Electronic supplementary material (ESI)

Automated high-throughput quantification of phenyl-γvalerolactones and creatinine in urine by laser diode thermal desorption

Jacob Lessard-Lord^{a,b,c}, Serge Auger^d, Sarah Demers^d, Pier-Luc Plante^{a,b}, Pierre Picard^d, and Yves Desjardins^{a,b,c*}

Affiliations

- a) Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, 2440 boulevard Hochelaga, Québec, QC, G1V 0A6, Canada
- b) Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, 2440 boulevard Hochelaga, Québec, QC, G1V 0A6, Canada
- c) Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University,
 2425 rue de l'Agriculture, Québec, QC, G1V 0A6 Canada
- d) Phytronix Technologies, 4535, boulevard Wilfrid-Hamel, Suite #120, Québec, QC, G1P
 2J7, Canada

Category	Item		
	All the fruits except :		
Fruits	Citrus		
	Pineapple		
	Watermelon		
Vagatablas	Indian squash		
vegetables	Rhubarb		
	All beans		
Laguna	Lentil		
Legumes	Cowpea		
	Carob		
Cereals	Soy (including tofu,		
	etc.)		
	Barley		
	Buckwheat		
	Sorghum		
	Millet		
	Rice		
	Tea		
	Coffee		
Rovoragos	Juice of the fruits to		
Beverages	avoid		
	Wine		
	Beer		
Others	Chocolate		
	Nuts and peanut		
	Avocado		
	Cinnamon		
	Curry		

Supplemental Table S1. Food and beverage containing flavan-3-ols participants were asked to not consume during study B

Supplemental Table S2. Daily dose of (poly)phenols provided by cranberry extract used in study B

Class	Compound	Compound Daily dose (mg)		(mg)
	Catechin	0.1293	±	0.0017
Flavan-3-ols _	Epicatechin	1.865	±	0.017
	Procyanidin A2	4.46	±	0.04
	Procyanidin B2	Not	n detec	cted
	Flavan-3-ols total*	82.3	±	0.2
	Coumaric acid	2.315	±	0.017
	Coumaroyl-hexoside - 1	0.415	±	0.004
	Coumaroyl-hexoside - 2	0.1760	±	0.0008
	Coumaroyl-monotropein	0.337	±	0.003
	Coumaroyl-dihydromonotropein	0.716	±	0.005
	Chlorogenic acid	1.795	±	0.015
	Caffeoyl-hexoside	0.399	±	0.004
וי יו ות	Sinapoyl-hexoside	0.403	±	0.003
Phenolic acids	Vanilloyl-hexoside	0.0676	±	0.0008
	Feruloyl-hexoside	0.254	±	0.002
	3,4-dihydroxybenzoic acid	Not	n detec	cted
	Dihydroxybenzoic acid - 1	0.1285	±	0.0014
	Dihydroxybenzoic acid - 2	0.0621	±	0.0007
	Dihydroxybenzoyl-hexoside	0.0451	±	0.0006
	Hydroxybenzoyl-hexosyl-hexoside	0.1388	±	0.0013
-	Phenolic acids and derivatives total	7.25	±	0.05
	Quercetin	4.75	±	0.06
	Quercetin-3-galactoside	1.897	±	0.016
	Quercetin-3-rhamnoside	0.996	±	0.009
	Quercetin-pentoside - 1	0.662	±	0.005
	Quercetin-pentoside - 2	0.421	±	0.003
	Quercetin-pentoside - 3	0.394	±	0.003
	Quercetin-deoxyhexoside	0.1125	±	0.0010
	Quercetin-hydroxybenzoyl-hexoside	0.385	±	0.004
Flavonols	Isorhamnetin	0.329	±	0.003
	Myricetin	2.18	±	0.02
	Myricetin-pentoside 1	0.1036	±	0.0012
	Myricetin-pentoside - 2	0.171	±	0.003
	Myricetin-pentoside - 3	0.1449	±	0.0007
	Myricetin-hexoside	1.137	±	0.008
	Myricetin methyl	0.220	±	0.002
	Syringetin-hexoside	0.285	±	0.002
	Flavonols total	14.18	±	0.12
Anthocyanins _	Cyanidin 3-galactoside	1.06	±	0.03
	Cyanidin 3-glucoside	0.106	±	0.002
	Cyanidin 3-arabinoside	1.70	±	0.04
	Peonidin 3-galactoside	1.43	±	0.03
	Peonidin 3-glucoside	0.052	±	0.004
	Peonidin 3-arabinoside	1.16	±	0.02
	Anthocyanins total	5.50	±	0.13

* Determined by phloroglucinolysis with a mean degree of polymerization of 5.

Working	Concentration (mg/L)			
solution	3-HPVL 3,4-DHPVL		Creatinine	
CS #1	0,5	1	1000	
CS #2	1	2	2000	
CS #3	5	10	4000	
CS #4	10	20	8000	
CS #5	15	30	16000	
CS #6	20	40	24000	
CS #7	25	50	32000	
CS #8	30	60	40000	
QC-L	1,5	3	3000	
QC-M	12,5	25	12000	
QC-H	22,5	45	30000	

Supplemental T	able S3.	Concentration	of the wo	orking sc	olutions
----------------	----------	---------------	-----------	-----------	----------

Analyte	Transition	CE (V)	Transition type
2 HDVI	$191 \rightarrow 106$	-22	Quantitative
J-MF VL	$191 \rightarrow 147$	-18	Confirmation
2 A DUDVI	$207 \rightarrow 163$	-18	Quantitative
5,4-DHF V L	$207 \rightarrow 122$	-24	Confirmation
Acetominophen-d ₄	$154 \rightarrow 111$	-18	Quantitative & confirmation
Cuastinina	$114 \rightarrow 86$	10	Quantitative
Creatinine	$114 \rightarrow 72$	14	Confirmation
Croatinina d.	$117 \rightarrow 89$	10	Quantitative
Creatinine-u ₃	$117 \rightarrow 75$	14	Confirmation

Supplemental Table S4. Transitions used for quantification by UPLC-MS/MS

Supplemental Figure S1: Kinetic of degradation of conjugated PVLs and release of unconjugated PVLs during enzymatic hydrolysis. Results are expressed as mean of triplicate \pm standard error of mean.

Pseudo-code for automated sample preparation

<u>PVLs</u>

Liquid handler initial state

- One empty deep-well for liquid-liquid extraction (DW1)
- One deep-well with one row prefilled with working solution and acetonitrile (DW2)
- One empty deep-well for final dilution (DW3)
- One empty Lazwell plate
- One reservoir containing enzyme solution.
- One reservoir containing the internal standards solution.
- One reservoir containing the NaCl saturated solution.
- One reservoir containing the desorption solution.
- One sample holder (carousel or deep-well) loaded with urine samples.
- Two boxes of 300 µL tips
- Two boxes of 20 µL tips.

Step 1: Transfer 25 µl of enzyme to an empty deep-well #1

Enzyme transfer parameters

- Aspiration volume = $45 \mu L$
- Dispense volume = $25 \mu L$
- Conditioning volume = $50 \mu L$
- Aspiration position = 2 mm above bottom of well
- Dispensing position = 1 mm above bottom of well

Pick up 300 µL tips.

Condition tip with conditioning volume.

Transfer loop:

- Go to aspiration position in reservoir,
- Aspirate with aspiration volume,
- Go to dispensing position in deep-well and deliver dispense volume,
- Repeat as needed to fill required well in DW1.

Blow out remaining volume in reservoir.

Drop tip into waste.

Step 2: Transfer 50 µL of urine sample to deep-well #1

Sample transfer parameters

- Aspiration volume = $50 \,\mu L$
- Conditioning volume = $100 \mu L$
- Aspiration position = 2 mm above bottom of well

- Dispensing position = 2 mm above bottom of well

Pick up 300 µL tips

Condition tip with conditioning volume

Transfer loop:

- Go to aspiration position in sample holder,
- Aspirate with aspiration volume,
- Go to dispensing position in DW1,
- Drop tips into waste,
- Repeat as needed to transfer every sample in DW1.

Step 3: Vortex deep-well #1

Vortex DW1 for 30 seconds at 1000 rpm.

Step 4: Hydrolyze urine samples

Wait for 300 seconds.

Step 5: Transfer internal standards to deep-well #1

Internal standards transfer parameters

- Aspiration volume = $295 \mu L$
- Conditioning volume = $300 \ \mu L$
- Aspiration position = 2 mm below solution level
- Dispensing position = 25 mm above bottom of well

Pick up 300 µL tips,

Condition tips with conditioning volume,

Transfer loop:

- Go to aspiration position in reservoir,
- Aspirate with aspiration volume,
- Go to dispensing position in deep-well and deliver dispense volume,
- Repeat as needed to add to every used well in DW1,

Drop tips into waste.

Step 6: Vortex deep-well

Vortex deep-well for 30 seconds at 1000 rpm.

Step 7: Add working solution (or acetonitrile) to deep-well

Working solution transfer parameters

- Aspiration volume = $5 \mu L$

- Conditioning volume = $10 \,\mu L$
- Aspiration position = 2 mm above bottom of well
- Dispensing position = 5 mm above bottom of well

Pick up 20 µL tips,

Condition tips with conditioning volume,

Transfer step:

- Go to aspiration position in DW2,
- Aspirate with aspiration volume,
- Go to dispensing position in DW1 and deliver dispense volume,
- Drop tip into waste,
- Repeat as needed.

Step 8: Vortex deep-well #1

Vortex deep-well for 30 seconds at 1000 rpm.

Step 9: Transfer NaCl saturated solution to deep-well #1

NaCl solution transfer parameters

- Aspiration volume = $75 \,\mu L$
- Conditioning volume = $100 \mu L$
- Aspiration position = 2 mm above bottom of well
- Dispensing position = 25 mm above bottom of well

Pick up 300 µL tips,

Condition tip with conditioning volume,

Transfer loop:

- Go to aspiration position in reservoir,
- Aspirate with aspiration volume,
- Go to dispensing position in deep-well and deliver dispense volume,
- Repeat as needed to add to every used well in DW1.

Drop tips into waste.

Step 10: Vortex deep-well

Vortex deep-well for 30 seconds at 1000 rpm.

Step 11: Mix upper layer with desorption solution in deep-well #3 and transfer to Lazwell

Desorption solution transfer parameters

- Aspiration volume = $20 \,\mu L$
- Conditioning volume = $20 \ \mu L$

- Aspiration position = 1 mm above bottom of well
- Dispensing position = 2 mm above bottom of well

Upper layer transfer parameters

- Aspiration volume = $20 \ \mu L$
- Mixing volume = $20 \,\mu L$
- Aspiration position = 8 mm above bottom of well
- Dispensing position = 2 mm above bottom of well

Dilution transfer to Lazwell parameters

- Aspiration volume = $4 \mu L$
- Aspiration position = 2 mm above bottom of well
- Dispensing position = 1 mm above bottom of well

Transfer loop:

- Pick up 20 µL tips
- Condition tip with conditioning volume of desorption solution
- Aspirate with desorption solution aspiration volume
- Go to dispensing position in DW3 and deliver desorption solution
- Go to aspiration position in DW1
- Aspirate with upper layer aspiration volume
- Go to dispensing position in DW3 and deliver solution
- Mix in DW3 by pipetting with mixing volume two times
- Aspirate 3 µL air gap
- Go to aspiration position in DW3
- Aspirate with dilution aspiration volume
- Go to dispensing position in LazWell and dispense 7 μ L
- After dispense, touch tip at the bottom of the LazWell
- Drop tip into waste
- Repeat as needed to dilute and transfer every sample

Creatinine

Liquid handler initial state

- One empty deep-well for sample preparation (DW1)
- One empty deep-well for sample dilution (DW2)
- One Lazwell plate
- Two 300 uL tips rack
- Two 20 uL tips rack
- One reservoir containing dilution solution
- One reservoir containing internal standard solution
- One sample holder (carousel or deep-well) loaded with urine samples.

Step 1: Transfer internal standard to deep-well #1

Internal standard transfer parameters

- Aspiration volume = $300 \,\mu L$
- Conditioning volume = $200 \ \mu L$
- Aspiration position = 2 mm below solution level
- Dispensing position = 10 mm above bottom of well

Pick up 300 µL tips

Condition tip with conditioning volume

Transfer loop:

- Go to aspiration position in internal standard solution reservoir
- Aspirate with aspiration volume
- Go to appropriate dispensing position in DW1 and deliver dispense volume,
- Repeat as needed to fill required well in DW1.

Drop tips into waste

Step 2: Transfer samples to deep-well #1

Samples transfer parameters

- Aspiration volume = $40 \ \mu L$
- Mixing volume = $200 \,\mu L$
- Aspiration position = 2 mm above bottom of well
- Dispensing position = 2 mm above bottom of well
- Mixing position = 5 mm above bottom of well

Transfer loop:

- Pick up 300 µL tips
- Go to aspiration position in sample container (carousel or sample deep-well)
- Condition tip with mixing volume

- Aspirate with aspiration volume
- Go to appropriate dispensing position in DW1 and deliver dispense volume
- Mix with mixing volume six times
- Drop tips into waste
- Repeat as needed to transfer every sample in DW1

Step 3: Dilution solution transfer to deep-well #2

Dilution solution transfer parameters

- Aspiration volume = $300 \,\mu L$
- Conditioning volume = $200 \,\mu L$
- Aspiration position = 2 mm below solution level
- Dispensing position = 5 mm above bottom of well

Pick up 300 µL tips

Condition tips with conditioning volume

Transfer loop:

- Go to aspiration position in dilution solution reservoir,
- Aspirate with aspiration volume
- Go to appropriate dispensing position in DW2 and deliver dispense volume,
- Repeat as needed to fill required well in DW2.

Drop tips into waste

Step 4: Transfer prepared urine sample to deep-well #2

Prepared urine transfer parameters

- Aspiration volume = $3 \mu L$
- Mixing volume = $10 \mu L$
- Aspiration position = 5 mm above bottom of well
- Dispensing position = 5 mm above bottom of well
- Mixing position = 5 mm above bottom of well

Transfer loop:

- Pick up 20 µL tips
- Go to aspiration position in DW1
- Aspirate with aspiration volume
- Go to dispensing position in DW2 and deliver dispense volume
- Drop tip into waste
- Repeat as needed to transfer every prepared urine sample

Step 5: Vortex deep-well

Vortex deep-well for 30 seconds at 1000 rpm.

Step 6: Transfer diluted urine samples to Lazwell

Transfer to Lazwell parameters

- Aspiration volume = $4 \mu L$
- Conditioning volume = $4 \mu L$
- Aspiration position = 5 mm above bottom of well
- Dispensing position = 1 mm above bottom of well

Transfer loop:

- Pick up 20 µL tips
- Move to aspiration position in DW2
- Condition tip with conditioning volume
- Aspirate 3 µL air gap
- Aspirate with aspiration volume
- Go to dispensing position in LazWell and dispense 7 μ L
- After dispense, touch tip at the bottom of the LazWell
- Drop tip into waste
- Repeat as needed to transfer every diluted urine sample