Supplementary material for: Design of intrinsically disordered protein variants with diverse structural properties

 $_{\rm s}$ Francesco Pesce¹, Anne Bremer², Giulio Tesei¹, Jesse B. Hopkins³, Christy R.

Grace² **, Tanja Mittag**² **, Kresten Lindorff-Larsen**1*

***For correspondence:** <lindorff@bio.ku.dk> (KLL) 1

- ¹ Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein
- Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark;
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN
- 10 38105, USA; ³BioCAT, Department of Physics, Illinois Institute of Technology, Chicago, IL,
- 11 USA.
- **Supplementary experimental materials and methods**

Protein constructs

- Sequences of wild-type A1-LCD and variants are based on the low complexity domain (residues 186-
- 320) of the human hnRNPA1 (UniProt: P09651; Isoform A1-A). The coding sequences for the vari-
- ants were synthesized (Thermo Fisher) including a coding sequence for an N-terminal ENLYFQGS
- TEV protease cleavage site and 5' and 3' attB sites for Gateway cloning. The sequences were re-combined via LR reactions into the pDEST17 vector (Thermo Fisher), which includes an N-terminal
- 6xHis-tag coding sequence. After expression, we cleaved of the N-terminal 6xHis-tag using TEV
-
- protease, leaving only an additional GS sequence at the N-terminus.

Protein expression and purification

 [A](#page-13-0)1-LCD variants were expressed and purified as previously reported for similar constructs (*[Mar-](#page-13-0) [tin et al.,](#page-13-0) [2020](#page-13-0)*; *[Bremer et al.,](#page-13-1) [2022](#page-13-1)*). The *E. coli* BL21 (DE3) pLysS strain was used for expression $_{24}$ and grown in ZYM5052 auto induction media at 37°C for 24 hours. Cell pellets were recovered by centrifugation and resuspended in 50 mM MES pH 6.0, 500 mM NaCl, 20 mM 2-mercaptoethanol. Cell lysis was achieved via sonication. Cell lysates were centrifuged to collect inclusion bodies, that were resuspended in 6 M GdmHCl, 20 mM Tris pH 7.5, 15 mM imidazole overnight at 4 °C. The so- lutions containing the solubilized inclusion bodies were cleared from cell debris by centrifugation, and supernatants were loaded onto self-packed columns of chelating Sepharose fast flow beads (GE Healthcare) charged with nickel sulfate. The columns were washed with four column volumes of 4 M urea, 20 mM Tris pH 7.5, 15 mM imidazole. Proteins were eluted from the Ni-NTA resin with 4 M urea, 20 mM Tris pH 7.5, 500 mM imidazole. TEV cleavage of the 6xHis-tag was done in 2 M urea, 20 mM Tris pH 7.5, 50 mM NaCl, 0.5 mM EDTA, 1 mM DTT overnight at 4°C. Cleaved protein solutions were loaded onto Ni-NTA columns. The flow-through and wash fractions were collected and concentrated using a 3000 MWCO Amicon centrifugal filter. Finally, samples were transfered in 2 M GdmHCl, 20 mM MES pH 5.5 over a S75 Superdex size exclusion column (GE Healthcare). ₃₇ The molecular weight of the proteins and the purity of samples were confirmed via intact mass

spectrometry and SDS- PAGE. Samples were stored in 6 M GdmHCl, 20 mM MES pH 5.5 at 4°C.

Table S1. Sequences of the wild type A1-LCD and the five designed variants that we characterized experimentally. The first two residues (GS) are left over by the TEV protease cleavage of the 6xHis-tag.

³⁹ **SDS-PAGE**

⁴⁰ Gel electrophoresis was carried out using NuPAGE 4–12% Bis-Tris gradient gels (Invitrogen). 1x

41 NuPAGE MES SDS Running buffer (Invitrogen) was used to run gels. After the run, gels were washed

⁴² with water and stained with SimplyBlue SafeStain (Thermo Fisher Scientific) before destaining with

⁴³ water. PageRuler Plus Prestained protein ladder (Thermo Fisher Scientific) was used as a molecular

weight reference.

⁴⁵ **Buffer exchange**

To remove the denaturant buffer used for storage and transfer the protein to 20 mM HEPES (pH

7.0) we used Zeba™ Spin Desalting Columns (Thermo Fisher Scientific) with 7k MWCO and 0.5 mL

 48 volume. After removal of storage solution from the column by centrifugation at 1000 \times *g* for 1 min.

⁴⁹ columns were washed three times with 300 *𝜇*L of 20 mM HEPES (by centrifugation at 1000 ×*𝑔* for

⁵⁰ 1 min). Finally, protein sample is applied to the column and recovered in 20 mM HEPES after a

⁵¹ centrifugation. Additional washing steps (3–5) were carried out in Amicon Ultra-0.5 Centrifugal

⁵² Filter Units to remove residual denaturant.

⁵³ **Determination of saturation concentrations**

- ⁵⁴ Phase separation of protein samples was induced by adding NaCl to a final concentration of 150 mM.
- ₅₅ The dilute and dense phase were separated via centrifugation (*[Milkovic and Mittag,](#page-13-3) [2020](#page-13-3)*). The c_{sat}
- ⁵⁶ was determined by the absorbance of the dilute phase at 280 nm.

⁵⁷ **DIC microscopy**

- ⁵⁸ Differential interference contrast microscopy (DIC) images were obtained at room temperature
- ⁵⁹ using a Nikon Eclipse Ni Widefield microscope with a 20X objective. Samples were at concentrations
- 60 slightly above their c_{sat} at room temperature. Phase separation was induced by adding NaCl to
- ϵ_1 the protein stock solution to reach a concentration of 150 mM. 2 μ L of the protein solution were
- positioned in between two glass coverslips held toghether by 3M 300 LSE high-temperature double-
- ⁶³ sided tape (0.34 mm) with a window for microscopy cut out.

Supplementary computational methods

- [T](#page-13-5)he *𝑅*^h for protein conformations was calculated using HullRadSAS (*[Fleming et al.,](#page-13-4) [2023](#page-13-4)*; *[Tran-](#page-13-5)*
- *[chant et al.,](#page-13-5) [2023](#page-13-5)*). The ensemble-averaged *𝑅*^h was calculated as 1∕*𝑛* −1 ∑*^𝑛 𝑖* (1∕*𝑅*h*,𝑖*) (*[Choy et al.,](#page-13-6) [2002](#page-13-6)*;
- *[Ahmed et al.,](#page-13-7) [2020](#page-13-7)*), from each conformer *𝑖* of an ensemble. Sequence clustering was performed
- with a 65% sequence identity threshold using the CD-HIT software (*[Li and Godzik,](#page-13-8) [2006](#page-13-8)*; *[Fu et al.,](#page-13-9)*
- ⁶⁹ *[2012](#page-13-9)*). Calculations of ω_{xx} and κ from sequences were performed using the localCIDER python pack-
- age (https://github.com/Pappulab/localCIDER), while the *𝑧*(*𝛿*+−) scores for the IDRome sequences
- and the A1-LCD swap variants was calculated using a modified version of the NARDINI software
- which allowed us to define a custom threshold for the largest fraction of negatively and positively
- charged residues below which the program sets *𝑧*(*𝛿*+−) to zero (*[Cohan et al.,](#page-13-10) [2021](#page-13-10)*). We set this threshold to 2.5% to obtain a non-zero *z*(*δ*,) score for A1-LCD and sequences in the IDRome with
- fraction of charged residues similar to A1-LCD. For the NARDINI analysis of IDRome sequences, we
- τ generated 10⁵ randomly shuffled sequences, while for the wild type and variants of A1-LCD, we
- used 5×10^5 randomly shuffled sequences.
- We calculated error bars on averages calculated from MD simulations using block averaging
- (<https://github.com/fpesceKU/BLOCKING>). Calculation of SAXS data from conformations was per-
- formed with Pepsi-SAXS (v3.0) (*[Grudinin et al.,](#page-13-11) [2017](#page-13-11)*), using fixed parameters for the contrast of
- $_{\rm s1}$ the hydration layer and the effective atomic radius (respectively 3.34 e/nm 3 and 1.025 \times r_m, where
- 82 r_m is the average atomic radius of the protein) (*[Pesce and Lindorff-Larsen,](#page-13-12) [2021](#page-13-12)*). Prior to calcu-
- $_{33}$ lating the χ^2_r , experimental SAXS curves are rebinned to 158 scattering angles and experimental
- [e](#page-13-13)rror bars are rescaled using the Bayesian indirect Fourier transform (BIFT) (*[Larsen and Peder-](#page-13-13)*
- *[sen,](#page-13-13) [2021](#page-13-13)*). Both rebinning and error correction were carried out with the BayesApp webserver
- (<https://somo.chem.utk.edu/bayesapp/>) (*[Hansen,](#page-13-14) [2012](#page-13-14)*).

⁸⁷ **Supplementary figures and tables**

Figure S1. Design of more expanded variants for α Syn, A1-LCD, LAF-1-RGG and FUS-PLD, starting from the wild-type sequences.

Figure S2. Multiple sequence features were calculated from the variant sequences of α Syn, A1-LCD and LAF-1-RGG and correlated with the $R_{\rm g}$. SCD, similarly to κ , is related to the patterning of charged residues. SHD (sequence hydropathy decoration) quantifies the patterning of hydrophobic residues. $\omega_{\rm aro}$ quantifies the patterning of aromatic residues.

Figure S3. We performed ten runs for generating compact variants of A1-LCD. For each replica we show (a) the evolution of the $R_{\rm g}$ from the generated sequences and (b) the total charge for the N-terminal third (blue), the middle third (green), and the C-terminal third (red) of each sequence.

Figure S4. To test the accuracy and efficiency of MBAR reweighting, we generated a random sequence of 140 residues and performed 1000 position swaps between two randomly selected residues. We simulated all 1000 sequences and calculate their $R_{\rm g}$. Then we iterate through the 1000 sequences trying to predict their $R_{\rm g}$ by reweighting simulations from previous iterations. We vary the maximum size of the MBAR pool and add a new simulation to the pool when the $N_{\rm eff}$ drops below 10000. Then we compare the reweighted $R_{\rm g}$ from MBAR with the simulated $R_{\rm g}$. The left panel shows the number of simulations required by varying the maximum MBAR pool size. The right panel shows the relative absolute difference between reweighted and simulated $R_{\rm g}$ (|∆ $R_{\rm g}$ |/ $R_{\rm g}^{\rm sim}$) as a function of $N_{\rm eff}$. For better visualization, we binned the data on the $N_{\rm eff}$ coordinate (with a bin width of 1000) and plot the average in the bins.

Figure S5. For some of the centroids selected from the sequence clustering of the A1-LCD variants the R_g values had been obtained by reweighting. We simulated each of these for 1 μ s to assess the accuracy of the reweighting. The reweighted and simulated $R_{\rm g}$ values are compared. We observe an average error of 1.5% on the reweighted $R_{\rm g}$, with a slight bias for the most compact and expanded chains.

Figure S6. Sequence identity to wild-type A1-LCD for the 119 designed A1-LCD variants. Green vertical line correspond to the *R*^g of wild-type A1-LCD.

Figure S7. Characterization of the 120 variants of A1-LCD. We show the relationship between R_g and (a) SCD, (b) $\omega_{\sf aro}$ (patterning of aromatic residues) and (c) the $c_{\sf sat}$ calculated from simulations of 100 chains in slab geometry. We highlight the wild-type sequence of A1-LCD in green, the five variants that we characterized experimentally in red, and ten variants that did not express in *E. coli* in blue.

Figure S8. c_{sat} values calculated by slab simulations of experimental constructs. Replicas 1,2 and 3 were performed with CALVADOS M1 (*[Tesei et al.,](#page-13-15) [2021](#page-13-15)*) and 100 chains in the simulation box. Replica 1 (green) is 20-*𝜇*s long, while replicas 2 and 3 (blues) are 50-*𝜇*s long. For V5, we also performed a 20-*𝜇*s long simulation with CALVADOS M1 but using 200 chains (pink), and a 20- μ s long simulation with 100 chains but the CALVADOS 2 parameters (brown) (*[Tesei and Lindorff-Larsen,](#page-13-16) [2022](#page-13-16)*).

Figure S9. Rebinned experimental SAXS data with corrected error bars (black) compared to SAXS curves calculated from simulations.

Figure S10. Schematic outline of the design algorithm.

Figure S11. SAXS data collected on samples of (from top to bottom rows) V2, V3, V4, V5 and wild-type A1-LCD. From the left to the right column, SAXS profiles are shown with logarithmic scales, as a Guinier plot in the range used for the linear fit (in red) to derive the the Guinier $R_{\rm g\prime}$ the dimensionless Kratky plot with rebinned SAXS data, and the normalized pair distance distribution function (calculated using BIFT (*[Larsen and](#page-13-13) [Pedersen,](#page-13-13) [2021](#page-13-13)*)).

Figure S12. In line SEC-SAXS data collection. In blue, we show the mean solvent-subtracted intensity for each SAXS frame collected during sample elution from the SEC column. In orange, we show the Guinier $\overline{R_g}$ calculated for each SAXS frame.

Table S2. SAXS sample, data-collection and analysis for the wild-type A1-LCD and its variants*.

∗∗ (*[Hajizadeh et al.,](#page-13-19) [2018](#page-13-19)*)

- **References**
- **Ahmed MC**, Crehuet R, Lindorff-Larsen K. Computing, analyzing, and comparing the radius of gyration and hy-
- drodynamic radius in conformational ensembles of intrinsically disordered proteins. Intrinsically disordered
- proteins: methods and protocols. 2020; p. 429–445.
- **Bremer A**, Farag M, Borcherds WM, Peran I, Martin EW, Pappu RV, Mittag T. Deciphering how naturally occurring
- sequence features impact the phase behaviours of disordered prion-like domains. Nature Chemistry. 2022; 14(2):196–207.
- **Choy WY**, Mulder FA, Crowhurst KA, Muhandiram D, Millett IS, Doniach S, Forman-Kay JD, Kay LE. Distribution of
- molecular size within an unfolded state ensemble using small-angle X-ray scattering and pulse field gradient NMR techniques. Journal of molecular biology. 2002; 316(1):101–112.
-
- **Cohan MC**, Shinn MK, Lalmansingh JM, Pappu RV. Uncovering non-random binary patterns within sequences of intrinsically disordered proteins. Journal of Molecular Biology. 2021; p. 167373.
- **Fleming PJ**, Correia JJ, Fleming KG. Revisiting macromolecular hydration with HullRadSAS. European Biophysics **Journal.** 2023; p. 1–10.
- **Fu L**, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioin-formatics. 2012; 28(23):3150–3152.
- **Grudinin S**, Garkavenko M, Kazennov A. Pepsi-SAXS: an adaptive method for rapid and accurate computation of small-angle X-ray scattering profiles. Acta Crystallographica Section D: Structural Biology. 2017; 73(5):449– 106 464.
- **Hajizadeh NR**, Franke D, Jeffries CM, Svergun DI. Consensus Bayesian assessment of protein molecular mass from solution X-ray scattering data. Scientific reports. 2018; 8(1):7204.
- **Hansen S**. BayesApp: a web site for indirect transformation of small-angle scattering data. Journal of Applied Crystallography. 2012; 45(3):566–567.
- **Larsen AH**, Pedersen MC. Experimental noise in small-angle scattering can be assessed using the Bayesian indirect Fourier transformation. Journal of Applied Crystallography. 2021; 54(5):1281–1289.
- **Li W**, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide se-quences. Bioinformatics. 2006; 22(13):1658–1659.
- **Martin EW**, Holehouse AS, Peran I, Farag M, Incicco JJ, Bremer A, Grace CR, Soranno A, Pappu RV, Mittag T.
- Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science. 2020; 367(6478):694–699.
- **Milkovic NM**, Mittag T. Determination of protein phase diagrams by centrifugation. In: *Intrinsically Disordered Proteins* Springer; 2020.p. 685–702.
- **Pesce F**, Lindorff-Larsen K. Refining conformational ensembles of flexible proteins against small-angle x-ray scattering data. Biophysical journal. 2021; 120(22):5124–5135.
- **Tesei G**, Lindorff-Larsen K. Improved predictions of phase behaviour of intrinsically disordered proteins by tuning the interaction range. bioRxiv. 2022; .
- **Tesei G**, Schulze TK, Crehuet R, Lindorff-Larsen K. Accurate model of liquid–liquid phase behavior of intrinsically
- disordered proteins from optimization of single-chain properties. Proceedings of the National Academy of Sciences. 2021; 118(44):e2111696118.
- **Tranchant EE**, Pesce F, Jacobsen NL, Fernandes CB, Kragelund BB, Lindorff-Larsen K. Revisiting the use of dioxane as a reference compound for determination of the hydrodynamic radius of proteins by pulsed field gradient NMR spectroscopy. bioRxiv. 2023; p. 2023–06.
- **Trewhella J**, Duff AP, Durand D, Gabel F, Guss JM, Hendrickson WA, Hura GL, Jacques DA, Kirby NM, Kwan AH, et al. 2017 publication guidelines for structural modelling of small-angle scattering data from biomolecules
- in solution: an update. Acta Crystallographica Section D: Structural Biology. 2017; 73(9):710–728.
- **Trewhella J**, Jeffries CM, Whitten AE. 2023 update of template tables for reporting biomolecular structural mod-
- elling of small-angle scattering data. Acta Crystallographica Section D: Structural Biology. 2023; 79(2):122– 132.
-