxa.20Taxa.43-	0.221	0.466	1.000	5/3
Taxa.131Taxa.20-	0.342	0.476	1.000	6/5

Presenting only those cliques with a stability of more than 0.75 and a prevalence of more than 0.1. See the scientific name of all the Taxa in the Supplementary file "Taxa.names"

Supplementary Table 1c

Repeated Hold-out SiRF (with 60% for training and 40% for testing) repeated over 300 times

Cliques	Frequency of occurrence (in %)
Taxa.131Taxa.5-	7.9
Taxa.5Taxa.94-	4.9
Taxa.5Taxa.61-	3.9
Taxa.131Taxa.42-	3.6
Taxa.131Taxa.61-	3.6
Taxa.131Taxa.94-	3.6
Taxa.1Taxa.131-	3
Taxa.1Taxa.5-	3
Taxa.30Taxa.5-	3
Taxa.131Taxa.2-	2.6
Taxa.131Taxa.216-	2.6
Taxa.131Taxa.20-	2.3
Taxa.131Taxa.76-	2.3
Taxa.2- Taxa.5-	2.3
Taxa.42Taxa.5-	2.3
Taxa.131Taxa.30-	2
Taxa.34Taxa.5-	2
Taxa.42Taxa.94-	2
Taxa.5Taxa.76-	2
Taxa.1Taxa.216-	1.6
Taxa.20Taxa.5-	1.6
Taxa.21Taxa.5-	1.6
Taxa.34Taxa.94-	1.6
Taxa.76Taxa.94-	1.6
Taxa.1Taxa.20-	1.3
Taxa.131Taxa.21-	1.3
Taxa.21Taxa.94-	1.3
Taxa.61Taxa.94-	1.3
Taxa.1Taxa.30-	1
Taxa.1Taxa.34-	1
Taxa.2Taxa.61-	1
Taxa.20Taxa.216-	1
Taxa.21Taxa.42-	1
Taxa.216Taxa.5-	1
Taxa.30Taxa.94-	1

Taxa.42Taxa.76-	1
Taxa.1Taxa.42-	0.7
Taxa.1Taxa.61-	0.7
Taxa.1Taxa.76-	0.7
Taxa.131Taxa.2+	0.7
Taxa.131Taxa.52-	0.7
Taxa.2Taxa.20-	0.7
Taxa.2Taxa.216-	0.7
Taxa.20Taxa.61-	0.7
Taxa.21Taxa.30-	0.7
Taxa.21Taxa.61-	0.7
Taxa.216Taxa.42-	0.7
Taxa.34Taxa.42-	0.7
Taxa.5Taxa.52-	0.7
Taxa.1Taxa.22-	0.3
Taxa.1Taxa.52-	0.3
Taxa.1Taxa.94-	0.3
Taxa.120Taxa.61-	0.3
Taxa.120Taxa.94-	0.3
Taxa.131Taxa.16-	0.3
Taxa.131Taxa.22-	0.3
Taxa.131Taxa.26-	0.3
Taxa.131Taxa.28-	0.3
Taxa.131Taxa.3-	0.3
Taxa.131Taxa.7-	0.3
Taxa.131Taxa.8+	0.3
Taxa.16Taxa.42-	0.3
Taxa.16Taxa.5-	0.3
Taxa.16Taxa.61-	0.3
Taxa.2Taxa.42-	0.3
Taxa.2Taxa.52-	0.3
Taxa.2+_Taxa.42-	0.3
Taxa.2+_Taxa.61-	0.3
Taxa.20Taxa.34-	0.3
Taxa.21Taxa.76-	0.3
Taxa.216Taxa.30-	0.3
Taxa.216Taxa.61-	0.3
Taxa.26Taxa.61-	0.3
Taxa.28Taxa.5-	0.3
Taxa.3Taxa.5-	0.3
Taxa.30Taxa.34-	0.3

Taxa.30Taxa.61-	0.3
Taxa.42Taxa.43-	0.3
Taxa.42Taxa.61-	0.3
Taxa.43Taxa.5-	0.3
Taxa.5Taxa.7-	0.3
Taxa.5Taxa.8+	0.3
Taxa.52Taxa.94-	0.3
Taxa.61Taxa.8+	0.3

Note:

- 1) See the scientific name of all the Taxa in the file "taxa.names.csv" posted in https://github.com/vishalmidya/MiCA-Microbial-Co-occurrence-Analysis
- 2) The *red fonted*, *bolded*, *and italicized* cliques denote the choice of the final three-way cliques. Those cliques, namely, *Taxa.20-_Taxa.216-*, *Taxa.131-_Taxa.216-*, and *Taxa.20-_Taxa.131* are (a) common between Supplementary Table 1a **and** Supplementary Table 1b, **and** their Frequency of occurrences are above the 1% threshold cutoff (Supplementary Table 1c).

Supplementary Table 2: MiCA for Pb exposure at 3T

Supplementary Table 2a

Train on Batch 2 and Test on Batch 1

No clique was found with stability of more than 0.75 and a prevalence of more than 0.1

Supplementary Table 2b

Train on 60% and Test on remaining 40%

Cliques	Prevalence	Precision	Stability	Exposure co- occurrence frequency
Taxa.21Taxa.5-	0.191	0.575	1.000	3/3
Taxa.21Taxa.22-	0.125	0.561	0.988	3/3
Taxa.5Taxa.61-	0.195	0.523	1.000	3/3
Taxa.21Taxa.61-	0.171	0.525	1.000	3/3
Taxa.22Taxa.5-	0.179	0.502	1.000	3/3
Taxa.22- Taxa.61-	0.154	0.479	0.996	3/3

Presenting only those cliques with a stability of more than 0.75 and a prevalence of more than 0.1. See the scientific name of all the Taxa in the Supplementary file "Taxa.names"

Supplementary Table 2c

Repeated Hold-out SiRF (with 60% for training and 40% for testing) repeated over 300 times

Cliques	Frequency of occurrence (in %)
Taxa.22Taxa.61-	13
Taxa.21Taxa.61-	8
Taxa.21Taxa.22-	7
Taxa.5Taxa.61-	6
Taxa.111Taxa.61-	5
Taxa.111Taxa.22-	4
Taxa.21Taxa.5-	4
Taxa.22Taxa.5-	4
Taxa.2+_Taxa.61-	2
Taxa.20Taxa.22-	2

Taxa.20Taxa.61-	2
Taxa.22Taxa.31-	2
Taxa.111Taxa.21-	2
Taxa.2+_Taxa.22-	2
Taxa.22Taxa.30-	2
Taxa.42Taxa.61-	2
Taxa.111Taxa.5-	1
Taxa.20Taxa.30-	1
Taxa.30Taxa.5-	1
Taxa.30Taxa.61-	1
Taxa.31Taxa.61-	1
Taxa.61Taxa.94-	1
Taxa.111Taxa.42-	1
Taxa.111Taxa.49-	1
Taxa.111Taxa.6-	1
Taxa.131Taxa.20-	1
Taxa.131Taxa.22-	1
Taxa.131Taxa.30-	1
Taxa.131Taxa.5-	1
Taxa.131Taxa.9+	1
Taxa.131Taxa.94-	1
Taxa.16Taxa.31-	1
Taxa.16Taxa.61-	1
Taxa.2+_Taxa.20-	1
Taxa.2+_Taxa.5-	1
Taxa.2+_Taxa.94-	1
Taxa.20Taxa.21-	1
Taxa.20Taxa.43-	1
Taxa.20Taxa.8+	1
Taxa.20Taxa.94-	1
Taxa.21Taxa.31-	1
Taxa.21Taxa.48-	1
Taxa.21Taxa.49-	1
Taxa.21Taxa.6-	1
Taxa.21+_Taxa.22-	1
Taxa.21+_Taxa.31-	1
Taxa.22Taxa.42-	1
Taxa.22Taxa.43-	1
Taxa.22Taxa.48-	1
Taxa.22Taxa.7-	1
Taxa.22Taxa.9+	1

Taxa.22+_Taxa.31-	1
Taxa.22+_Taxa.61-	1
Taxa.3Taxa.42-	1
Taxa.3Taxa.5-	1
Taxa.3Taxa.61-	1
Taxa.3Taxa.94-	1
Taxa.30Taxa.94-	1
Taxa.31Taxa.5-	1
Taxa.42Taxa.5-	1
Taxa.42Taxa.94-	1
Taxa.49Taxa.5-	1
Taxa.49Taxa.61-	1
Taxa.5Taxa.6-	1
Taxa.61Taxa.7-	1
Taxa.61Taxa.8+	1

See the scientific name of all the Taxa in the Supplementary file "Taxa.names"

Supplementary Table 3: Gene Pathways

Taxon	Gene Pathway
	COA-PWY-1: coenzyme A biosynthesis II (mammalian) HISTSYN-PWY: L-histidine biosynthesis
	NONMEVIPP-PWY: methylerythritol phosphate pathway I PEPTIDOGLYCANSYN-PWY: peptidoglycan biosynthesis I (meso-
	diaminopimelate containing)
	PWY-6122: 5-aminoimidazole ribonucleotide biosynthesis II
Bifidobacterium	PWY-6151: S-adenosyl-L-methionine cycle I
adolescentis	PWY-6277: superpathway of 5-aminoimidazole ribonucleotide
	biosynthesis
	PWY-6386: UDP-N-acetylmuramoyl-pentapeptide biosynthesis II
	(lysine-containing) PWY-6387: UDP-N-acetylmuramoyl-pentapeptide biosynthesis I
	(meso-diaminopimelate containing)
	PWY-7219: adenosine ribonucleotides de novo biosynthesis
	PWY-7221: guanosine ribonucleotides de novo biosynthesis
	THRESYN-PWY: superpathway of L-threonine biosynthesis
	UDPNAGSYN-PWY: UDP-N-acetyl-D-glucosamine biosynthesis I
	VALSYN-PWY: L-valine biosynthesis
	COA DIANA 1, accompany on A biscountherain II (mammalian)
	COA-PWY-1: coenzyme A biosynthesis II (mammalian) NONMEVIPP-PWY: methylerythritol phosphate pathway I
	PANTO-PWY: phosphopantothenate biosynthesis I
	PEPTIDOGLYCANSYN-PWY: peptidoglycan biosynthesis I (meso-
	diaminopimelate containing)
B	PWY-2942: L-lysine biosynthesis III
Paraprevotella clara	PWY-5097: L-lysine biosynthesis VI
	PWY-5667: CDP-diacylglycerol biosynthesis I
	PWY-6151: S-adenosyl-L-methionine cycle I
	PWY-6386: UDP-N-acetylmuramoyl-pentapeptide biosynthesis II (lysine-
	containing)
	PWY-6387: UDP-N-acetylmuramoyl-pentapeptide biosynthesis I (meso-
	diaminopimelate containing)
	PWY-6700: queuosine biosynthesis
	PWY-7111: pyruvate fermentation to isobutanol (engineered)
	PWY-7219: adenosine ribonucleotides de novo biosynthesis
	PWY-7221: guanosine ribonucleotides de novo biosynthesis PWY0-1319: CDP-diacylglycerol biosynthesis II
	VALSYN-PWY: L-valine biosynthesis
	Villa III I VIII E Valino biodynthodio

COA-PWY-1: coenzyme A biosynthesis II (mammalian) PANTO-PWY: phosphopantothenate biosynthesis I PWY-5097: L-lysine biosynthesis VI PWY-5188: tetrapyrrole biosynthesis I (from glutamate) Ruminococcus PWY-6121: 5-aminoimidazole ribonucleotide biosynthesis I callidus PWY-6122: 5-aminoimidazole ribonucleotide biosynthesis II PWY-6151: S-adenosyl-L-methionine cycle I PWY-6163: chorismate biosynthesis from 3-dehydroquinate PWY-6277: superpathway of 5-aminoimidazole ribonucleotide biosynthesis PWY-6700: queuosine biosynthesis PWY-6703: preQ0 biosynthesis PWY-7219: adenosine ribonucleotides de novo biosynthesis PWY-7221: guanosine ribonucleotides de novo biosynthesis

Supplementary Table 4: Odds Ratio and 95% Cls from association analysis without any covariate balancing or matching

Outcome	Odds Ratio	95% CI	p-value
Below-median relative abundance of the 2-taxa microbial clique	1.02	(1.00, 1.04)	0.03
Below-median relative abundance of the 3-taxa microbial clique	1.01	(0.99, 1.03)	0.17

Supplementary Table 5: Association estimates after repeating the analysis without imputing any missing covariate data

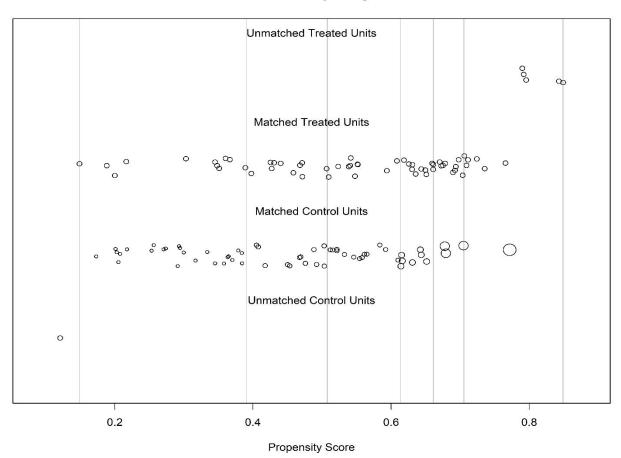
Outcome	Odds Ratio	95% CI	p-value
Below-median relative abundance of the 2-taxa microbial clique	1.02	(1.00, 1.04)	0.04
Below-median relative abundance of the 3-taxa microbial clique	1.01	(0.99, 1.03)	0.28

Supplementary Table 6: Association estimates after cutoff thresholds being set at the 25th or 40th percentile relative abundance

Supplementary Table 6a: Cutoff thresholds being set at the 40th percentile

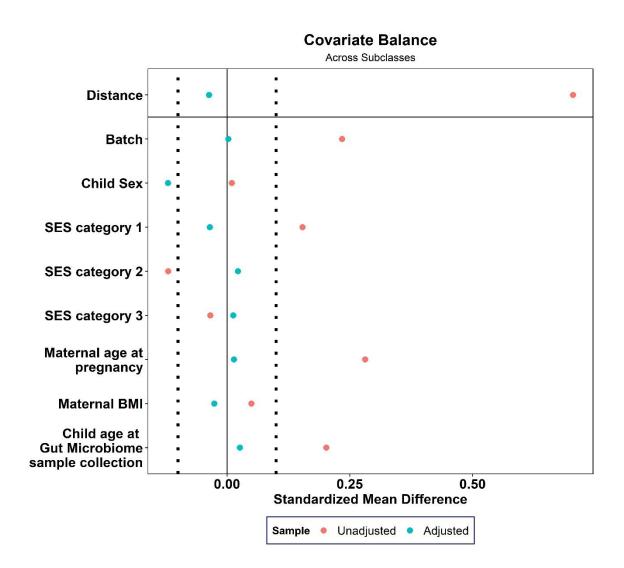
Outcome	Odds Ratio	95% CI	p-value
Below-median relative abundance of the 2-taxa microbial clique	1.02	(1.00, 1.04)	0.11
Below-median relative abundance of the 3-taxa microbial clique	1.01	(0.99, 1.03)	0.34

Supplementary Table 6b: Cutoff thresholds being set at the 25th percentile

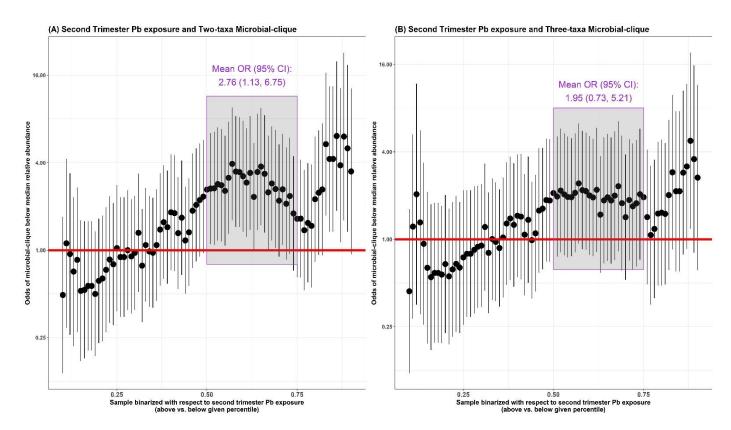

Outcome	Odds Ratio	95% CI	p-value
Below-median relative abundance of the 2-taxa microbial clique	1.01	(0.99, 1.04)	0.26
Below-median relative abundance of the 3-taxa microbial clique	1.00	(0.98, 1.04)	0.63

Supplementary Table 7: Association estimates after adjusting for child Pb exposure at 12 and 24 months

Outcome	Odds Ratio	95% CI	p-value
Below-median relative abundance of the 2-taxa microbial clique	1.02	(1.00, 1.04)	0.04
Below-median relative abundance of the 3-taxa microbial clique	1.01	(0.99, 1.04)	0.18


Supplementary Figure 1: Distribution of propensity scores after covariate balancing

Distribution of Propensity Scores


The covariate balancing using propensity score was conducted based on high (above median) vs. low (below median) second-trimester Pb exposure. The "control units" refer to the low-exposure group, whereas the "treated units" refer to the high-exposure group.

Supplementary Figure 2: Love plot of covariate balancing after subclass matching

Love plot showing standardized mean differences between before vs. after covariate balancing. The dotted verticle lines show the standardized mean difference between -0.1 to 0.1, which is set as a threshold. If the standardized mean difference lies within these bounds after adjustment, the corresponding covariate will be adjusted as "matched" or "balanced" between the high vs. low exposure group.

Supplementary Figure 3: Exploratory analysis of Second trimester Pb concentration

Odds of having below-median relative abundance of the (A) 2- and (B) 3-taxa cliques with respect to sample that was binarized using increasing quantiled 2T Pb concentration