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Figure S1. Transcriptomic and epigenomic characterization of the broad Sox11 
domain. Related to Figure 1.  

(A) Top: broad ~2Mb region flanking Sox11; Bottom: zoom-in on the indicated region. 
Showמ are (top to bottom): Fos Cut&Run data in the hippocampus (HC) CA1 region 37; 
HC nuclear RNA-seq data at the indicated time after KA treatment 37; ATAC-seq data 
from the same study; including from sorted Fos-positive and Fos-negative cells; ATAC-
seq data from the DG after ECS 27, including a time course and the Fos knockdown 
experiment; RNA-seq data from the same study. Fos-bound and apparently Fos-
regulated regions are shaded. (B) Expression of Sox11 and Silc1 in data of sorted 
populations from the HippoSeq dataset (n=3). 
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Figure S2. Expression of Silc1 and Sox11 at several time points following novel 
environment (NE) conditions in Silc1 conditional knockout mice. Related to Figure 
2.  

(A) RNAscope FISH assay on hippocampal sections from WT mice. Tissues were 
hybridized with Silc1 (green) and Sox11 CDS (red) probes and counterstained with DAPI 
(blue), and imaged using 20X (Scale bar 200 μm) and 100X oil-immersion objectives 
(Scale bar 20 μm). Novel environment (NE) performed using the Barnes maze setting 
and the hippocampus was extracted for coronal sections 0.5, 1, 2 and 6 hr upon 
stimulus. (B) As in A for hippocampus sections from Silc1fl/fl mice that were stereotaxic 
injected in the CA3 region using AAV9 Cre-GFP or AAV9 GFP. Two weeks after 
injections the mice were exposed to Novel environment (NE) and the hippocampus was 
extracted for coronal sections after 1 hr of NE. 
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Figure S3. Characterization of gene expression changes in different mouse 
models. Related to Figure 3. 

(A) RNAscope Fluorescent in situ hybridization (FISH) assay on WT and Silc1–/– mice 
hippocampal sections from HC and NE conditions. Tissues were hybridized with Fos 
mRNA (green) and Sox11 CDS (red) probes and counterstained with DAPI (blue), and 
imaged using 100X oil-immersion objectives (Scale bar 20 μm). (B) Immunostaining with 
anti-SOX11 (red) and DAPI (blue) in hippocampi of Silc1fl/fl mice that were stereotaxically 
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injected in the CA3 region using AAV9 Cre-GFP or AAV9 GFP. The GFP signal marks 
the site of injection. Imaging using 20X objective (Scale bar 200 μm). (C) RNA-seq read 
coverage at the Silc1 (left) and Sox11 (right) genomic regions, in the adult hippocampus 
(HC) or in cultured hippocampal neurons (“culture”) from the indicated genetic 
background. (D) Changes in expression of the indicated genes and regions upon the use 
of the indicated GapmeRs targeting Silc1 (left) Sox11 CDS (middle) and Sox11 3'UTR 
(right), as evaluated by qRT-PCR. Levels were normalized to control GapmeR and β-
actin for internal control. The GapmeRs selected for further experiments are shaded in 
gray. 3 biological repeats. Mean ± SEM is shown. P value calculated using unpaired 
two-sample t-test,* P < 0.05,  ** P < 0.005. 

  



Figure S4. Expression of Sox11 after Sox11 3' UTR KD by injection of GapmeRs 
into the CA3 region and Silc1 over-expression in Silc1–/– mice. Related to Figure 4. 

(A) Control-FAM (left) or Sox11 3' UTR (right) GapmeRs were injected into the CA3 
region. 5 days later, the hippocampus was extracted for coronal sections. RNAscope 
analysis of Sox11 expression using Sox11 3' UTR(green), Sox11 CDS (red) probes, and 
DAPI. Imaging was done using 20X (Scale bar 200 μm) and 100X oil-immersion 
objectives (Scale bar 20 μm). (B) RNAscope quantification of the number of green and 
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red dots, normalized to control GapmeR, performed using IMARIS software. 12 images 
of non-overlapping fields per biological repeat were quantified; 3 biological repeats. 
Mean ± SEM is shown. P value calculated using an unpaired two-sample t-test, * P < 
0.05. (C) Immunostaining with anti-SOX11 (red) and DAPI (blue) in hippocampi of Sox11 
3' UTR KD mice. FAM signal marks the injection site of the control GapmeR. Imaging 
using 20X objective (Scale bar 200 μm). (D) Quantification of 3 biological repeats of 
hippocampal staining, normalized to the injection of control GapmeR. Mean ± SEM. (E) 
qRT-PCR quantifications of Silc1 and Sox11 after injection of AAV9-Silc1 or AAV9-GFP 
into the CA3 region of WT and Silc1–/– mice. Levels were normalized to WT mice injected 
with AAV9-GFP, and β actin was used as an internal control. (F) Immunostaining with 
anti-SOX11 (red) and DAPI (blue) in hippocampi of Silc1–/– mice injected with Silc1 OE 
AAV. Imaging using 20X objective (Scale bar 200 μm).  

  



Figure S5. Silc1–/– mice showed no alteration in freezing responses during fear 
conditioning and subsequent recall tests and characterization of genes regulated 
by Sox11 and Silc1 by RNA-seq. Related to Figures 5 and 6. 

(A-C) Freezing behavior of Silc1–/– (13) mice compared to WT (13) littermates over Fear 
Conditioning (A), Context Test (B) and Cue Test (C). Data represent mean +/- SEM 
(error bars). Two-way ANOVA, for Gene (Between-Subjects), Time (30 sec intervals; 
Within-Subjects with repeated measures), and their interaction (Gene × Time) indicated 
no difference between the genotypes in this type of learning and its recall [Gene (main 
effect): Conditioning- F(1,24)=2.294; p=0.143. Context- F(1,22)=0.839; p=0.370. Cue- 
F(1,22)=0.210; p=0.839. (D) Genes negatively regulated by Sox11 in the hippocampus. As 
in Fig. 6, for the seven genes negatively regulated by Sox11. (E) Distribution of the 
changes in gene expression for the comparisons shown in Fig. 7 for the genes that are 
significantly reduced in the E13.5 Sox11fl/fl Cre+ dentate neuroepithelium. P-values for 
each group obtained using Wilcoxon rank-sum test are shown above each boxplot. (F) 
As in Fig. 1C, for the different genes in the Sox family of TFs. The RNA-seq data are 
from the mouse dentate gyrus and the indicated time after ECS. 
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Figure S6. Characterization of genes regulated by Sox11 and Silc1 by RNA-seq. 
Related to Figure 6.  

(A) UMAP visualization of the single-nucleus RNA-seq expression data, color-coding the 
sample from which each cell originated. (B) Expression levels of the indicated genes 
projected onto the UMAP visualization. (C) GO cellular compartment and biological 
process terms enriched in the genes significantly down-regulated in Silc1–/– cells 
compared to WT cells in the indicated clusters. 
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Figure S7. Changes in expression Silc1 and Sox11 during aging and in a model of 
Alzheimer’s disease. Related to Discussion.   

Expression of Silc1 (top) and Sox11 (bottom) in the indicated brain region extracted from 
control WT mice and from 5xFAD mice at the indicated age, data from66. Blue asterisks 
denote P<0.05 for the comparison between Control and 5xFAD mice, two-sided 
Wilcoxon rank-sum test. 
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