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Problem Statement8

We consider a fractional-order dynamical network driven by a control input and additive noise. It is described9

as follows:10

∆αx[k + 1] = Ax[k] +Bu[k], (1)

where k ∈ N is the time step, n is the number of nodes in the network, x[k] ∈ Rn denotes the state, A ∈ Rn×n11

is the coupling matrix that describes the spatial relationship between different states, u[k] ∈ Rn is the input12

vector, B ∈ Rn×n is the coupling matrix that describes the spatial relationship between the inputs and13

the states, α ∈ Rn are the fractional-order exponents encoding the memory associated with the different14

state variables, and ∆α is the Grünwald-Letnikov discretization of the fractional derivative (Chpt.2,[1]).15

Fractional-order dynamical networks possess long-term memory. For each i-th state (1 ≤ i ≤ n), the16

fractional-order operator acting on xi leads to the following expression:17

∆αixi[k] =

k∑
j=0

ψ(αi, j)xi[k − j], (2)

where ψ(αi, j) = Γ(j−αi)
Γ(−αi)Γ(j+1) , with Γ(·) denoting the Gamma function [2].18

We aim to determine the minimum number of state nodes and their placement that need to be driven to19

ensure the structural controllability of the fractional-order dynamical network. A fractional-order dynamical20

network is said to be controllable if there exists a sequence of inputs such that any initial state of the system21

can be steered to any desired state in a finite number of time steps. Therefore, assuming that the system is22

being actuated during T time steps, we can describe the system (1) by the matrix tuple (α,A,B, T ).23

Controllability associated with the system described in (1) can be characterized as follows.24

Definition 1. (Controllability in T time steps) The fractional-order dynamical network described by (α,A,B, T )25

is said to be controllable in T time steps if and only if there exists a sequence of inputs u[k] (0 ≤ k ≤ T − 1)26

such that any initial state x[0] ∈ Rn can be steered to any desired state (xdesired[T ] ∈ Rn) in T time steps.◦27

Next we provide the following result on the controllability of the linear discrete-time fractional-order28

dynamical network.29
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Theorem 1. (Controllability of fractional-order dynamical network (Theorem 4, [3])) The linear discrete-
time fractional-order dynamical network is controllable if and only if there exists a finite time K such that
rank(Wc(0,K)) = N , the dimension of the state, where Wc(0,K) = G−1

K

∑K−1
j=0 GjBB

ᵀGᵀ
jG
−ᵀ
K and

Gk =

{
In, k = 0∑k−1
j=0 AjGk−1−j , k ≥ 1,

(3)

where In is the identity matrix of size n. ◦30

Furthermore, an input sequence
[
uᵀ[K − 1],uᵀ[K − 2], . . .uᵀ[0]

]ᵀ
that transfers x[0] 6= 0 to x[K] = 0 is31

given by32 
u[K − 1]
u[K − 2]

...
u[0]

 = −[G0BG1B . . .GK−1B]ᵀG−ᵀK W−1
c (0,K)x[0]. (4)

Due to the uncertainty in the system’s parameters, we adopt a structural systems approach that relies solely33

on the system’s parameters. Consider the class of possible tuples with a predefined structure ([ᾱ], [Ā], [B̄], T ),34

with [ᾱ] = {α ∈ Rn}, where a structural matrix is defined as [M̄ ] = {M ∈ Rm1×m2 : M̄i,j = 0 if Mi,j =35

0}, and M̄ ∈ {0, ? ∈ R}m1×m2 is a structural matrix with fixed zeros and arbitrary scalar parameters.36

Specifically, in the context of this paper, we seek to assess the structural controllability defined as follows:37

Definition 2. (Structural Controllability): The fractional-order dynamical network with structural pat-38

tern (ᾱ, Ā, B̄, T ) is said to be structurally controllable in T time steps if and only if there exists a tuple39

(α′, A′, B′, T ) ∈ ([ᾱ], [Ā], [B̄], T ) that is controllable in T time steps. ◦40

Remark 1. If a system is structurally controllable, then almost all (α′′, A′′, B′′, T ) ∈ ([ᾱ], [Ā], [B̄], T ) are41

controllable in T time steps, by invoking similar density arguments to those in [4]. �42

From the above discussion, it readily follows that structural controllability will depend on the system’s43

structure and actuation capabilities being deployed. We consider the following assumption:44

A1: All state variables can be directly controlled by dedicated actuators (i.e., there is a one-to-one mapping45

between an actuator and a state variable). Thus, the input matrix IJn ∈ Rn×n, where J = {1, . . . , n} is the46

set of all state variables, is a diagonal matrix such that any diagonal entry is non-zero (i.e., IJn (i, i) 6= 0 where47

i = {1, . . . , n}) if and only if the associated actuator (i.e., ui) is connected to the associated state variable48

(i.e., xi). Hence, the minimum set of state variables that need to be connected to dedicated actuators to49

ensure structural controllability is denoted by J ∗ ⊆ J .50

Formally, we seek the solution J ∗ to the following problem: given (ᾱ, Ā) and a time horizon T time steps51

min
J⊆{1,...,n}

|J |

s.t. (ᾱ, Ā, IJn , T )

is structurally controllable in T time steps.

(P1)

Structural Controllability of Fractional-Order Dynamical Networks52

We will start by first providing the graph-theoretical necessary and sufficient conditions to ensure structural53

controllability in T time steps of fractional-order dynamical networks. With these conditions, we will solve54

P1 and provide a characterization of all the minimum combinations of state variables that satisfy these55

conditions.56

Let us start by recalling that the fractional-order dynamical network in (2) can be written as follows [5]:57

x[k + 1] = Ax[k]−
k+1∑
j=1

D(α, j)x[k + 1− j] +Bu[k], (5)
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where

D(α, j) =


ψ(α1, j) 0 . . . 0

0 ψ(α2, j) . . . 0

0 . . .
. . . 0

0 0 . . . ψ(αn, j)

 .
In fact, it admits a compact representation given by58

x[k + 1] =

k∑
j=0

Ajx[k − j] +Bu[k], (6)

where A0 = A −D(α, 1) and Aj = −D(α, j + 1), for j ≥ 1. Thus, the fractional-order dynamical network59

can be re-written in a closed-form as follows:60

x[k] = Gkx[0] +

k−1∑
j=0

Gk−1−jBu[j], (7)

with

Gk =


In, k = 0
k−1∑
j=0

AjGk−1−j , k ≥ 1,
(8)

Hereafter, the following remark will play a key role.61

Remark 2. The matrix Gk in (8) corresponds to the transition matrix Φ(k, 0) of the fractional-order dy-62

namical network. In particular, Gk is a combination of the powers of A0 and diagonal matrices that depend63

on the fractional-order exponents. For example,64

G3 =

2∑
j=0

AjG2−j = A0G2 +A1G1 +A2G0

= A3
0 −A0D(α, 2)−D(α, 2)A0 −D(α, 3). �

To provide necessary and sufficient graph-theoretical conditions, we need to introduce the following ter-65

minology. A directed graph (digraph) is described by G = (V, E), where V denotes the set of vertices (or66

nodes) and E the (directed) edges between the vertices in the graph. A walk is any sequence of edges where67

the last vertex in one edge is the beginning of the next edge. Notice that a walk may include the repetition68

of vertices. As such, a path is a walk where vertices are not repeated. If the beginning and ending vertex69

of a path is the same, then we obtain a cycle. Additionally, a sub-digraph Gs = (V ′, E ′) is described as any70

subcollection of vertices V ′ ⊂ V and the edges between them (i.e., E ′ ⊂ E). If a subgraph has the property71

that there exists a path between any two pairs of vertices in the subgraph, then it is a strongly connected72

digraph. The maximal strongly connected subgraph forms a strongly connected component (SCC), and any73

digraph can be uniquely decomposed into SCCs that can be seen as nodes in a directed acyclic digraph. A74

source SCC is an SCC that does not possess incoming edges to its vertices from other SCCs.75

Now, we introduce the following notion of structural equivalence, which will play a key role in the derivation76

of our main results.77

Definition 3. (Structural Equivalence) Let M̄ and N̄ be two n×n structural matrices. A structural matrix78

M̄ dominates N̄ if N̄i,j = ?, then M̄i,j = ? for all i, j ∈ {1, . . . , n}, which we denote as M̄ ≥ N̄ . Also, if79

M̄ ≥ N̄ and N̄ ≥ M̄ , then we say that M̄ is structurally equivalent to N̄ . ◦80

We define a Markov network as a linear time-invariant system given as follows

x[k + 1] = Ax[k],
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where A ∈ Rn×n may or may not possess self-loops on all the nodes.81

82

We notice that for Aj , if j = 0, then we obtain a system dependent on A0 = A −D(α, 1); however, the83

linear time-invariant system is only dependent on A, where A may or may not possess self-loops on all the84

nodes. When A does not possess self-loops, then we can obtain an advantage in terms of minimal amount85

of control resources needed for controlling networks possessing fractional-order dynamics. Now, we provide86

the first main result of our paper.87

Theorem 2. (Structural equivalence of fractional-order dynamical networks to linear time-invariant dynam-88

ical networks) The structural fractional-order dynamical network (ᾱ, Ā) described by its transition matrix Ḡk89

in (7) and (8) is structurally equivalent to the structural linear time-invariant dynamical network described90

by system matrix Ā0, where A0 = A−D(α, 1). ◦91

Proof. First recall Remark 2, and notice that if we consider Gk in (8), then we obtain a combination of the92

powers of A0 and diagonal matrices that depend on the fractional-order exponents. In fact, some of the93

powers of A0 might be multiplied on the left or right by these diagonal matrices, which does not change the94

structural pattern of the outcome (i.e., DAk0 or Ak0D is structurally equivalent to Āk0 , where D is a diagonal95

matrix). Therefore, Ḡk structurally equivalent to Āk0 . For a linear time-invariant system having system96

matrix A0, the state transition is described by x[k] = Ak0x[0] +
∑k−1
j=0 A

k−j−1
0 Bu[j]. By comparing this97

state transition relationship with the state transition relationship in (7) and because Ḡk in (8) structurally98

equivalent to Āk0 , then the structural fractional-order dynamical network described by Ḡk is structurally99

equivalent to the structural linear time-invariant network described by system matrix Ā0.100

Next, we show that the structural matrix Ā0 has non-zero diagonal generically.101

Theorem 3. (Generic non-zero diagonal) The structural matrix Ā0 has non-zero diagonal generically.102

Proof. We have by definition that A0 = A−D(α, 1). A non-zero diagonal entry may appear in A0 if there103

exists an i ∈ {1, . . . , n} such that αi = 0 and if the corresponding diagonal entry of A is zero (i.e., ai,i = 0).104

Another instance occurs if there exists an i ∈ {1, . . . , n} such that ai,i 6= 0, but a given combination of105

parameters due to αi 6= 0 results in a perfect cancellation of the diagonal entry. These two cases occur with106

probability zero (whenever they are uniformly sampled on R or C) by invoking density arguments. Hence,107

the matrix Ā0 has non-zero diagonal entries generically.108

From Theorems 2 and 3, given the structural characterization, we can associate fractional-order dynamical109

networks, characterized by (α,A,B), with a system digraph G ≡ G(Ā0, B̄) = (V, E), where V = X ∪U where110

X = {x1, . . . , xn} and U = {u1, . . . , un} are the state and input vertices, respectively. Furthermore, we have111

that E = EX ,X ∪EX ,U , where EX ,X = {(xj , xi) : Ā0(i, j) 6= 0} and EX ,U = {(xj , ui) : B̄(i, j) 6= 0} are the state112

and input edges, respectively. Similarly, we can define the state digraph G(Ā0) = (X , EX ,X ), characterized113

by (α,A).114

Remark 3. We remark that due to the structural equivalence notion introduced in this paper we observe that115

the fractional-order exponents play an important role in capturing the memory of the state variables, which116

is structurally equivalent to nodal dynamics in a linear time-invariant system. Ultimately, by Theorems 2117

and 3, considering fractional-order dynamics leads to a system digraph with self-loops almost always. �118

Subsequently, by invoking Theorem 2, we provide the graphical conditions that ensure structural control-119

lability of fractional-order dynamical networks.120

Theorem 4. (Structural controllability for fractional-order dynamical networks) Given a structural fractional-121

order dynamical network (ᾱ, Ā, B̄, T = n), we say that this network is structurally controllable in T = n time122

steps if and only if at least one state variable in each of the source SCCs of G(Ā0) is connected to an incoming123

input in the system digraph G(Ā0, B̄). ◦124
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Proof. From Theorems 2 and 3, it follows that we only need to guarantee that the linear time-invariant125

network described by (Ā0, B̄) is structurally controllable. Therefore, to attain structural controllability of126

(Ā0, B̄), we need to guarantee two conditions on G(Ā0, B̄) [6]: (i) all state variables belong to a disjoint127

union of cycles, and (ii) G(Ā0, B̄) has at least one state variable in each of the source SCCs of G(Ā0) that is128

connected to an incoming input. Notice that the first condition is fulfilled since all the states have self-loops129

generically – see Remark 3. Subsequently, it suffices to guarantee structural controllability of the fractional-130

order dynamical network if and only if G(Ā0, B̄) has at least one state variable in each of the source SCCs131

of G(Ā0) that is connected to an incoming input.132

Minimal Dedicated Actuation to Ensure Structural Controllability of133

Fractional-Order Dynamical Networks134

With the result in Theorem 4, we readily obtain the following corollary required for ensuring the feasibility135

of P1.136

Corollary 1. A fractional-order dynamical network (ᾱ, Ā, ĪJn , T = n) is structurally controllable if and only137

if J contains the index of at least one state variable in each of the source SCCs in G(Ā0). ◦138

Proof. The result follows from invoking Theorem 4. Therefore, by guaranteeing that at least one state per139

source SCC is actuated, we guarantee that G(Ā0, ĪJn ) is accessible and hence, structurally controllable.140

Consequently, we obtain the solution to P1.141

Theorem 5. (Solution to P1) Consider a fractional-order dynamical networks (ᾱ, Ā, ĪJn , T = n). The142

solution to P1 is as follows:143

J ∗ = {i1, . . . , il},

where {i1, . . . , il} denotes the set of indices corresponding to the l states xi1 , . . . , xil that each belong to a144

different source SCC in G(Ā0). ◦145

Proof. First, notice that Corollary 1 establishes the feasibility of the solution to P1. Therefore, to achieve146

the minimum feasible set, we select one state variable from each of the different source SCCs in G(Ā0) to be147

actuated. The minimal number of variables is equal to the number of source SCCs, and hence, the result148

follows.149

Theorem 6. Any network modeled as a fractional-order system as in (1) requires less than or equal to the150

number of driven nodes than that of the same network possessing linear time-invariant dynamics.151

Proof. Based on the results in Theorem 5 and the results in [7], linear time-invariant networks have one more152

additional condition to verify structural controllability than the sole condition required for fractional-order153

networks. Therefore, a network possessing linear time-invariant dynamics must have the same or more total154

number of driven nodes than the equivalent topological network possessing fractional-order dynamics.155

Finally, we provide the computational-time complexity for solving P1.156

Theorem 7. The computational-time complexity of the solution to P1 is given as O(n2).157

Proof. Based on Theorem 5, the solution to P1 depends on finding the source strongly connected com-158

ponents. Tarjan’s algorithm finds all the strongly connected components in a directed network with a159

computational-time complexity of O(|V| + |E|) [8], where V is the number of vertices and E is the num-160

ber of edges in the network. Hence, by performing another pass of depth-first search, which also has a161

computational-time complexity of O(|V| + |E|), then the strongly connected components that do not have162

an incoming edge can be identified, which are the source strongly connected components. We notice that163

E ⊆ V × V. Hence, O(|V|+ |E|) = O(|V|2) = O(n2), and the result follows.164
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Minimal Dedicated Actuation to Ensure Structural Controllability of165

Fractional-Order Dynamical Networks in a Given Number of Time Steps T < n166

Next, we will we provide the solution to find the minimum combination of state variables that ensure the167

structural controllability of fractional-order dynamical networks with a given number of time steps T < n,168

which is written as follows169

min
J⊆{1,...,n}

|J |

s.t. (ᾱ, Ā, ĪJn , T < n) is structurally controllable.
(P2)

In the next result, we provide a solution to P2.170

Theorem 8. (Structural controllability for fractional-order dynamical networks with a given horizon T < n)171

A fractional-order dynamical network (ᾱ, Ā, B̄, T < n), is structurally controllable for a given horizon T < n172

if and only if the following two conditions are satisfied:173

1. there is at least one state variable in each source SCC in G(Ā0) connected to an input, and174

2. the length of the longest shortest path from the starting node of any source SCC in G(Ā0, B̄) is less175

than or equal to T .176

◦177

Proof. The first condition follows directly from Theorem 4. The second condition ensures that the system is178

controllable in T < n time steps since the network can only communicate information as fast as the longest179

shortest path from the input to the last node in the network.180

While Theorem 8 does provide an exact solution to P2, this solution is NP-hard. We prove this claim in181

the next result.182

Theorem 9. Problem P2 is NP-hard.183

Proof. We need to show that there exists a polynomial reduction from a problem known to be NP-hard to our184

problem. The known NP-hard problem that we consider is the graph partitioning problem [9], which aims to185

determine the minimum decomposition of G = (V, E) into p connected directed subgraphs Gi = (Vi, Ei), with186

i ∈ {1, . . . , p} such that |Vi| ≤ T , Vi ∩ Vj = ∅ for i 6= j and
⋃p
i=1 Vi = V. If we partition the network G(Ā0)187

into p subgraphs such that each subgraph has |Vi| ≤ T , then we can ensure that the longest shortest path188

from the starting node of any source SCC in each subgraph is less than or equal to T because each subgraph189

has at most T nodes, which satisfies condition 2 in Theorem 8. Furthermore, the source SCCs can be found190

in polynomial time [10], which satisfies condition 1 of Theorem 8. Together, this method provides a solution191

to P2. Hence, our problem is at least as difficult as the graph partitioning problem, which is known to be192

NP-hard, so P2 is NP-hard.193

Since P2 cannot be solved exactly, we propose an approximated solution to P2, which is employed in our194

simulations and shown in Algorithm 1. Briefly, Algorithm 1 takes a fractional-order dynamical network and195

a given number of time steps T < n and finds the minimum set of state variables J to ensure structural196

controllability. First, the algorithm computes the digraph from the fractional-order dynamical network.197

Next, the software package METIS [9] is used to partition the graph into
⌈
n
T

⌉
subgraphs of roughly equal198

size T . Finally, all of the source SCCs are found in each subgraph, and a single node from each source SCC199

is added to the set J .200

Next, we provide an lower-bound on the optimal solution to P2.201
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Algorithm 1: Find the minimum set of state variables J to ensure structural controllability of
fractional-order dynamical networks for a given time horizon T < n

Input: Fractional-Order Dynamical Network (ᾱ, Ā, T ) and network size n
Output: The set of state variables denoted by J ⊆ {1, . . . , n}
Initialization: Compute G(Ā0) from the fractional-order dynamical network (ᾱ, Ā, T ) and network size n
Step 1: Using METIS [9], partition the digraph G(Ā0) into

⌈
n
T

⌉
partitions denoted by Gi = (Vi, Ei), where

each partition is roughly equal sized, i.e. |Vi| ≤ T .
Step 2: Find all the source SCCs Si,j in each partition Gi, where j is the index of all the source SCCs in
subgraph Gi

Step 3: Add one state from each source SCC Si,j to the set J .

Theorem 10. The minimum number of driven nodes d required to solve P2 for a given time horizon T is202

given by the following inequality:203

d ≥
⌈ n
T

⌉
. (9)

Proof. When partitioning the graph into subgraphs, we ensure each subgraph has |Vi| ≤ T . Therefore, there204

are a maximum of d nT e subgraphs. Each subgraph can have a minimum of only one source SCC, so the205

lower-bound on the number of driven nodes is equal to the number of subgraphs, i.e., d nT e.206

Finally, we present the computational-time complexity of Algorithm 1.207

Theorem 11. The computational-time complexity of Algorithm 1 is given as O(n2 log(n)).208

Proof. The complexity of this sequential algorithm is determined by the step that has the maximum209

computational-time complexity. The initialization step has a complexity of O(n2) since we construct the210

network from its adjacency matrix Ā0. Step 1 has a computational time-complexity of O(n2 log(n)) [11].211

Step 2 has a computational-time complexity of O(n2) [8]. Step 3 has a computational-time complexity of212

O(n) since we select a single node out of all the nodes in a source SCC, which could be possibly n nodes.213

Hence, Step 1 has the largest computational-time complexity, so this dictates the overall complexity of the214

algorithm, and the result follows.215

2 Extra Experiments216

We investigate the relationship between the average degree and the average difference in the required number217

of driven nodes for the three random networks. The results are shown in Figure 1. With the exception of218

the Watt-Strogatz networks, which have the same degree for each of the generated networks, the average219

difference in the required number of driven nodes stays relatively similar as the average degree of the network220

increases.221

We examine the rat brain network since this gave the highest difference in required number of driven222

nodes. In particular, we examine the degree distribution and clustering coefficient distribution for the rat223

brain network to gain insight as to why this network gives such a significant improvement in the required224

number of driven nodes when considering the fractional-order dynamical network model – see Figure 2225

(b) and (c). We notice that the rat brain network has wide range of degrees and a fairly high clustering226

coefficient. We conjecture that these properties play a role in achieving a high difference in driven nodes.227

Using the progressive ChungLu method developed in [12], we generate 100 networks that are on average228

similar in degree distribution to the rat brain network. From the results in Figure 2 (a), we see that the229

mean and standard deviation of the difference in driven nodes for the generated networks drastically differ230

the results for the original rat brain network. As a way to understand why we see this drastic difference in231

results, we performed the Spearman Rank Test (Chapter 8.5, [13]), which tests whether any two real-valued232

vectors of equal length are independent. In particular, the null hypothesis states that the two vectors are233
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: For networks of sizes 250, 500, and 1000 nodes, respectively, Figures (a), (b), and (c) show
the average difference in the required number of driven nodes (nT ) for networks of varying average degree
distributions versus the time-to-control (%) for 100 realizations of Erdős–Rényi networks. For networks of
sizes 250, 500, and 1000 nodes, respectively, Figures (d), (e), and (f) show the average difference in the
required number of driven nodes (nT ) for networks of varying average degree distributions versus the time-
to-control (%) for 100 realizations of Barabási–Albert networks. For networks of sizes 250, 500, and 1000
nodes, respectively, Figures (g), (h), and (i) show the average degree of networks versus the required number
of driven nodes (nT ) across the time-to-control (%) for 100 realizations of Watts-Strogatz networks. In the
case of the Watts-Strogatz networks, we notice that the average degree is the same for all of the networks.

indeed independent. Hence, if the p-value is large, then the null hypothesis is accepted, whereas if the234

p-value is small, then the null hypothesis is rejected. For each of the 100 generated networks, we compare235

the distribution of the in-degree, out-degree, and total degree for the generated network with those for the236

rat brain network.237
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Figure 2: (a) shows the mean and standard deviation of the difference in driven nodes versus time-to-control
for 100 networks generated from the rat brain network following the progressive Chung Lu method [12]. (b)
shows the degree distribution for the original rat brain network. (c) shows the clustering coefficient for the
original rat brain network.

First, we provide the results of the Spearman Rank Test when considering the in-degree distribution. With238

99% confidence, only 55% of the generated networks have vertex in-degree distributions that are independent239

of the vertex in-degree distribution for the rat brain network. With 95% confidence, 80% of the generated240

networks have vertex in-degree distributions that are independent of the vertex in-degree distribution for the241

rat brain network. With 90% confidence, 87% of the generated networks have vertex in-degree distributions242

that are independent of the vertex in-degree distribution for the rat brain network. Therefore, we can say243

with high confidence that most of the generated networks have in-degree distributions that are independent244

from the in-degree distribution of the rat brain network. This may provide an explanation as to why the245

difference in the number of driven nodes needed for the generated networks differs drastically from difference246

in the required number of driven nodes for the rat brain network.247

Next, we provide the results of the Spearman Rank Test when considering the out-degree distribution.248

With 99% confidence, only 26% of the generated networks have vertex out-degree distributions that are249

independent of the vertex out-degree distribution for the rat brain network. With 95% confidence, 52% of250

the generated networks have vertex out-degree distributions that are independent of the vertex out-degree251

distribution for the rat brain network. With 90% confidence, 63% of the generated networks have vertex252

out-degree distributions that are independent of the vertex out-degree distribution for the rat brain network.253

Surprisingly, we can say with high confidence that very few of the generated networks have out-degree254

distributions that are independent from the out-degree distribution of the rat brain network.255

Finally, we provide the results of the Spearman Rank Test when considering the total degree distribution.256

With 99% confidence, 70% of the generated networks have total degree distributions that are independent of257

the total degree distribution for the rat brain network. With 95% confidence, 94% of the generated networks258

have total degree distributions that are independent of the total degree distribution for the rat brain network.259

With 90% confidence, 94% of the generated networks have total degree distributions that are independent260

of the total degree distribution for the rat brain network. Therefore, we can say with high confidence that261

more than 70% of the generated networks have total degree distributions that are independent from the total262

degree distribution of the rat brain network. This provides evidence to support that the difference in the263

number of driven nodes needed for the generated networks would differ drastically from the difference in the264

required number of driven nodes for the rat brain network.265
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